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Extending earlier results of Datko, Pazy and Littman on C0-semigroups,

and of Przyluski and Weiss on operators, we prove the following. Let T be

a bounded linear operator on a Banach space X and let r(T ) denote its

spectral radius. Let E be a Banach function space over N with the property

that limn→∞ ‖χ{0,...,n−1}‖E =∞. If for each x ∈ X and x∗ ∈ X∗ the

map n 7→ 〈x∗, Tnx〉 belongs to E, then r(T ) < 1.

By applying this to Orlicz spaces E, the following result is obtained.

Let T be a bounded linear operator on a Banach space X and let φ :
R+ → R+ be a non-decreasing function with φ(t) > 0 for all t > 0.

If
∑∞

n=0 φ
(
|〈x∗, Tnx〉|

)
< ∞ for all ‖x‖, ‖x∗‖ 6 1, then r(T ) < 1.

Assuming a ∆2-condition on φ, a further improvement is obtained.

For locally bounded semigroups T = {T (t)}t>0, we obtain similar

results in terms of the maps t 7→ ‖T (t)x‖.
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0. Introduction

Let T = {T (t)}t>0 be a C0-semigroup on a Banach space X . Let ω(T) be
its growth bound. It is a well-known theorem of Datko [Da] that ω(T) < 0 if

∫ ∞

0

‖T (t)x‖2 dt <∞, ∀x ∈ X.
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This result was generalized by Pazy [P], who showed that the exponent p = 2
may be replaced by any 1 6 p < ∞. Recently, Littman [Li] showed that
ω(T) < 0 if there exists a continuous, increasing function φ : R + → R+ which
satisfies φ(0) = 0 and φ(t) > 0 for all t > 0, such that

∫ ∞

0

φ(‖T (t)x‖) dt <∞, ∀x ∈ X.

Pazy’s result is recovered from the function φ(t) = tp.

Noting that for the spectral radius we have the formula r(T (1)) = eω(T)

and that T (n) = (T (1))n, it is natural to ask whether analogues of the above
results hold for the powers of an arbitrary bounded linear operator T on X .
Indeed, Zabczyk [Za] showed that r(T ) < 1 if there is a 1 6 p <∞ such that

∞∑

n=0

‖Tnx‖p <∞, ∀x ∈ X.

Recently, Weiss [We] proved that it is even sufficient that

∞∑

n=0

|〈x∗, Tnx〉|p <∞, ∀x ∈ X, x∗ ∈ X∗

for some 1 6 p < ∞. Earlier, Przyluski [Pr] had obtained the case p = 1 for
weakly sequentially complete Banach spaces.

Comparing the results on semigroups and bounded operators, the natural
question arises whether an analogue of Littman’s theorem is valid for bounded
operators. In this paper we show that this is indeed the case. In fact, we have
the following more general result.

Theorem 0.1. Let T be a bounded linear operator on a Banach space X
and let φ : R+ → R+ be a non-decreasing function with φ(t) > 0 for all t > 0.

(i) If
∞∑

n=0

φ
(
|〈x∗, Tnx〉|

)
<∞, ∀‖x‖, ‖x∗‖ 6 1,

then r(T ) < 1.

(ii) If φ satisfies a ∆2-condition at 0, and if

∞∑

n=0

φ
(
αn|〈x∗, Tnx〉|

)
<∞, ∀‖x‖, ‖x∗‖ 6 1

for some non-negative sequence (αn) with
∑
n αnφ(αn) =∞, then r(T ) <

1.
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The idea behind the proof is as follows. First we show that if E is a Banach
function space over N with the property that limn→∞ ‖χ{0,...,n−1}‖E =∞, and
if for each x ∈ X and x∗ ∈ X∗ the function

fx,x∗(n) := 〈x∗, Tnx〉

belongs to E, then r(T ) < 1. This is proved in Section 2. The condition on E
is necessary in order to exclude the Banach function spaces E = c0 and l∞; the
example of the shift on l2 shows that these spaces indeed have to be excluded.

In Section 3, we apply this to certain Orlicz sequence spaces E, in order
to obtain a proof of Theorem 0.1.

In Section 4 we discuss the semigroup versions of our results. We do not
assume T to be strongly continuous. In fact, in the theorems of Datko-Pazy and
Littman, which we will derive as a consequence of the results for the discrete
case, it suffices to have T locally bounded.

The main results in this paper are valid both for real and complex Banach
spaces X . We will deal with complex scalars only. The real case can be derived
from this by complexification as follows. First, for an operator T on a real
Banach space X , we define r(T ) := r(TC ), where TC is the complexification of
T . Now if, for instance, n 7→ 〈x∗, Tnx〉 belongs to some real Banach function
space E for all x ∈ X and x∗ ∈ X∗, then n 7→ 〈x∗C , TnC xC 〉 belongs to EC for
all xC ∈ XC and x∗C ∈ X∗C .

Note that, both in the real and in the complex case, r(T ) < 1 if and only
if ‖Tn‖ 6Me−ωn for some M and ω > 0, if and only if there exists an n such
that ‖Tn‖ < 1.

1. Banach function spaces

In this section we briefly recall some facts about Banach function spaces.
For more details, we refer to the books [Z1], [MN], [BS].

Let (Ω,Σ, µ) be a σ-finite positive measure space. Let M(µ) be the vector
space of µ-measurable functions Ω→ C , identifying functions which are equal
µ-a.e. A Banach function norm is a function ρ : M(µ) → [0,∞] with the
following properties:

(N1) ρ(f) = 0 if and only f = 0;
(N2) if |f | 6 |g| µ-a.e., then ρ(f) 6 ρ(g);
(N3) ρ(af) = |a|ρ(f) for all scalars a ∈ C and all ρ(f) <∞;
(N4) ρ(f + g) 6 ρ(f) + ρ(g) for all f, g ∈M(µ).

Let E = Eρ be the set {f ∈ M(µ) : ‖f‖E := ρ(f) < ∞}. Then E is
easily seen to be a normed linear space. If E is complete, then it is called
a Banach function space over (Ω,Σ, µ). Note that E is an ideal in M(µ): if
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|f | 6 |g| µ-a.e. with g ∈ E, then also f ∈ E (and ‖f‖E 6 ‖g‖E). This property
of Banach function spaces, which we will call the ideal property, will be used
repeatedly in what follows. Every Banach function space E is a Dedekind
complete Banach lattice. We say that E is carried by a subset Ω′ of Ω if the
following is true: whenever H ⊂ Ω′ is a measurable set of positive measure,
then there exists a function f ∈ E that is not zero µ-a.e. on H . In order to
exclude the pathological situation that Ω is larger than the ‘joint support’ of
the functions in E, we will always assume that E is carried by Ω. This is no
loss of generality, for one can prove that there always exists a maximal subset
Ω′ of Ω such that E is carried by Ω′ [Z1, Thm. 67.2].

The above definition of a Banach function space can be found in the books
[Z1] and [MN]. Some authors, e.g. [BS] include into the definition the further
hypothesis that the characteristic function sets of finite measure be in E. In
the present setting, this need not be the case.

If fn → f in norm in a Banach function space E, then there is a subse-
quence (fnk ) converging to f pointwise µ-a.e; use [MN, Prop. 2.6.3] or [Z1, Ex.
64.1].

We will be interested in Banach function spaces over N and R + = [0,∞)
(with the counting measure and the Lebesgue measure, respectively).

Let E be a Banach function space over N . Since by assumption E is carried
by N , the characteristic function of each n ∈ N belongs to E. Indeed, there
is a function f ∈ E with |f(n)| > 0. But then χ{n} 6 |f(n)|−1|f | ∈ E, and
consequently χ{n} ∈ E. By taking finite sums, it follows that the characteristic
function of each finite subset of N belongs to E. We define

ΨE(n) := ‖χ{0,...,n−1}‖E
and

ΨE(∞) := lim
n→∞

ΨE(n).

For E = lp, 1 6 p < ∞ we have ΨE(n) = n1/p and ΨE(∞) = ∞, and for
E = c0 and l∞ we have ΨE(n) = ΨE(∞) = 1.

If E is a Banach function space over R+, then we set ΨE(n) = χ[0,t], pro-
vided the characteristic function χ[0,t] belongs to E. In all situations to be dis-
cussed later, this is indeed the case. Finally, we set ΨE(∞) := limt→∞ΨE(t).

2. An abstract sufficient condition for power stability

Let T be a bounded operator on a complex Banach space X . T is said
to be power stable if the spectral radius of T satisfies r(T ) < 1. By Gelfand’s
formula for the spectral radius, T is power stable if and only if ‖T n‖ < 1 for
some n ∈ N , if and only if there exist numbers M > 1 and ω > 0 such that
‖Tn‖ 6 Me−nω for all n ∈ N . In this section, we will derive an abstract
sufficient condition for an operator to be power stable.

We start with the following easy lemma.
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Lemma 2.1. Suppose r(T ) > 1 and 0 < ε < 1. Then for each N ∈ N , there
exist norm one vectors xN ∈ X and x∗N ∈ X∗ such that

|〈x∗N , TnxN 〉| > ε, n = 0, 1, ..., N − 1.

Proof: Fix N ∈ N and let λ ∈ ∂σ(T ) be any point on the boundary of the
spectrum of T . Then |λ| > 1 and λ is an approximate eigenvalue. Let (yn) be
an approximate eigenvector corresponding to λ. Since for each k ∈ N ,

lim
n→∞

‖T kyn − λkyn‖ = 0,

we may choose n0 so large that ‖T kyn0 −λkyn0‖ 6 1
2 (1− ε), k = 0, 1, ..., N−1.

Put xN = yn0 and let x∗N ∈ X∗ be any norm one vector such that |〈x∗N , xN 〉| >
1
2 (1 + ε). Then for k = 0, 1, ..., N − 1 we have

|〈x∗N , T kxN 〉| > |λ|k|〈x∗N , xN 〉| −
1

2
(1− ε) > ε.

////

For real Banach spaces, this lemma is wrong. A counterexample is provided
by rotation over α in R 2, with α/(2π) irrational. For this operator, Lemma
2.1 fails for every choice of ε. We leave the easy proof to the reader.

In the next lemma, fx,x∗ : N → C denotes the map fx,x∗(n) = 〈x∗, Tnx〉.
Lemma 2.2. Let T be a bounded operator on X and E a Banach function
space over N such that fx,x∗ ∈ E for all x ∈ X and x∗ ∈ X∗. Then there is a
constant M such that ‖fx,x∗‖E 6M‖x‖ ‖x∗‖.
Proof: For each x ∈ X define Tx : X∗ → E by Tx(x∗) = fx,x∗. We claim that
each Tx is closed. Indeed, suppose x∗n → x∗ in X∗ and Tx(x∗n) → y∗ in E.
Since norm convergent sequences in a Banach function space admit a pointwise
a.e. convergent subsequence, we must have y∗ = Tx(x∗).

By the closed graph theorem, each Tx is bounded. Similarly, for each
x∗ ∈ X∗ the map Tx∗ : X → E, Tx∗(x) = fx,x∗ is bounded. Now the result
follows easily form the uniform boundedness theorem. ////

Theorem 2.3. Let T be a bounded operator on a Banach space X . Let E
be a Banach function space over N with ΨE(∞) =∞. If, for each x ∈ X and
x∗ ∈ X∗, the function

fx,x∗(n) := 〈x∗, Tnx〉
belongs to E, then r(T ) < 1.

Proof: Let M be as in Lemma 2.2 and suppose for contradiction that r(T ) > 1.
Fix 0 < ε < 1 and let N ∈ N be arbitrary. Set ΩN = {0, ..., N − 1} and let xN
and x∗N be as in Lemma 2.1. Then ‖fxN ,x∗N‖E 6M . From |χΩN | 6 ε−1|fxN ,x∗N |
and the ideal property of Banach function spaces, we see that χΩN ∈ E and
ΨE(n) = ‖χΩN‖E 6 ε−1M . Since this holds for all N , we have ΨE(∞) 6
ε−1M , a contradiction. ////
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Theorem 2.3 can be applied to various ‘weighted’ Banach function spaces.
We start with the abstract idea. For two functions α, β on N we let αβ denote
the pointwise product.

Corollary 2.4. Let T be a bounded operator on X . Let E be a Banach
function space over N and let α = (αn)∞n=0 be a non-negative sequence of
scalars such that

lim
n→∞

‖αχ{0,...,n−1}‖E =∞. (2.1)

If the map n 7→ αn〈x∗, Tnx〉 belongs to E for all x ∈ X and x∗ ∈ X∗, then
r(T ) < 1.

Proof: We may assume that T 6= 0. Let µn := ‖χ{n}‖E, n = 0, 1, ... Then
µn > 0 and we can define a sequence (α̃n) by

α̃k =

{
αk, αk 6= 0;
2−kµ−1

k ‖T‖−k, αk = 0.

The set Eα̃ of all sequences y = (yn) for which α̃y ∈ E, with norm ‖y‖Eα̃ :=
‖α̃y‖E, is a Banach function space (note that (N1) holds because (α̃n) is strictly
positive). By (2.1) and the fact that (α̃n) > (αn), we have ΨEα̃(∞) =∞.

Since the functions n 7→ α̃n〈x∗, Tnx〉 belong to E for all x ∈ X and
x∗ ∈ X∗, the functions n 7→ 〈x∗, Tnx〉 belong to Eα̃. Therefore we can apply
Theorem 2.3. ////

Applying Corollary 2.4 to E = lp and αk := β
1/p
k gives us the following

result, which will be generalized at the end of the next section.

Corollary 2.5. Let (βn) a non-negative sequence with
∑∞

n=0 βn = ∞. Let
T be a bounded operator on X . If, for some 1 6 p <∞,

∞∑

k=0

βk|〈x∗, T kx〉|p <∞, ∀x ∈ X, x∗ ∈ X∗,

then r(T ) < 1.

In [Ne], this corollary has been applied in order to obtain the following
result on the weak orbits of an operator with spectral radius one:

Corollary 2.6 [Ne]. Let T be a bounded operator on a Banach space X
with r(T ) = 1. Let (αn) ∈ c0 be of norm one. Then each sequence (nk) has a
subsequence (nkj ) with the property that there exist norm one vectors x ∈ X ,
x∗ ∈ X∗ such that

|〈x∗, Tnkj x〉| > |αkj |, j = 0, 1, ...

This result exhibits a connection between our theory and the theory of
orbits of Beauzamy [B]. In Section 4 we will show, conversely, that results from
the theory of orbits can be used for the study of stability.
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3. Orlicz spaces

A certain class of Banach function spaces, the Orlicz spaces, is of special
interest. To these we turn now. For more details, we refer to [Z2].

Let φ : R+ → [0,∞] be a function with φ(0) = 0 which is non-decreasing,
left-continuous, and not identically 0 or ∞ on (0,∞). Define

Φ(t) :=

∫ t

0

φ(s) ds.

A function Φ of this form is called a Young function.
Let (Ω,Σ, µ) be a positive σ-finite measure space, and let f : Ω→ C be a

measurable function. Let Φ be a Young function. We define

MΦ(f) :=

∫

Ω

Φ(|f(ω)|) dω.

The set LΦ of all f for which there exists a k > 0 such that MΦ(kf) < ∞ is
easily checked to be a linear space. In case (Ω,Σ, µ) is either non-atomic or
purely atomic, with the norm

ρΦ(f) := inf{k : MΦ(
1

k
f) 6 1}

the space (LΦ, ρΦ) becomes a Banach function space over Ω. Spaces of this type
are called Orlicz spaces. Note that every Orlicz space contains the characteristic
functions of sets of finite measure; in particular it is carried by Ω.

Trivial examples of Orlicz spaces are lp and Lp(R+) (over N and R+,
respectively), 1 6 p < ∞. They are obtained from φ(t) = ptp−1, t > 0, (so
Φ(t) = tp). Similarly, l∞ and L∞(R+) are obtained from φ = Φ given by

φ(t) =

{
0, 0 6 t 6 1,
∞, t > 1.

The following lemma describes when the characteristic function of an Or-
licz space LΦ satisfies ΨLΦ(∞) =∞.

Lemma 3.1. Suppose Ω is either N or R+. Then ΨLΦ(∞) =∞ if and only
if φ(t) > 0 for all t > 0.

Proof: Put Ωn = {0, ..., n− 1} if Ω = N and Ωn = [0, n] if Ω = R+. Note that
χΩn ∈ LΦ. We must prove that limn ‖χΩn‖LΦ =∞.

Since φ(t) > 0 for all t > 0, the same holds for Φ. Since φ is not identically
∞ on (0,∞) there is a t0 > 0 such that 0 < Φ(t) < ∞ for all t ∈ (0, t0). Also
note that Φ is continuous on [0, t0) and strictly increasing. From these facts it
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follows that for all n large enough there is a unique point tn ∈ (0, t0) such that
Φ(tn) = n−1; moreover tn → 0 as n→∞. Calculating, we find

‖χΩn‖LΦ = inf{k : MΦ(
1

k
χΩn) 6 1}

= inf{k :

∫

Ω

Φ(
1

k
χΩn(ω)) dω 6 1}

= inf{k :

∫

Ωn

Φ(
1

k
) dω 6 1}

= inf{k : Φ(
1

k
) 6 1

n
} =

1

tn
.

But t−1
n →∞, which proves the ‘if’ part of the lemma.

Conversely, suppose that φ = 0 on the interval [0, t0] for some t0 > 0. A
calculation as above then shows that

lim
n→∞

‖χΩn‖LΦ =
1

t0
<∞.

////

Lemma 3.2. Let φ : R+ → R+ be left-continuous and non-decreasing with
φ(0) = 0 and φ(t) > 0 for all t > 0. Suppose Ω is either N or R +. Then there
exists a Young function Φ such that f ∈ LΦ for all f ∈ L∞(Ω) which satisfy

∫

Ω

φ
(
|f(ω)|

)
dµ(ω) <∞. (3.1)

If moreover µ(Ω) =∞, then Φ can be chosen such that ΨLΦ(∞) =∞.

Proof: By replacing φ by some multiple of φ, we may assume that φ(1) = 1.
Define

φ̃(t) :=

{
φ(t), 0 6 t 6 1,
1, t > 1.

Let Φ be the Young function

Φ(t) =

∫ t

0

φ̃(s) ds.

Now fix f ∈ L∞(Ω) satisfying (3.1). Let Ωf := {ω ∈ Ω : |f(ω)| > 1}. From

∫

Ω

φ
(
|f(ω)|

)
dµ(ω) >

∫

Ωf

φ
(
|f(ω)|

)
dµ(ω) >

∫

Ωf

φ(1) dµ(ω) = µ(Ωf )

it follows that µ(Ωf ) <∞. Hence,

∫

Ωf

Φ(|f |) dµ 6
∫

Ωf

Φ(‖f‖∞) dµ = Φ(‖f‖∞)µ(Ωf ) <∞.
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Also, noting that Φ(t) 6 φ̃(t) = φ(t) for all t ∈ [0, 1], we have
∫

Ω\Ωf
Φ(|f |) dµ 6

∫

Ω\Ωf
φ(|f |) dµ <∞.

It follows that

MΦ(f) =

∫

Ω

Φ(|f |) dµ <∞.

But then trivially f ∈ LΦ.
Finally, the function φ̃ also satisfies φ̃(t) > 0 for all t > 0. Therefore, if

µ(Ω) =∞, then ΨLΦ(∞) =∞ by Lemma 3.1. ////

We remark that Lemmas 3.1 and 3.2 can be proved for arbitrary positive
σ-finite measure spaces (Ω,Σ, µ) which are either non-atomic or purely atomic.

Now we are in a position to prove the following theorem.

Theorem 3.3. Let T be a bounded linear operator on a Banach space X
and let φ : R+ → R+ be non-decreasing with φ(t) > 0 for all t > 0. If

∞∑

n=0

φ
(
|〈x∗, Tnx〉|

)
<∞, ∀‖x‖, ‖x∗‖ 6 1,

then r(T ) < 1.

Proof: Define φ̃(0) = 0 and φ̃(t) := lims↑t φ(s) for t > 0. Then φ̃ is left-

continuous and satisfies φ̃(0) = 0 and 0 < φ̃(t) 6 φ(t) for all t > 0. Therefore,
if we replace φ by φ̃ is necessary, we may assume that φ is left-continuous and
satisfies φ(0) = 0.

For x ∈ X and x∗ ∈ X∗ both of norm 6 1, define fx,x∗(n) = 〈x∗, Tnx〉.
From the finiteness of the above sum, it follows that limn fx,x∗(n) = 0. In
particular, fx,x∗ ∈ l∞ = L∞(N ). Therefore, by Lemma 3.2 there is a Young
function Φ such that fx,x∗ ∈ LΦ for all x ∈ X and x∗ ∈ X∗ of norm 6 1.
Moreover, ΨLΦ(∞) = ∞ by Lemma 3.1. Since LΦ is a linear space, in fact
fx,x∗ ∈ LΦ for all x ∈ X, x∗ ∈ X∗. Now we can apply Theorem 2.3. ////

We will now work out Corollary 2.4 for Orlicz spaces, assuming that the
function φ satisfies a so-called ∆2-condition at 0, i.e. we assume that there is
an ε > 0 and a constant K such that for all t ∈ [0, ε] we have φ(t) 6 Kφ( 1

2 t).

Theorem 3.4. Let T be a bounded operator on X . Let φ : R + → R+ be
a non-decreasing function satisfying a ∆2-condition at 0 with φ(0) = 0 and
φ(t) > 0 for t > 0, and let α = (αn) be a non-negative scalar sequence such
that ∞∑

n=0

αnφ(αn) =∞. (3.2)

If, for all x ∈ X and x∗ ∈ X∗ of norm 6 1, we have
∞∑

n=0

φ(αn|〈x∗, Tnx〉|) <∞,

then r(T ) < 1.
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Proof: Let φ(t) 6 Kφ( 1
2 t) for all t ∈ [0, ε]. Observe that without loss of

generality we may assume 0 < ε 6 1 and for all n replace αn by inf(αn, ε).
To see this, consider the cases where {n ∈ N : αn > ε} is finite and infinite
separately.

Also, without loss of generality, we may assume that φ is left-continuous.
To see this, replace φ by the function φ̃ of Theorem 3.3 and observe that for
each 0 6 t 6 ε, φ(t) 6 Kφ( 1

2 t) 6 Kφ̃(t). In view of αn 6 ε and φ̃ 6 φ, it

follows that (3.1) and (3.2) hold for φ̃ as well. Also, by taking limits it follows
that φ̃ satisfies the ∆2-condition at 0, with the same constants ε and K.

Finally we may assume that φ(1) = 1.
Let E = LΦ be the Orlicz space defined as in Lemma 3.2. Then we

have limn→∞ ‖αχ{0,...,n−1}‖E =∞. Indeed, suppose the contrary and let m >
supN ‖αχ{0,...,N−1}‖E . Then by definition of the norm of E, for all N ∈ N we
have

N−1∑

n=0

Φ
(αn
m

)
6 1.

Hence,
∑∞

n=0 Φ(αn/m) 6 1. Subclaim:
∑∞

n=0(αn/m)φ(αn/m) < ∞. Indeed,
for all but finitely many n we must have αn/m 6 ε, for otherwise the sum
involving Φ would be infinite. For these n, the ∆2 condition implies that φ̃(s) =
φ(s) > K−1(ms/αn)kφ(αn/m) for all 0 < s 6 αn/m, where k = (lnK)/(ln 2),
and hence Φ(αn/m) > K−1(k + 1)−1(αn/m)φ(αn/m). This establishes the
subclaim.

Let j ∈ N be such that m 6 2j . From the ∆2-condition it follows that

∞∑

n=0

φαn(αn) 6 mKj
∞∑

n=0

αn
m
φ
(αn
m

)
<∞.

Thus we have arrived at a contradiction and the claim is proved.
Let ‖x‖ 6 1, ‖x∗‖ 6 1. Since

∑∞
n=0 φ(αn|〈x∗, Tnx〉|) < ∞, we must

have limn αn〈x∗, Tnx〉 = 0. Hence, the map n 7→ αn〈x∗, Tnx〉 is bounded and
therefore belongs to E by Lemma 3.2. By linearity, the same is true for all
x ∈ X and x∗ ∈ X∗. Now the result follows from Corollary 2.4. ////

Since φ(t) = tp−1 satisfies a ∆2-condition at 0 for each 1 6 p < ∞,
Corollary 2.5 is contained as a special case in Theorem 3.4.

By completely different methods, which will be developed in the next sec-
tion in the semigroup setting, we can prove the following strong analogue of
Theorem 3.4.

Theorem 3.5. Let T be a bounded operator on X . Let φ : R + → R+

be a non-decreasing function satisfying a ∆2-condition at 0 with φ(0) = 0 and
φ(t) > 0 for t > 0, and let α = (αn) be a non-negative scalar sequence such that∑∞

n=0 φ(αn) =∞. If, for all x ∈ X of norm 6 1, we have
∑∞

n=0 φ(αn‖Tnx‖) <
∞, then r(T ) < 1.
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4. The semigroup case

In this section we will apply the above results to semigroups of operators.
Recall that a family T = {T (t)}t>0 of bounded linear operators on X is called
a semigroup if

(S1) T (0) = I ;
(S2) T (t)T (s) = T (t+ s), ∀t, s > 0;

A semigroup is locally bounded if sup06t6ε ‖T (t)‖ < ∞ for some ε > 0,
and strongly continuous or a C0-semigroup if it satisfies

(S3) limt→∞ ‖T (t)x− x‖ = 0, ∀x ∈ X.

By the uniform boundedness theorem, a C0-semigroup is locally bounded.
Now let T be a locally bounded semigroup. By the semigroup property (S2),
there are constants M > 1 and ω ∈ R such that ‖T (t)‖ 6 Meωt for all t > 0.
Therefore it makes sense to define

ω(T) = inf{ω ∈ R : ∃M > 1 such that ‖T (t)‖ 6Meωt for all t > 0}.

Thus, ω(T) < 0 if and only T is uniformly exponentially stable, i.e., there exists
M > 1 and ω > 0 such that ‖T (t)‖ 6Me−ωt.

For the spectral radius of the operators T (t) we have the formula [Na,
Prop. A-III.1.1]

r(T (t)) = eω(T)t.

Hence ω(T) < 0 if and only r(T (1)) < 1, and this is the case if and only if
there exists a t > 0 such that ‖T (t)‖ < 1.

We start with en example of a positive C0-semigroup on a reflexive Banach
space X with ω(T) > 0 such that each map t 7→ 〈x∗, T (t)x〉 belongs to L1(R+).

Example 4.1. Let S be the C0-semigroup of Greiner, Voigt and Wolff
[GVW] and put T := e

1
2 tS. Then ω(T) = 1

2 . The spectral bound of the
generator of T being negative, from [Na, Thm. A-IV.1.4 and Thm. C-IV.1.3]
and the positivity one easily deduces that 〈x∗, T (·)x〉 ∈ L1(R+) for all x ∈ X
and x∗ ∈ X∗. It can be shown that these maps also belong to L2(R+); see
[NSW].

This example shows that there is no hope of carrying over the results of
Sections 2 and 3 to the maps 〈x∗, T (·)x〉. However, it turns out that we can
carry over the results to the maps ‖T (·)x‖.

Theorem 4.2. Let T be a locally bounded semigroup on a Banach space X
and let E be a Banach function space over R + with ΨE(∞) =∞. If, for each
x ∈ X , the map t 7→ ‖T (t)x‖ belongs to E, then ω(T) < 0.
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If T is strongly measurable, in particular if T is a C0-semigroup, this
can be proved by replacing the role of Lp(R+) by E in the proof of Pazy [P,
Thm IV.4.1]. Pazy’s proof uses the fact that Lp(R+;X) is a Banach space.
In our case, due to the strong measurability of T, the maps fx(t) = T (t)x
define elements fx ∈ E(X), which is a Banach space by a modification of the
argument in [Z1, Thm. 64.2].

Strong measurability need not be assumed, however. In fact, Theorem 4.2
can be deduced from Theorem 2.3 by applying the latter to the operator T (1).
We will outline the argument; the routine details are left to the reader.

Let E be a Banach function space over R +. Let EN be the set of all
functions f on N for which

g :=
∞∑

n=0

f(n)χ[n,n+1] ∈ E.

For f ∈ EN we define

‖f‖EN :=
∥∥∥
∞∑

n=0

f(n)χ[n,n+1]

∥∥∥
E
.

One easily checks that the space EN is a Banach function space over N . More-
over, if ΨE(∞) =∞, then also ΨEN (∞) =∞.

Now let T and E be as in Theorem 4.2. We claim that if fx(t) := ‖T (t)x‖
belongs to E for all x ∈ X , then gx(n) := ‖T (n+ 1)x‖ belongs to EN for all
x ∈ X . Indeed, first one shows, as in [P], that T is bounded. After replacing the
norm of X by the equivalent norm defined by |||x||| := supt>0 ‖T (t)x‖, we may
assume that each map t 7→ |||T (t)x||| is non-increasing. Then the claim readily
follows from

∑
n gx(n)χ[n,n+1](·) 6 |||T (·)x||| 6 C‖T (·)x‖, the ideal property of

Banach function spaces and the fact that ‖T (·)x‖ ∈ E.
In particular, for all x ∈ X and x∗ ∈ X∗ the map n 7→ 〈x∗, T (n + 1)x〉

belongs to EN . Now we use the following variant of Theorem 2.3: if the maps
n 7→ 〈x∗, Tn+1x〉 belong to E for all x ∈ X and x∗ ∈ X∗, then r(T ) < 1.
This follows by a simple modification of the proof of Theorem 2.3. Therefore,

r(T (1)) < 1 and Theorem 4.2 follows from the formula r(T (t)) = eω(T)t. ////

Remark 4.3.
(i) The hypotheses of Theorem 4.2 imply that the maps ‖T (·)x‖ have to be

measurable (which is much weaker than strong measurability of T (·)x).
In fact, Theorem 4.2 remains true if we only assume that for each x ∈ X
there exists a function gx ∈ E such that ‖T (t)x‖ 6 gx(t) a.e. Indeed,
choose ω ∈ R so large that ‖T (t)‖ 6Meωt. Then the semigroup S defined
by S(t) = e−ωtT (t) is bounded. We change to the equivalent norm ||| · |||
(which is now defined in terms of S). The functions |||S(·)x||| are non-
decreasing, hence measurable. Hence also |||T (·)x||| is measurable. Then
from |||T (·)x||| 6 Cgx(t) for some constant C, it follows that |||T (·)x||| ∈ E.
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The same observation applies to Theorems 4.4 and 4.7 below.
(ii) Also, in Theorem 4.2 it is implicitly assumed that χ[0,t] ∈ E for all t > 0

(cf. the end of Section 1). If T is not nilpotent, this is automatically
implied by the other hypotheses. Indeed, for each t > 0 there is an x ∈ X
such that T (t)x 6= 0. But then also T (s)x 6= 0 for all s ∈ [0, t], and
it follows that χ[0,t] 6 C−1‖T (·)x‖, where C = infs∈[0,t] ‖T (s)x‖. Since
‖T (·)x‖ ∈ E, also χ[0,t] ∈ E. Note that C > 0; this follows easily from the
local boundedness of T.
On the other hand, if T is nilpotent, then ω(T) = −∞ and there is nothing
to prove.

As in Theorem 3.3 we can prove:

Theorem 4.4. Let T be a locally bounded semigroup on X . Suppose φ :
R+ → R+ is non-decreasing with φ(0) = 0 and φ(t) > 0 for all t > 0. If

∫ ∞

0

φ
(
‖T (t)x‖

)
dt <∞, ∀‖x‖ 6 1,

then ω(T) < 0.

Next we assume a ∆2-contition at 0on φ and try to prove an analogue of
Theorem 3.4. Arguing as in the proof of 3.4, from the finiteness of the integrals∫∞

0 φ
(
α(t)‖T (t)x‖

)
dt, one would like to conclude that α(·)‖T (·)x‖ ∈ L∞(R+)

in order to apply Lemma 3.2. This seems problematic, however. There is
another approach which does not refer to the theory of Orlicz spaces, but
instead uses the following non-trivial result of Müller [Mü].

Lemma 4.5. Let T be a bounded operator on a Banach spaceX with spectral
radius r(T ) > 1, and let 0 < ε < 1. Then for all (γn) ∈ c0 of norm one there
exists a norm one vector x ∈ X such that

‖T kx‖ > ε|γk|, ∀k = 0, 1, 2, ...

If T is a locally bounded semigroup, we can apply the lemma to the oper-
ator T (1) and obtain:

Lemma 4.6. Let T be a locally bounded semigroup on X with ω(T) > 0.
Then there is a constant C > 0 with the following property. For all γ ∈ C0(R+)
of norm one there exists a norm one vector x ∈ X such that

‖T (t)x‖ > C|γ(t)|, ∀t > 0.

Proof: Put M = sup06t61 ‖T (t)‖ and note that whenever t > s > 0, t− s 6 1,
we have ‖T (s)x‖ >M−1‖T (t)x‖.

Define β ∈ C0(R+) of norm one as follows. First let α ∈ C0(R+) be a
norm-one function such that α(t) ↓ 0 and α > |γ|. Then define β ∈ C0(R+) by

β(t) =

{
α(0), 0 6 t < 1;
α(t − 1), t > 1.
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Let T := T (1). By Lemma 4.5, we can choose x ∈ X of norm one such that
‖T kx‖ > 1

2β(k) for all k. For t ∈ R we let E(t) be the integer part of t. Then
for all t > 0 we have

‖T (t)x‖ >M−1‖T (E(t) + 1)x‖ > 1

2
M−1β(E(t) + 1)

> 1

2
M−1α(E(t)) > 1

2
M−1α(t) > 1

2
M−1|γ(t)|.

////

Before we proceed, we note that this lemma immediately leads to an al-
ternative proof of Theorem 4.4: apply the lemma to any norm one function
γ ∈ C0(R+) such that

∫∞
0
φ
(
C|γ(t)|

)
dt =∞.

Theorem 4.7. Let T be a locally bounded semigroup on X . Let φ : R + →
R+ be a non-decreasing function satisfying a ∆2-condition with φ(0) = 0 and
φ(t) > 0 for t > 0, and let α be a non-negative measurable function on R +

such that φ ◦ α ∈ L1
loc(R+) and

∫ ∞

0

φ
(
α(t)

)
dt =∞.

If ∫ ∞

0

φ
(
α(t)‖T (t)x‖

)
dt <∞, ∀‖x‖ 6 1,

then ω(T) < 0.

Proof: Put t0 := 0 and let t1 > 0 be so large that
∫ t1

0 φ(α(t)) dt > 1. Induc-
tively, suppose t1 < ... < tn−1 have been chosen such that

∫ tk

tk−1

φ(2−k+1α(t)) dt > 1, k = 1, ..., n− 1.

Since φ ◦ α ∈ L1
loc(R+), we have

∫∞
tn−1

φ(α(t)) dt =∞. Hence also

∫ ∞

tn−1

φ(2−n+1α(t)) dt =∞

by the ∆2-condition. Therefore, for tn > tn−1 large enough,

∫ tn

tn−1

φ(2−n+1α(t)) dt > 1.

This completes the induction step.
Suppose, for a contradiction, that ω(T) > 0. Let γ ∈ C0(R+) be a norm

one function such that γ(t) > 2−n+1 for t ∈ [tn−1, tn]; n = 1, 2, ... Fix m ∈ N
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such that 2−m < C, where C is the constant of Lemma 4.6. By that lemma,
there is a norm one vector x ∈ X such that ‖T (t)x‖ > 2−mγ(t) for all t > 0.
But then, using the ∆2-condition and the fact that α 6 ε,

∫ ∞

0

φ(α(t)‖T (t)x‖) dt > K−m
∫ ∞

0

φ(α(t)γ(t)) dt

> K−m
∞∑

n=1

∫ tn

tn−1

φ(2−n+1α(t)) dt =∞.

This contradiction concludes the proof. ////

Theorem 3.5 is proved in the same way.
An interesting special case of Theorem 4.7 is the following improvement of

the Datko-Pazy theorem, which can also be obtained more directly along the
lines of Corollary 2.5.

Corollary 4.8. If T is a locally bounded semigroup with

∫ ∞

0

β(t)‖T (t)x‖p dt <∞ ∀x ∈ X,

where 0 6 β ∈ L1
loc(R+) satisfies

∫∞
0
β(t) dt =∞, then ω(T) < 0.
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