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Abstract - Let E be a separable real Banach space and let Q ∈ L(E∗, E)
be positive and symmetric. Let S = {S(t)}t>0 be a C0−semigroup on E.
We study the relations between the reproducing kernel Hilbert spaces asso-
ciated with the operators Qt :=

∫ t
0
S(s)QS∗(s) ds. Under the assumption

that these operators are the covariances of centered Gaussian measures µt
on E, we also study equivalence µt ∼ µs for different values of s and t, and
we calculate their Radon-Nikodym derivatives.
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0. Introduction

In this paper we investigate the reproducing kernel Hilbert spaces and Gaussian mea-
sures associated with a non-symmetric Ornstein-Uhlenbeck semigroup on a separable
real Banach space E. This study is usually carried out in a Hilbert space setting,
and one of the motivations of this paper was to see to what extent the theory can be
extended to the Banach space setting.

The main difference between the Banach space- and the Hilbert space situation is
that the covariance operator of a Gaussian measure on a Banach space E is a positive
symmetric operator Q (the precise definitions are given in Section 1) from the dual E∗

into E, rather than an operator on E. Thus, in contrast to the Hilbert space situation,
it is no longer possible to represent the reproducing kernel Hilbert space H associated
with Q as H = ImQ1/2. When working in a Banach space setting, any reference to
the operator Q1/2 has therefore to be avoided. This turns out to be, at least for the
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questions considered in this paper, more of an advantage than a disadvantage, as we
believe that the resulting proofs have gained some transparency.

Another difference from the Hilbert space situation is that no necessary and suf-
ficient conditions on a positive symmetric Q ∈ L(E∗, E) seem to be known in order
that Q be the covariance operator of a Gaussian measure on E. As we will show,
for several well-known results on non-symmetric Ornstein-Uhlenbeck semigroups it is
not relevant whether or not the positive self-adjoint operators that one is led to, are
covariances or not. In the remaining results we get around this difficulty by simply
imposing that Q be the covariance of a Gaussian measure; this replaces the usual
assumption in the Hilbert space setting that Q should be trace class.

Let us now describe in more detail the contents of this paper. Let E be a real Banach
space, let Q ∈ L(E∗, E) be positive and symmetric, and let S = {S(t)}t>0 be a
C0−semigroup on E. The operators

Qt :=

∫ t

0

S(s)QS∗(s) ds

are well-defined in the strong sense (cf. Proposition 1.2 below), and positive and
symmetric. In case E is a Hilbert space and Qt is also trace class, Qt can be identified
as the covariance of the distribution µt of the E-valued Gaussian random variable

X(t) =

∫ t

0

S(t− s) dWQ(s),

where WQ denotes a cylindrical Q−Wiener process and the integral is an Itô type
stochastic integral. The importance of this resides in the fact that the (strong Markov)
process (X(t))t>0 is the unique weak solution of the Langevin equation

dX(t) = AX(t) dt+ dWQ(t), t > 0,

X(0) = 0 almost surely,

where A is the infinitesimal generator of S. Without the trace class assumption similar
results hold; this time WQ has to be interpreted as a cylindrical Q−Wiener process.
For a comprehensive treatment of these concepts we refer to the book [DZ3].

In Section 1 we undertake a detailed study of the reproducing kernel Hilbert
spaces (RKHS’s) Ht associated with the operators Qt. We do not assume that Qt be
the covariance operators of Gaussian measures on E. We prove that

S(s)Ht0 ⊂ Ht0+s

for all s > 0 and t0 > 0, and that Ht0 = Ht0+s (as subsets of E) if and only if S(t0),
regarded as an operator from Hs into Ht0+s, is a strict contraction. We also show
that

S(s)Ht0 ⊂ Ht0
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for given s > 0 and t0 > 0 implies

Ht = Hmax{s,t0} for all t ∈ [max{s, t0},∞),

and that this result is the best possible.
In Sections 2 through 5 we assume that E is separable and that each of the

Qt is the covariance operator of a centered Gaussian measures µt on E. After some
preliminary observations in Section 2, we study equivalence of measures µt ∼ µs under
various conditions in Section 3. For instance, it is shown that

µt ∼ µt0 for all t ∈ [t0,∞)

whenever there exist s ∈ (0,∞) and t1 ∈ (t0,∞) such that S(s)Q = QS∗(s) and
µt1 ∼ µt0 .

In Section 4 we derive an explicit formula for the Radon-Nikodym derivative
dµt0/dµt1 whenever these measures are equivalent. The approach depends on second
quantization, existence of linear µ−measurable extensions, and a classical theorem of
Shale concerning absolute continuity of image measures, and may be of some interest
in its own right.

In Section 5 we proceed to show that for t1 fixed the Radon-Nikodym derivative
dµt0/dµt1 depends continuously upon t0.

In Section 6 we return to the cylindrical case and study the RKHS H∞ associated
with the strong limit Q∞ = limt→∞Qt whenever this limit exists. Assuming that Q∞
is the covariance of an (invariant) centered Gaussian measure µ∞ on E, we discuss
versions for µ∞ of some of the results obtained in the previous sections. For Hilbert
spaces E, the main results of this section have been obtained recently by Chojnowska-
Michelak and Goldys [CG1-3], [Go] and Fuhrman [Fu]. In particular this is true for the
expression of the Radon-Nikodym derivative dµt/dµ∞, which was established by [Fu]
in the null controllable case, and was extended to the more general situation considered
here by [CG3]. We point out, however, that the approach taken in these references in
very different for ours. To the best of our knowledge the principal results of Sections
1 through 5 are new even in the Hilbert space setting. Some of these (Theorems 1.4,
1.7, 3.2, and 4.1) extend in a natural corresponding results about invariant measures
to finite t, but others have no analogue for invariant measures (Theorems 1.9 and 3.5)
or its analogue seems to be new as well (Theorem 5.5).

In the final Section 7 we discuss some extensions of our results to the class of
so-called (cylindrical) Gaussian Mehler semigroups recently introduced by Bogachev,
Röckner, and Schmuland [BRS].

1. The reproducing kernel Hilbert spaces Ht

Throughout this section, E is a fixed arbitrary real Banach space. A bounded linear
operator Q ∈ L(E∗, E) is called positive if 〈Qx∗, x∗〉 > 0 for all x∗ ∈ E∗ and symmetric
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if 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗, y∗ ∈ E∗. If Q is positive and symmetric, then
on ImQ = {Qx∗ : x∗ ∈ E∗} we may define an inner product [·, ·] by the formula
[Qx∗, Qy∗] := 〈Qx∗, y∗〉. The completion H of ImQ with respect to this inner product
is a Hilbert space, and the inclusion i : ImQ ⊂ E extends to a continuous injection
i : H → E. Moreover, if we regard Q as an operator from E∗ to H we have the identity
i∗ = Q. We will refer to H as the reproducing kernel Hilbert space (RKHS) associated
with Q. If E is separable, then H is separable as well. If E is a Hilbert space and Q is
a positive and symmetric operator on E (identifying E and its dual), then H = ImQ

1
2

with identical norms. For more information we refer to [VTC, Chapter III], where the
simple proofs can be found.

We recall with the following result, which is proved along the lines of [DZ2,
Proposition B.1].

Proposition 1.1. Let Q, Q̃ ∈ L(E∗, E) be two positive symmetric operators. Then
for the associated RKHS’s we have H ⊂ H̃ (as subsets of E) if and only if there exists
a constant K > 0 such that

〈Qx∗, x∗〉 6 K〈Q̃x∗, x∗〉, ∀x∗ ∈ E∗.

In this situation, the operator V : Im Q̃ → ImQ defined by V Q̃x∗ := Qx∗ extends
to a bounded operator from H̃ into H; we will sometimes use the suggestive notation
V = QQ̃−1. If H = H̃ (as subsets of E), V is a (Banach space) isomorphism of H̃
onto H, the inverse being given by V −1Qx∗ = Q̃x∗.

Suppose Q ∈ L(E∗, E) is positive and symmetric, and let S = {S(t)}t>0 be a
C0−semigroup on E. Our terminology concerning C0−semigroups is standard; we
refer to [Pa] for more details. For each t > 0 the operator Qt defined by

Qtx
∗ :=

∫ t

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗,

is positive and symmetric. Note that this integral exists as a Bochner integral in E;
strong measurability of the integrand follows from:

Proposition 1.2. For all x∗ ∈ E∗, the function s 7→ S(s)QS∗(s)x∗ is strongly
measurable.

Proof: As a map from E∗ into H, the operator Q is the adjoint of the inclusion map
i : H ⊂ E, and as such Q is weak∗-to-weakly continuous. Hence the weak∗-continuity
of S(·)x∗ implies weak continuity of QS∗(·)x∗.
Step 1 - First we assume that E is separable. Then H is separable and we may choose
a countable orthonormal basis (hn) ⊂ H. Fix y∗ ∈ E∗. Expanding QS∗(s)x∗ and
QS∗(s)y∗ in terms of (hn) we have

〈S(s)QS∗(s)x∗, y∗〉 = [QS∗(s)x∗, QS∗(s)y∗] =

∞∑

n=1

[QS∗(s)x∗, hn][QS∗(s)y∗, hn],
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so 〈S(·)QS∗(·)x∗, y∗〉 appears as a countable sum of continuous functions. This proves
that S(·)QS∗(·)x∗ is weakly measurable. Since it is also separably valued by the sepa-
rability of E, strong measurability now follows by an appeal to Pettis’s measurability
theorem [DU, Chapter II].

Step 2 - Now let E be arbitrary. Let H0 be the closed linear span in H of the set
{QS∗(t)x∗ : t > 0}. Since Q, as a map from E∗ to H, is weak∗–to–weakly continuous
and t 7→ S∗(t)x∗ is weak∗–continuous, H0 is weakly separable and therefore separable.
Denoting by E0 the smallest closed S−invariant subspace in E containingH0, it follows
that E0 is separable in E. Let i0 : H0 ⊂ E0 and j0 : E0 ⊂ E denote the inclusion
maps. Now define Q0 ∈ L(E∗0 , E0) by

Q0(j∗0y
∗) := (i0 ◦ P0 ◦Q)y∗, y∗ ∈ E∗,

where P0 is the orthogonal projection of H onto H0. We check that Q0 is well-defined.
If j∗0y

∗ = 0, then y∗ annihilates E0 and therefore, for all t > 0,

[QS∗(t)x∗, Qy∗] = 〈QS∗(t)x∗, y∗〉 = 0.

This means that Qy∗ ⊥ H0, so P0Qy
∗ = 0 and hence Q0(j∗0y

∗) = 0. Next we check
that Q0 is positive and symmetric. For all y∗ ∈ E∗ and z∗ ∈ E∗ we have

〈Q0j
∗
0y
∗, j∗0z

∗〉 = 〈iP0Qy
∗, z∗〉 = [P0Qy

∗, Qz∗] = [P0Qy
∗, P0Qz

∗],

which is symmetric in y∗ and z∗ and non-negative if y∗ = z∗.
Let S0 denote the restriction of S to the invariant subspace E0. The lemma

follows from the corresponding result for the separable space E0 once we have realized
that for all s > 0,

S(s)QS∗(s)x∗ = S0(s)i0P0QS
∗(s)x∗ = S0(s)Q0(j∗0S

∗(s)x∗) = S0(s)Q0S
∗
0(s)(j∗0x

∗).

We will frequently use the following algebraic relation between the operators Qt, which
is immediate from their definition: for all t, s > 0 we have

Qt+s = Qs + S(s)QtS
∗(s).

The RKHS associated with Qt will be denoted by Ht; the inclusion map Ht ⊂ E is
denoted by it. As in the case of a Hilbert space E, Ht can be interpreted as the space
of reachable states of a certain linear control problem in E; this point of view will be
elaborated elsewhere.

The present section is devoted to a systematic study of the relation between the
spaces Ht for different values of t. The first observation is a direct consequence of
Proposition 1.1:

Proposition 1.3. If 0 < t0 6 t1, then Ht0 ⊂ Ht1 .
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From the identity S(s)Qt0S
∗(s) = Qt0+s − Qs combined with Proposition 1.3 we see

that S(s) maps the linear subspace Im (Qt0S
∗(s)) of Ht0 into Ht0+s. The next result

shows that we actually have S(s)Ht0 ⊂ Ht0+s:

Theorem 1.4. For all s > 0 and t0 > 0 we have S(s)Ht0 ⊂ Ht0+s. Moreover,
‖S(s)‖L(Ht0 ,Ht0+s) 6 1.

Proof: For all x∗ ∈ E∗ we have

‖Qt0S∗(s)x∗‖2Ht0 = 〈Qt0S∗(s)x∗, S∗(s)x∗〉
= 〈Qt0+sx

∗, x∗〉 − 〈Qsx∗, x∗〉
6 〈Qt0+sx

∗, x∗〉 = ‖Qt0+sx
∗‖2Ht0+s

.

(1.1)

Hence,

|〈Qt0S∗(s)x∗, y∗〉| = |[Qt0S∗(s)x∗, Qt0y∗]Ht0 | 6 ‖Qt0+sx
∗‖Ht0+s

‖Qt0y∗‖Ht0 . (1.2)

Define a linear functional ψs,y∗ : ImQt0+s → R by

ψs,y∗(Qt0+sx
∗) := 〈Qt0S∗(s)x∗, y∗〉.

If Qt0+sx
∗ = 0, then Qt0S

∗(s)x∗ = 0 by (1.1), so ψs,y∗ is well-defined. By (1.2), ψs,y∗
extends to a bounded linear functional on Ht0+s of norm 6 ‖Qt0y∗‖Ht . Identifing
ψs,y∗ with an element of Ht0+s, for all x∗ ∈ E∗ we have

〈ψs,y∗, x∗〉 = [Qt0+sx
∗, ψs,y∗]Ht0+s

= 〈Qt0S∗(s)x∗, y∗〉 = 〈S(s)Qt0y
∗, x∗〉.

Hence, S(s)Qt0y
∗ = ψs,y∗ ∈ Ht0+s and ‖S(s)Qt0y

∗‖Ht0+s
6 ‖Qt0y∗‖Ht0 .

Whenever it is convenient, the restriction of S(s) as an operator in L(Ht, Ht+s) will
be denoted by St→t+s(s) and its adjoint (St→t+s(s))∗ ∈ L(Ht+s, Ht) by S∗t→t+s(s).

Corollary 1.5. For all 0 < t0 < t1 the inclusion mapping Ht0 ⊂ Ht1 is contractive.

Proof: For all x∗ ∈ E∗ we have

‖Qt0x∗‖2Ht1 = [Qt0x
∗, Qt1x

∗ − S(t0)Qt1−t0S
∗(t0)x∗]Ht1

= 〈Qt0x∗, x∗〉 − [Qt0x
∗, S(t0)Qt1−t0S

∗(t0)x∗]Ht1
= ‖Qt0x∗‖2Ht0 − [Qt0x

∗, S(t0)Qt1−t0S
∗(t0)x∗]Ht1 .

But S∗t1−t0→t1(t0)Qt1 = Qt1−t0S
∗(t0). Hence,

[Qt0x
∗, S(t0)Qt1−t0S

∗(t0)x∗]Ht1
= [Qt1x

∗, S(t0)Qt1−t0S
∗(t0)x∗]Ht1 − ‖S(t0)Qt1−t0S

∗(t0)x∗‖2Ht1
= 〈Qt1−t0S∗(t0)x∗, S∗(t0)x∗〉 − ‖S(t0)Qt1−t0S

∗(t0)x∗‖2Ht1
= ‖Qt1−t0S∗(t0)x∗‖2Ht1−t0 − ‖St1−t0→t0(t0)Qt1−t0S

∗(t0)x∗‖2Ht1
> 0;

for the inequality we used that ‖St1−t0→t1(t0)‖L(Ht1−t0 ,Ht1 ) 6 1. We conclude that
‖Qt0x∗‖Ht1 6 ‖Qt0x∗‖Ht0 for all x∗ ∈ E∗, and the corollary follows.
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Next we characterize equality of Ht0 and Ht0+s in terms of the restriction S(t0) ∈
L(Ht0 , Ht0+s). For later reference, we first isolate a simple lemma.

Lemma 1.6. Let t1 > t0 > 0, s > 0, and assume that S(s) maps Ht0 into Ht1 .
Then S(s) ∈ L(Ht0 , Ht1), and for all x∗ ∈ E∗ we have

‖Qt0S∗(s)x∗‖Ht0 6 ‖S(s)‖L(Ht0 ,Ht1 ) · ‖Qt1x∗‖Ht1 .
Proof: By the closed graph theorem, S(s) is bounded as an operator from Ht0 into
Ht1 . For all x∗ ∈ E∗ we have

‖Qt0S∗(s)x∗‖Ht0 = sup{[Qt0S∗(s)x∗, Qt0y∗]Ht0 : y∗ ∈ E∗, ‖Qt0y∗‖Ht0 6 1}
= sup{〈S(s)Qt0y

∗, x∗〉 : y∗ ∈ E∗, ‖Qt0y∗‖Ht0 6 1}
= sup{[S(s)Qt0y

∗, Qt1x
∗]Ht1 : y∗ ∈ E∗, ‖Qt0y∗‖Ht0 6 1}

6 ‖S(s)‖L(Ht0 ,Ht1 ) · ‖Qt1x∗‖Ht1 .

Theorem 1.7. Let t0 > 0 and h > 0 be fixed. Then Ht0 = Ht0+h (as subsets of E)
if and only if ‖S(t0)‖L(Hh,Ht0+h) < 1.

Proof: We have already seen that Ht0 ⊂ Ht0+h. It remains to prove that Ht0+h ⊂ Ht0

if and only if ‖S(t0)‖L(Hh,Ht0+h) < 1.
First assume ‖S(t0)‖L(Hh,Ht0+h) < 1. For all x∗ ∈ E∗ we have

‖Qt0x∗‖2Ht0 = 〈Qt0x∗, x∗〉
= 〈Qt0+hx

∗, x∗〉 − 〈S(t0)QhS
∗(t0)x∗, x∗〉

= ‖Qt0+hx
∗‖2Ht0+h

− ‖QhS∗(t0)x∗‖2Hh .
But by Lemma 1.6,

‖QhS∗(t0)x∗‖Hh 6 ‖S(t0)‖L(Hh,Ht0+h) · ‖Qt0+hx
∗‖Ht0+h

.

Hence,

〈Qt0x∗, x∗〉 = ‖Qt0x∗‖2Ht0 >
(

1− ‖S(t0)‖2L(Hh,Ht0+h)

)
‖Qt0+hx

∗‖2Ht0+h

=
(

1− ‖S(t0)‖2L(Hh,Ht0+h)

)
〈Qt0+hx

∗, x∗〉.
By Proposition 1.1 this gives the inclusion Ht0+h ⊂ Ht0 .

Conversely, assume that Ht0+h ⊂ Ht0 . Then there exists K > 1 such that

〈Qt0+hx
∗, x∗〉 6 K〈Qt0x∗, x∗〉 = K〈Qt0+hx

∗, x∗〉 −K〈S(t0)QhS
∗(t0)x∗, x∗〉

for all x∗ ∈ E∗, or equivalently,

‖QhS∗(t0)x∗‖2Hh 6 (1−K−1)‖Qt0+hx
∗‖2Ht0+h

for all x∗ ∈ E∗. Hence for all x∗, y∗ ∈ E∗,
|[S(t0)Qhy

∗, Qt0+hx
∗]Ht0+h

| = |[Qhy∗, QhS∗(t0)x∗]Hh |
6 ‖Qhy∗‖Hh‖QhS∗(t0)x∗‖Hh
6
√

1−K−1‖Qhy∗‖Hh‖Qt0+hx
∗‖Ht0+h

.

This shows that ‖S(t0)‖L(Hh,Ht0+h) 6
√

1−K−1 < 1.
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Throughout the rest of this paper, the notation ‘Ht1 = Ht0 ’ means equality of Ht1

and Ht0 as subsets of E; as Hilbert spaces, Ht1 and Ht0 will usually carry different
inner products.

Corollary 1.8. If 0 < t0 < t1 are such that Ht1 = Ht0 , then Ht = Ht0 for all
t ∈ [t0,∞).

Proof: It is clear that Ht0 = Ht = Ht1 for all t ∈ [t0, t1]. Furthermore, Theorem 1.7
implies that Ht0+δ = Ht1+δ for all δ > 0. These two observations clearly lead to the
desired result.

The following theorem relates equality of different spaces Ht to their invariance under
S:

Theorem 1.9. If S(s)Ht0 ⊂ Ht0 for some s > 0, then Ht = Hmax{s,t0} for all
t ∈ [max{s, t0},∞).

Proof: In view of the Proposition 1.3 we only need to prove the inclusion Ht ⊂
Hmax{s,t0} for t ∈ [max{s, t0},∞).

Step 1 - In this step we prove the following: If σ ∈ (0, t0] and t1 ∈ (t0, 2t0] are such
that S(σ) maps Ht1−t0 into Ht0 , then Ht1 ⊂ H2t0−σ. By Lemma 1.5, using that
0 < t1 − t0 6 t0, for all x∗ ∈ E∗ we have

‖Qt1−t0S∗(σ)x∗‖Ht1−t0 6 ‖S(σ)‖L(Ht1−t0 ,Ht0 )‖Qt0x∗‖Ht0 .

It follows that

〈Qt1x∗, x∗〉 = 〈Qt0x∗, x∗〉+ 〈Qt1−t0S∗(t0)x∗, S∗(t0)x∗〉
= 〈Qt0x∗, x∗〉+ ‖Qt1−t0S∗(σ)S∗(t0 − σ)x∗‖2Ht1−t0
6 〈Qt0x∗, x∗〉+ ‖S(σ)‖2L(Ht1−t0 ,Ht0)‖Qt0S∗(t0 − σ)x∗‖2Ht0 .

Now
‖Qt0S∗(t0 − σ)x∗‖2Ht0 = 〈Qt0S∗(t0 − σ)x∗, S∗(t0 − σ)x∗〉

= 〈Q2t0−σx
∗, x∗〉 − 〈Qt0−σx∗, x∗〉

6 〈Q2t0−σx
∗, x∗〉.

Putting these estimates together, we obtain

〈Qt1x∗, x∗〉 6 〈Qt0x∗, x∗〉+ ‖S(σ)‖2L(Ht1−t0 ,Ht0 )〈Q2t0−σx
∗, x∗〉

6
(

1 + ‖S(σ)‖2L(Ht1−t0 ,Ht0)

)
〈Q2t0−σx

∗, x∗〉

By Proposition 1.1 this implies the inclusion Ht1 ⊂ H2t0−σ.

Step 2 - In this step we prove: If s ∈ (0, t0] is such that S(s)Ht0 ⊂ Ht0 , then for
all t1 ∈ [t0 + s, 2t0] we have Ht1 ⊂ Ht1−s. Indeed, by Theorem 1.4 we know that
S(2t0 − t1) maps Ht1−t0 into Ht0 . Therefore also S(2t0 − t1 + s)Ht1−t0 ⊂ Ht0 , and
from Step 1 we obtain Ht1 ⊂ H2t0−(2t0−t1+s) = Ht1−s.
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Step 3 - In this step we prove the theorem for the case s ∈ (0, t0]. First assume
t ∈ [t0, 2t0]. Write t = t0 + ks+ ε, where k is a nonnegative integer and ε ∈ [0, s). If
k = 0, then by Proposition 1.3 and Step 2,

Ht ⊂ Ht0+s ⊂ Ht0 .

If k > 1, then we apply Step 2 k times to see that

Ht ⊂ Ht−s ⊂ Ht−2s ⊂ ... ⊂ Ht−ks = Ht0+ε,

and therefore by the previous case, Ht ⊂ Ht0 .

Step 4 - In this step we prove the theorem for the case s > t0.

First observe that by dualizing the identity it0S(s)|Ht0 = S(s)it0 , where it0 :
Ht0 ⊂ E is the inclusion map, we obtain (S(s)|Ht0 )∗Qt0 = Qt0S

∗(s). Fix t1 ∈ (s, s+t0]
arbitrary. For all x∗ ∈ E∗ we have

〈Qt1x∗, x∗〉 = 〈Qsx∗, x∗〉+ 〈Qt1−sS∗(s)x∗, S∗(s)x∗〉
6 〈Qsx∗, x∗〉+ 〈Qt0S∗(s)x∗, S∗(s)x∗〉
= 〈Qsx∗, x∗〉+ ‖Qt0S∗(s)x∗‖2Ht0
= 〈Qsx∗, x∗〉+ ‖(S(s)|Ht0 )∗Qt0x

∗‖2Ht0
6 〈Qsx∗, x∗〉+ ‖S(s)‖2L(Ht0)〈Qt0x∗, x∗〉

6
(

1 + ‖S(s)‖2L(Ht0)

)
〈Qsx∗, x∗〉.

Hence, Ht1 ⊂ Hs. But then for any τ ∈ (0, t1 − s], by Theorem 1.4 and Proposition
1.3 we have S(τ)Hs ⊂ Hs+τ ⊂ Ht1 ⊂ Hs. Since 0 < τ 6 s, Step 3 now shows that
Ht = Hs for all t > s.

Notice that the case s = t0 already follows from Step 1. In Example 1.14 below we
show that the bound max{s, t0} is the best possible.

Next we study the situation where H, the RKHS associated with Q, is S−invariant.
Then by the closed graph theorem, for each t > 0 the restriction SH(t) := S(t)|H is
a bounded operator on H, and it is easy to see that the function s 7→ ‖SH(s)‖L(H) is
Borel.

Lemma 1.10. Suppose S(t)H ⊂ H for all t > 0. If there exists T > 0 such that

∫ T

0

‖SH(s)‖2L(H) ds <∞,

then Ht ⊂ H for all t > 0.
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Proof: By the semigroup property, for all t > 0 we have
∫ t

0

‖SH(s)‖2L(H) ds <∞.

Then,

〈Qtx∗, x∗〉 =

∫ t

0

〈QS∗(s)x∗, S∗(s)x∗〉 ds

=

∫ t

0

‖QS∗(s)x∗‖2H ds

=

∫ t

0

‖(SH(s))∗Qx∗‖2H ds

6 〈Qx∗, x∗〉
∫ t

0

‖SH(s)‖2L(H) ds,

where we used that iSH(s) = S(s)i and i∗ = Q (recall that i : H ⊂ E is the inclusion
map) imply (SH(s))∗Q = QS∗(s). From Proposition 1.1 it follows that Ht ⊂ H.

Theorem 1.11. Suppose S(t)H ⊂ H for all t > 0 and assume there exists T > 0
such that ∫ T

0

‖SH(s)‖2L(H) ds <∞.

Then for each t > 0,
QHt (Qx∗) := Qtx

∗, x∗ ∈ E∗,
defines a bounded self-adjoint operator QHt on H. Denoting the RKHS associated
with the operator QHt by Ht, we have Ht = Ht with identical norms.

Proof: For all x∗ ∈ E∗ and y∗ ∈ E∗ we have

[QHt (Qx∗), Qy∗]H =

∫ t

0

[SH(s)QS∗(s)x∗, Qy∗]H ds

=

∫ t

0

[SH(s)(SH(s))∗Qx∗, Qy∗]H ds.

Since by assumption ‖SH(·)‖L(H) ∈ L2
loc[0,∞), Hölder’s inequality shows that QHt

extends to a bounded operator on H. The above identities show that this extension
is self-adjoint.

By Lemma 1.10 we have Ht ⊂ H, which implies that for all x∗ ∈ E∗ and y∗ ∈ E∗,
[QHt (Qx∗), QHt (Qy∗)]Ht = [Qtx

∗, QHt (Qy∗)]Ht
= [Qtx

∗, Qy∗]H
= 〈Qtx∗, y∗〉
= [Qtx

∗, Qty
∗]Ht

= [QHt (Qx∗), QHt (Qy∗)]Ht .

Hence the identity map restricted to Im (QHt ◦Q) = ImQt extends to an inner product
preserving isomorphism of Ht onto Ht.
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The following examples illustrate the results of this section.

Example 1.12. Let E = L2[0, 1] and let w be the Wiener measure on E; thus,
w is the centered Gaussian measure on E whose covariance operator Q is the integral
operator on E defined by

(Qf)(s) =

∫ 1

0

(s ∧ τ)f(τ) dτ.

The associated RKHS is the Hilbert space H of all absolutely continuous functions f
on [0, 1] for which f(0) = 0 and the a.e. derivative f ′ belongs to L2[0, 1]. The inner
product of H is given by [f, g]H = [f ′, g′]E .

Let S be the nilpotent right shift semigroup on E, i.e.

S(t)f(s) =

{
f(s− t), t ∈ [0, s];
0, otherwise,

s ∈ [0, 1], t > 0.

We will show that Ht = Hs for all t > 0 and s > 0. Since S(t) = 0 for t > 1 it is
clear that Qt = Q1 and therefore Ht = H1 for all t > 1. For this reason we will only
consider t ∈ (0, 1].

Denote by SH the restiction of S to H and note that SH is a C0−contraction
semigroup on H. Therefore by Theorem 1.11, for all t > 0 we have Ht = Ht with
identical norms.

We compute the space Ht explicitly. From

SH(s)(SH(s))∗h(τ) = χ[s,1](τ)h(τ), s ∈ [0, t], τ ∈ [0, 1], h ∈ H,

we have
QHt h(τ) = (t ∧ τ)h(τ), τ ∈ [0, 1], h ∈ H.

Therefore,

Ht = Ht = Im ((QHt )1/2)

= {h ∈ H : the function τ 7→ (t ∧ τ)−1/2h(τ) belongs to H}
= {h ∈ H : the function τ 7→ τ−1/2h(τ) belongs to H}.

Thus, Ht is independent of t, and its norm is given by

‖h‖2Ht = ‖h‖2Ht = [QHt h, h]H

= [χ[0,t]h+ (t ∧ ·)h′, h′]E

=

∫ t

0

h(τ)h′(τ) dτ +

∫ 1

0

(t ∧ τ)(h′(τ))2 dτ.
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From the representation of Ht it is clear that S(s)Ht ⊂ Ht for all s > 0, so that a
posteriori Theorem 1.9 applies. On the other hand, by control theoretic methods it is
not difficult to show that the assumptions of Theorem 1.11 already imply the inclusion
SH(t)H ⊂ Ht. Therefore by Lemma 1.10, S(t)Ht ⊂ S(t)H ⊂ Ht = Ht for all t > 0.

The next example shows that the inclusion Ht0 ⊂ Ht1 may fail to be dense for certain
0 < t0 < t1. The construction is based upon an example shown to the author by
Szymon Peszat.

Example 1.13. Let E = C0[0, 1] be the Banach space of continuous real-valued
functions f on [0, 1] with f(0) = 0. Let S be the nilpotent right shift semigroup on
E. Fix a ∈ (0, 1) arbitrary and let Q ∈ L(E∗, E) be the rank one operator defined by
Qν := 〈f0, ν〉f0, where f0 ∈ E is a function which is strictly positive on the interval
(0, a) and vanishes on [a, 1]. Clearly Q is positive and symmetric. From

Qtν =

∫ t

0

〈f0, S
∗(s)ν〉S(s)f0 ds

it follows that for each t > 0 the RKHS Ht is contained in the closed linear span Gt
of the set {S(s)f0 : s ∈ [0, t]}.

Suppose 0 < t0 < t1 6 1 are such that t1 − t0 > a. Then Gt0 , hence also Ht0 , is
contained in the closed subspace Ea+t0 of E consisting of all functions vanishing on
[a+ t0, 1]. On the other hand,

(Qt1δt1)(t1) =

(∫ t1

0

S(s)Qδt1−s ds

)
(t1)

=

∫ t1

0

f0(t1 − s)(S(s)f0)(t1) ds

=

∫ t1

0

(f0(t1 − s))2 ds > 0,

where δt1 denotes the Dirac measure at t1. Since t1 > t0 + a, Qt1δt1 6∈ Ea+t0 . But

if Ht0 were dense in Ht1 , we would have Qt1δt1 ∈ Ht1 = Ht0

Ht1 ⊂ Ht0

E ⊂ Ea+t0 .
Therefore the inclusion Ht0 ⊂ Ht1 cannot be dense.

This example can be extended to show that Theorem 1.9 is the best possible:

Example 1.14. For each n let En := C0[0, 1], let Sn be the nilpotent right shift
semigroup on En, and let Qn be as in Example 1.13 with an := 1/n. Let E be the
c0−direct sum of the spaces En, and define S and Q as direct sums of the Sn and Qn in
the natural way. Then the inclusion Ht0 ⊂ Ht1 fails to be dense for all 0 < t0 < t1 6 1,
this being the case in the kth summand whenever t1 − t0 > 1/k. On the other hand,
the fact that S(t) = 0 for all t > 1 implies that Ht = H1 for all t > 1.

Trivially, S(1)Ht0 ⊂ Ht0 for all t0 > 0. In particular this holds for any t0 ∈ (0, 1),
although Ht is constant only after t > 1. This shows that Theorem 1.9 is the best
possible in case max{s, t0} = s.

Similarly, for all s > 0 we have S(s)H1 ⊂ H1. In particular this holds for any
s ∈ (0, 1), although Ht is constant only after t > 1. This shows that Theorem 1.9 is
also the best possible in case max{s, t0} = t0.
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2. The associated Gaussian measures µt

In this section and the next, E will always denote a separable real Banach space, and
S is a fixed C0−semigroup on E.

It is not hard to see that for each positive symmetric Q ∈ L(E∗, E) there exists
a unique finitely additive cylindrical measure µ, defined on the ring of all cylindrical
sets of E, whose Fourier transform is given by

µ̂(x∗) = exp

(
−1

2
〈Qx∗, x∗〉

)
, x∗ ∈ E∗. (2.1)

In this section we fix a positive symmetric operator Q ∈ L(E∗, E) and make the
following

Assumption 2.1. For each t > 0 the cylindrical measure µt associated with the
positive symmetric operator Qt ∈ L(E∗, E) is countably additive.

In other words, we assume that the operators Qt are the covariances of centered
Gaussian measures µt on the Borel σ−algebra of E.

Remark 2.2. We state two sufficient conditions for Assumption 2.1 to be satisfied:

(i) E is a Hilbert space and Q is trace class (i.e. the cylindical measure associated
with Q is countably additive);

(ii) The cylindrical measure associated with Q is countably additive, S(s)H ⊂ H for
all s > 0, and ∫ t

0

‖S(s)‖2L(H) ds <∞

for all t > 0 [MS].

For the reader’s convenience we reproduce the simple proofs; more information about
(cylindrical) Gaussian measures can be found in the books [Ku], [VTC], and [DZ3].

(i): If (en) is an orthonormal basis in E, then by Fubini’s theorem

∞∑

n=1

[Qten, en]E =

∫ t

0

∞∑

n=1

[S(s)QS∗(s)en, en]E ds

6
(

sup
06s6t

‖S(s)‖2
)
· t ‖Q‖1 <∞,

where ‖Q‖1 is the trace class norm of Q; we used the fact that for any bounded T ,
the operator TQT ∗ is trace class whenever Q is, with ‖TQT ∗‖1 6 ‖T‖ ‖Q‖1 ‖T ∗‖ =
‖T‖2 ‖Q‖1.

(ii): By Lemma 1.10, for each t > 0 there is a constant Kt > 0 such that

〈Qtx∗, x∗〉 6 Kt〈Qx∗, x∗〉, ∀x∗ ∈ E∗.

Countable additivity of µt then follows from [VTC, Corollary VI.3.4.2].
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On Bb(E), the space of bounded, Borel measurable functions on E, the formula

(P (t)f)(x) :=

∫

E

f(S(t)x+ y) dµt(y), x ∈ E,

defines a semigroup P = {P (t)}t>0 of contractions. This semigroup will be referred
to as the (non-symmetric) Ornstein-Uhlenbeck semigroup associated with S and Q.
In this section we state, without proof, a number of results about P, the analogues
of which are well-known in the Hilbert space setting. Their proofs carry over to the
Banach space setting without difficulty and are therefore omitted.

Theorem 2.3. Let x ∈ E and t0 > 0 be fixed. The following assertions are
equivalent:

(i) S(t0)x ∈ Ht0 ;

(ii) For all f ∈ Bb(E), the function ε 7→ P (t0)f(εx) is continuous at ε = 0;

(iii) For all f ∈ Bb(E) and y ∈ E, P (t0)f is smooth at y in the direction of x.

In this situation, the first directional derivative can be computed explicitly. For this
purpose we introduce the following notation. If µ is a centered Gaussian measure on
E, then φµ : H → L2(E, µ) denotes the isometric embedding uniquely defined by

φµ(Qx∗) := 〈x∗, ·〉,

where Q is the covariance operator of µ. For h ∈ H, the RHKS associated with Q,
we will write φµh to denote the function φµ(h) ∈ L2(E, µ). To see that this map is
well-defined, recall that the support of µ is contained in the closure E0 of H in E,
whereas Qx∗ = Qy∗ implies that x∗|E0

= x∗|E0
.

With this notation, the partial derivative ∂P (t0)f/∂x is given by

∂P (t0)f

∂x
(y) =

∫

E

f(S(t0)y + z)φ
µt0
S(t0)x(z) dµt0(z).

For the Wiener semigroup these results are due to Gross [Gr]; for E Hilbert they were
extended to arbitrary semigroups S in [CG3].

The semigroup P is said to be strongly Feller at time t0 > 0 if P (t0)f(·) is a
continuous function for all f ∈ Bb(E). We refer to [DZ3] for more information in the
Hilbert space setting.

Corollary 2.4. For t0 > 0 fixed, the following conditions are equivalent:

(i) P is strongly Feller at t0;

(ii) S(t0)E ⊂ Ht0 .
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3. Equivalence of the measures µt

Two measures µ, ν are said to be equivalent, notation µ ∼ ν, if they are absolutely
continuous with respect to each other, i.e. if µ � ν and ν � µ. We will study the
question under what conditions we have equivalence µt0 ∼ µt1 for certain t0 and t1.
Our result is based on the following version of the Feldman-Hajek theorem, due to
Tarieladze; see also the review paper [VT].

Theorem 3.1 [Ta]. Let µ, ν be two centered Gaussian measures on a Banach space
E, and denote by Qµ, Qν ∈ L(E∗, E), and Hµ, Hν their covariance operators and
RHKS’s, respectively. Then µ ∼ ν if and only if the following two conditions are
satisfied:

(i) Hµ = Hν ;
(ii) I − j ◦ V is Hilbert-Schmidt on Hµ, where V : Hµ → Hν and j : Hν → Hµ are

defined by
V Qµx

∗ := Qνx
∗, x∗ ∈ E∗,

jh := h, h ∈ Hν .

Otherwise, µ ⊥ ν.

Throughout this section we consider a C0−semigroup S on E and a positive symmetric
operator Q ∈ L(E∗, E) verifying Assumption 2.1.

Let 0 < t0 < t1 < ∞. In terms of the operators St1−t0→t1(t0) := S(t0)|Ht1−t0 ∈
L(Ht1−t0 , Ht1) (whose existence follows from Theorem 1.4) we can characterize equiv-
alence of the measures µt0 and µt1 as follows:

Theorem 3.2. Let 0 < t0 < t1 < ∞. Then µt0 ∼ µt1 if and only if the following
two conditions are satisfied:

(i) ‖St1−t0→t1(t0)‖L(Ht1−t0 ,Ht1 ) < 1;
(ii) The operator St1−t0→t1(t0)S∗t1−t0→t1(t0) is Hilbert-Schmidt on Ht1 .

Proof: By Theorem 1.7, strict contractivity of St1−t0→t1(t0) is equivalent toHt0 = Ht1 .
Next we consider the Hilbert-Schmidt condition. We have

Qt1 −Qt0 = S(t0)Qt1−t0S
∗(t0) = St1−t0→t1(t0)S∗t1−t0→t1(t0)Qt1 .

Letting j : Ht0 → Ht1 be the identity map, it follows that I − j ◦ Qt0Q−1
t1 : Qt1x

∗ 7→
Qt1x

∗ − Qt0x∗ is Hilbert-Schmidt on Ht1 if and only if St1−t0→t1(t0)S∗t1−t0→t1(t0) is
Hilbert-Schmidt on Ht1 .

Corollary 3.3. Suppose 0 < t0 < t1 <∞ are such that µt0 ∼ µt1 .

(i) For all δ > 0 we have µt0+δ ∼ µt1+δ;
(ii) If t2 ∈ [t1,∞) is such that µt ∼ µt2 for all t ∈ [t2,∞), then µt ∼ µt0 for all

t ∈ [t0,∞).
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Proof: (i): Fix δ > 0 arbitrary. By Corollary 1.8, Ht0+δ = Ht1+δ. Hence from the
identity

S(t1+δ)−(t0+δ)→t1+δ(t0 + δ)S∗(t1+δ)−(t0+δ)→t1+δ(t0)

= St1→t1+δ(δ)
(
St1−t0→t1(t0)S∗t1−t0→t1(t0)

)
S∗t1→t1+δ(δ)

and Theorem 3.2 we conclude that µt0+δ ∼ µt1+δ.
(ii): Pick k ∈ N such that t1 + k(t1 − t0) > t2. By (i) we have

µt0 ∼ µt1 ∼ µt1+(t1−t0) ∼ ... ∼ µt1+k(t1−t0) ∼ µt2 .

Hence, µt ∼ µt0 for all t ∈ [t2,∞). But then, by another application of (i) we have,
for all t ∈ [t0, t2],

µt = µt0+(t−t0) ∼ µt2+(t−t0) ∼ µt0 .
It follows that µt ∼ µt0 for all t ∈ [t0,∞).

If Q ‘commutes’ with S(s) for some s > 0, in the sense that S(s)Q = QS∗(s), we
can prove more. We start with a lemma (which was shown to the author by Ben de
Pagter).

Lemma 3.4. Suppose µ and ν are centered Gaussian measures on E such that
Hµ = Hν . Let V : Hµ → Hν and j : Hν → Hµ be defined by

V Qµx
∗ := Qνx

∗, x∗ ∈ E∗,
jh := h, h ∈ Hν .

Then V ◦ j is positive and self-adjoint on Hν , and (V ◦ j) 1
2 ◦ j−1 is an inner product

preserving isomorphism of Hµ onto Hν .

Proof: Clearly, the inner product [·, ·]Hµ defines a bounded symmetric bilinear form
on Hν . Consequently there exists a unique self-adjoint operator V1 ∈ L(Hν) such that

[jg, jh]Hµ = [V1g, h]Hν , ∀g, h ∈ Hν .

Moreover V1 is positive and invertible. Let (en) be an orthonormal basis in Hµ. Then,

[V
1
2

1 j
−1en, V

1
2

1 j
−1em]Hν = [V1j

−1en, j
−1em]Hν = [en, em]Hµ = δnm.

Hence, (V
1
2

1 j
−1en) is an orthonormal basis for Hν ; note that V

1
2

1 ∈ L(Hν) is surjective.

Since [V
1
2

1 g, V
1
2

1 h]Hν = [jg, jh]Hµ for all g, h ∈ Hν , it follows that V
1
2

1 ◦ j−1 : Hµ → Hν

is an inner product preserving isometric isomorphism onto.
Returning to the map V , for all x∗, y∗ ∈ E∗ we have

[Qµx
∗, Qµy

∗]Hµ = 〈Qµy∗, x∗〉 = [Qνx
∗, j−1Qµy

∗]Hν = [V (Qµx
∗), j−1Qµy

∗]Hν .

Hence via density, [jg, jh]Hµ = [V jg, h]Hν for all g, h ∈ Hν . This shows that V ◦j = V1.
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Theorem 3.5. Suppose we have S(s)Q = QS∗(s) for some s > 0. Let t0 > 0 be
fixed. If there exists t1 ∈ (t0,∞) such that µt1 ∼ µt0 , then µt ∼ µt0 for all t ∈ [t0,∞).

Proof: Step 1 - First assume s = t0.
Fix t2 > 2t0 and assume for the moment that µt2 ∼ µt0 . We will prove that

µt ∼ µt2 for all t ∈ [t2,∞).
Clearly, Ht2 = Ht0 . Fix t > t2. In view of t2 − t0 > t0, by Corollary 1.8 we also

have Ht−t0 = Ht2−t0 = Ht0 and Ht = Ht0 . Define V : Ht2−t0 → Ht−t0 by

V : Qt2−t0x
∗ 7→ Qt−t0x

∗, x∗ ∈ E∗.

From S(t0)Q = QS∗(t0) we have S(t0)Qτ = QτS
∗(t0) for all τ > 0 and hence

S(t0)V Qt2−t0x
∗ = S(t0)Qt−t0x

∗ = Qt−t0S
∗(t0)x∗

= V Qt2−t0S
∗(t0)x∗ = V S(t0)Qt2−t0x

∗, x∗ ∈ E∗.

Letting j : Ht−t0 → Ht2−t0 be the identity operator, it follows that on Ht−t0 we have

St−t0→t−t0(t0) ◦ (V ◦ j) = (V ◦ j) ◦ St−t0→t−t0(t0).

By Lemma 3.4, V ◦ j is positive on Ht−t0 , and U := (V ◦ j) 1
2 ◦ j−1 is an inner product

preserving isomorphism of Ht2−t0 onto Ht−t0 . Moreover, by functional calculus we
have

St−t0→t−t0(t0) ◦ (V ◦ j) 1
2 = (V ◦ j) 1

2 ◦ St−t0→t−t0(t0).

Multiplying on the right with j−1 gives

St−t0→t−t0(t0) = (V ◦ j) 1
2 ◦ St−t0→t−t0(t0) ◦ j−1 ◦ U∗ = U ◦ St2−t0→t2−t0(t0) ◦ U∗.

Therefore,

St−t0→t(t0) = jt−t0→t ◦ U ◦ jt2→t2−t0 ◦ St2−t0→t2(t0) ◦ U∗,

where jt−t0→t and jt2→t2−t0 are the identity maps from Ht−t0 to Ht and from Ht2 to
Ht2−t0 , respectively. Using the equivalence µt2 ∼ µt0 and Theorem 3.2, we conclude
that

St−t0→t(t0)S∗t−t0→t(t0)

= (jt−t0→t ◦ U ◦ jt2→t2−t0 ◦ St2−t0→t2(t0) ◦ U∗)
◦
(
U ◦ S∗t2−t0→t2(t0) ◦ j∗t2→t2−t0 ◦ U∗ ◦ j∗t−t0→t

)

= jt−t0→t ◦ U ◦ jt2→t2−t0 ◦
(
St2−t0→t2(t0)S∗t2−t0→t2(t0)

)
◦ j∗t2→t2−t0 ◦ U∗ ◦ j∗t−t0→t

is Hilbert-Schmidt on Ht. By another application of Theorem 3.2 it follows that
µt ∼ µt0 .

Step 2 - Using Step 1, we now prove the theorem for the case s = t0.
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Let k ∈ N be any integer such that t1 + k(t1 − t0) > 2t0. By Corollary 3.3 (i) we
have

µt0 ∼ µt1 ∼ µt1+(t1−t0) ∼ ... ∼ µt1+k(t1−t0).

We may apply Step 1 to t2 := t1 + k(t1 − t0). It follows that µt ∼ µt2 for all t > t2.
But then Corollary 3.3 (ii) shows that µt ∼ µt0 for all t ∈ [t0,∞).

Step 3 - We now prove the general case. Choose an integer m such that ms > t1.
Then S(ms)Q = QS∗(ms); further µt0 ∼ µt1 implies µms ∼ µt1+ms−t0 by Corollary
3.3 (i). Hence we may apply Step 2 to τ0 := ms and τ1 := t1 + ms − t0. It follows
that µt ∼ µms for all t ∈ [ms,∞). But then we apply Corrollary 3.3 (ii) to t0, t1, and
t2 := ms to see that µt ∼ µt0 for all t ∈ [t0,∞).

In view of this result and by the analogy to Corollary 1.8 we conjecture that µt1 ∼ µt0
always implies µt ∼ µt0 for all t ∈ [t0,∞).

The following corollary gives necessary and sufficient conditions for the situation de-
scribed by Theorem 3.5:

Corollary 3.6. Suppose we have S(s)Q = QS∗(s) for some s > 0. Then the
following assertions are equivalent:

(i) µt ∼ µt0 for all t ∈ [t0,∞);
(ii) S(t0)Ht0 ⊂ Ht0 and S(t0)|Ht0 (S(t0)|Ht0 )∗ is Hilbert-Schmidt on Ht0 .

Proof: Assume (i). Then in particular µ2t0 ∼ µt0 , and Theorem 3.2 shows that
St0→2t0(t0)(St0→2t0(t0))∗ is Hilbert-Schmidt on H2t0 . But then

St0→t0(t0)(St0→t0(t0))∗ = (j2t0→t0 ◦ St0→2t0(t0)) ◦ (S∗t0→t0(t0) ◦ j∗2t0→t0)

is Hilbert-Schmidt on Ht0 . This gives (ii).
Conversely, if (ii) holds, then

St0→2t0(t0)(St0→2t0(t0))∗ = (jt0→2t0 ◦ St0→t0(t0)) ◦ (S∗t0→t0(t0) ◦ j∗t0→2t0
)

= jt0→2t0 ◦ St0→t0(2t0) ◦ j∗t0→2t0

Hilbert-Schmidt on H2t0 . Theorem 3.2 shows that µ2t0 ∼ µt0 , and therefore (i) holds
by Theorem 3.5.

Under the assumptions that E is Hilbert and that for all s > 0 the operator S(s) is
self-adjoint on E and commutes with Q, this result is essentially equivalent to [NZ,
Theorem 3.1].

Remark 3.7. If S(t0)Q = QS∗(t0), then (ii) may be replaced by

(ii)′ S(t0)Ht0 ⊂ Ht0 and the restriction S(2t0)|Ht0 is Hilbert-Schmidt on Ht0 .

This follows from (ii) once we show that the restriction S(t0)|Ht0 is self-adjoint on
Ht0 :

[(S(t0)|Ht0 )∗Qt0x
∗, Qt0y

∗]Ht0 = [Qt0x
∗, S(t0)|Ht0Qt0y

∗]Ht0
= [Qt0x

∗, Qt0S
∗(t0)y∗]Ht0

= [Qt0x
∗, (S(t0)|Ht0 )∗Qt0y

∗]Ht0
= [S(t0)|Ht0Qt0x

∗, Qt0y
∗]Ht0

for all x∗, y∗ ∈ E∗.
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As the following two examples show, it may happen that Ht = Ht0 for all t ∈ [t0,∞)
although µt ⊥ µs for all t 6= s ∈ [t0,∞). A third example is given in Section 6 below.

Example 3.8. Let E be an infinite-dimensional Hilbert space and let µ be a
non-degenerate centered Gaussian measure on E with covariance operator Q. Let S
be a periodic C0−semigroup on E, with period 1. Then Assumption 2.1 holds, we
have Qk = kQ1 for all k = 1, 2, ..., and consequently Hk = H1 for all such k. Hence,
Ht = H1 for all t ∈ [1,∞). On the other hand, let us suppose that µt ∼ µs for certain
t, s ∈ [1,∞) with t < s, then for any integer k > t we also have µk ∼ µs+k−t by
Corollary 3.3. But S(k) = I commutes with Q, and therefore Theorem 3.5 implies
µτ ∼ µk for all τ ∈ [k,∞); in particular, µk ∼ µl for all integers l > k. But these
measures have covariances kQ and lQ, respectively, and therefore they are singular by
the Feldman-Hajek theorem; a contradiction.

Example 3.9. We continue Example 1.12. By Remark 2.2 (i), each of the operators
Qt is the covariance of a centered Gaussian measure µt on E = L2[0, 1]. We will show
that µt ⊥ µs if t ∈ (0, 1) and s 6= t, whereas it is trivial that µt = µs whenever t > 1
and s > 1.

Fix t ∈ (0, 1) and s > 0, s 6= t. Since µs = µ1 if s > 1 we may assume
that s ∈ (0, 1]. By interchanging the roles of t and s if necessary, we may also
assume that t < s, say s = t + h for some h ∈ (0, 1 − t]. Let F denote the closed
subspace of Ht+h consisting of all functions with support in [t, 1]. For all f ∈ F ,
Sh→t+h(t)S∗h→t+h(t)f = f , so SH(t)(SH(t))∗|F = IF , the identity operator on F .
Since dimF = ∞ it follows that Sh→t+h(t)S∗h→t+h(t) is not compact on Ht+h and
therefore not Hilbert-Schmidt. This shows that µt ⊥ µt+h = µs.

4. Computation of the Radon-Nikodym derivative

It is possible to give an explicit expression for the Radon-Nikodym density dµt1/dµt0
whenever we have µt0 ∼ µt1 . This will occupy us in the present section.

We start by recalling some notation and results concerning second quantization.
For more details we refer to [Ne] and the book [Si]. Fix a centered Gaussian measure µ
on E with covariance operator Q ∈ L(E∗, E), and let H denote the associated RKHS.
Let φµ : H 7→ L2(E, µ) be the isometric embedding from H into L2(E, µ) defined by
φµ(Qx∗) = 〈x∗, ·〉 as in Section 2. Whenever the measure µ is understood, we omit it
from the notation and write φh to denote the function φ(h) = φµ(h) ∈ L2(E, µ).

Let (Hn)n∈N be the sequence of Hermite polynomials and denote by Hn the
closure in L2(E, µ) of the linear span of the set {Hn(φh) : ‖h‖H = 1}. Note that H0

is the one-dimensional subspace spanned by the constant one function and that H1 is
precisely the image of H under the isometry φ. One has the orthogonal Wiener-Itô
decomposition,

L2(E, µ) = ⊕n∈N Hn.
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The orthogonal projection onto Hn will be denoted by In.
For all h ∈ H, the functions

Kh(x) := exp

(
φh(x)− 1

2
‖h‖2H

)
,

belong to L2(E, µ), their linear span is dense in L2(E, µ), and we have the identity

Kh =
∞∑

n=0

1

n!
In(φnh), h ∈ H.

Now assume we have two pairs (E0, µ0) and (E1, µ1), and let T ∈ L(H0, H1) be a
contraction. The second quantization of T is the contraction Γ(T ) ∈ L(L2(E0, µ0),
L2(E1, µ1)) defined by

Γ(T )
(
In(φk1

h1
· . . . · φkjhj )

)
:= In(φk1

Th1
· . . . · φkjThj ),

where it is assumed that k1 + . . .+ kj = n.

Now let a positive symmetric operator Q ∈ L(E∗, E) and a C0−semigroup S on E be
given such that Assumption 2.1 holds. Let P be the Ornstein-Uhlenbeck semigroup
on Bb(E) associated with S and Q. We are going to apply second quantization to
E0 = E1 = E, µ0 := µt0+h, µ1 := µh, and the adjoint S∗h→t0+h(t0) ∈ L(Ht0+h, Hh) of
the Hilbert space contraction Sh→t0+h(t0) ∈ L(Hh, Ht0+h).

Theorem 4.1. For all t0 > 0 and h > 0, the operator P (t0) extends to a contraction
from L2(E, µt0+h) into L2(E, µh). This extension is realized as the second quantization
of S∗h→t0+h(t0):

P (t0) = Γ(S∗h→t0+h(t0)).

Proof: We denote the image measure of µt with respect to an element x∗ ∈ E∗ by
〈x∗, µt〉. For all x∗ ∈ E∗ we then have

P (t0)KQt0+hx∗(x) =

∫

E

exp

(
〈x∗, S(t0)x+ y〉 − 1

2
‖Qt0+hx

∗‖2Ht0+h

)
dµt0(y)

= KQt0+hx∗(S(t0)x)

∫

E

exp (〈x∗, y〉) dµt0(y)

= KQt0+hx∗(S(t0)x)

∫

R
exp(s) d〈x∗, µt0〉(s)

= KQt0+hx∗(S(t0)x) exp

(
1

2
‖Qt0x∗‖2Ht0

)

= exp

(
〈x∗, S(t0)x〉 − 1

2

(
‖Qt0+hx

∗‖2Ht0+h
− ‖Qt0x∗‖2Ht0

))

= exp

(
〈x∗, S(t0)x〉 − 1

2
‖QhS∗(t0)x∗‖2Hh

)

= KQhS∗(t0)x∗(x)

= KS∗
h→t0+h

(t0)Qt0+hx∗(x).
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Hence the identity

Kg =

∞∑

n=0

1

n!
In(φng ), g ∈ Ht0+h,

implies
P (t0)KQt0+hx∗ = KS∗

h→t0+h
(h)Qt0+hx∗

=

∞∑

n=0

1

n!
In(φnS∗

h→t0+h
(t0)Qt0+hx∗)

= Γ(S∗h→t0+h(t0))KQt0+hx∗ .

By a density argument, it follows that

P (t0)Kg = Γ(S∗h→t0+h(t0))Kg, ∀g ∈ Ht0+h.

Since the linear span of the functions Kg, g ∈ Ht0+h, is dense in L2(E, µt0+h), this
proves the theorem.

The next aim is to apply the so-called Mehler formula for second quantized operators
to the above situation.

To this end, we consider the situation of two pairs (E0, µ0) and (E1, µ1), with µk
a centered Gaussian measure on Ek with RHKS Hk; k = 0, 1. The following result,
due to Feyel and La Pradelle, shows that every bounded operator in L(H0, H1) has
an extension to a linear µ0−measurable extension from E0 into E1. Recall that a
mapping f : E0 → E1 is µ0−measurable if f−1(B) belongs to the µ0−completion of
the Borel σ−algebra of E0, for all Borel sets B ⊂ E1.

Proposition 4.2 [F-LP, Théorème 5]. Let T ∈ L(H0, H1). Then there exists a
µ0−measurable linear operator T from E0 into E1 which extends T . This extension is
µ0−essentially unique in the sense that any two such µ0−measurable linear extensions
agree µ0−a.e. Moreover, for all h ∈ H1 we have φµ1

h (T (x)) = φµ0

T∗h(x) for µ0−almost
all x ∈ E0.

The uniqueness part implies that for a bounded operator T ∈ L(E0, E1) which maps
H0 into H1 we have T = T |H0

µ0−a.e.
In terms of these extensions, one has the following Mehler formula for the second

quantization of a Hilbert space contraction:

Proposition 4.3 [F-LP, Théorème 10]. Let T be a contraction in L(H0, H1).
Then for all f ∈ L2(E0, µ0) and µ1−almost all x ∈ E1 we have

Γ(T )f(x) =

∫

E0

f
(
T ∗(x) +

√
I − T ∗T (y)

)
dµ0(y).

This result motivates the consideration of the image measure of µ0 under the µ0−meas-

urable transformation
√
I − T ∗T . Let us denote this measure by µT0 . One has the

following extension of a result of Shale [Sh]:
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Proposition 4.4 [F-LP, Proposition 12]. Let T ∈ L(H0, H1) be a strict contrac-
tion such that T ∗T is Hilbert-Schmidt on H0. Then µT0 � µ0, with Radon-Nikodym
derivative µ0−a.e. given by

dµT0
dµ0

(x) =
1√

det(I − T ∗T )
exp

(
−1

2

∥∥∥∥
(√

I − T ∗T
)−1

(T ∗T )
1
2 (x)

∥∥∥∥
2
)
.

If µt0 ∼ µt0+h for some t0 > 0 and h > 0, then Sh→t0+h(t0)S∗h→t0+h(t0) is Hilbert-
Schmidt on Ht0+h. If we assume that Sh→t0+h(t0) itself is Hilbert-Schmidt as an
operator from Hh into Ht0+h we can prove more:

Theorem 4.5. Suppose we have µt0 ∼ µt0+h for some t0 > 0 and h > 0. If
Sh→t0+h(t0) is Hilbert-Schmidt from Hh into Ht0+h, then the Radon-Nikodym deriva-
tive dµt0/dµt0+h(x) is µt0+h−a.e. given by

1√
det(I − T )

exp

(
−1

2

∥∥∥∥
(√

I − T
)−1

T
1
2 (x)

∥∥∥∥
2
)
,

where T := Sh→t0+h(t0)S∗h→t0+h(t0).

Proof: We note that for all 0 6 f ∈ Bb(E) we have

P (t0)f(x) =

∫

E

f(S(t0)x+ y) dµt0(y) =

∫

E

f(S(t0)x+ y)
dµt0
dµt0+h

(y) dµt0+h(y).

Combining this with Theorem 4.1 and Proposition 4.3, we see that

P (t0)f(x) = Γ(S∗h→t0+h(t0))f(x)

=

∫

E

f
(
Sh→t0+h(t0)(x) +

√
I − T (y)

)
dµt0+h(y)

=

∫

E

f
(
S(t0)x+

√
I − T (y)

)
dµt0+h(y)

By Proposition 4.4, the image measure of µt0+h under the µt0+h−measurable transfor-

mation
√
I − T is absolutely continuous with respect to µt0+h, with Radon-Nikodym

derivative given, for µt0+h−a.a. y ∈ E, by

1√
det(I − T )

exp

(
−1

2

∥∥∥∥
(√

I − T
)−1

T
1
2 (y)

∥∥∥∥
2
)
.

Hence,

P (t0)f(x) =

=
1√

det(I − T )

∫

E

f(S(t0)x+ y) exp

(
−1

2

∥∥∥∥
(√

I − T
)−1

T
1
2 (y)

∥∥∥∥
2
)
dµt0+h(y),

and the desired result follows by comparing the two identities for P (t0)f(x).
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5. Continuous dependence of the Radon-Nikodym derivative

Thoughout this section E is a separable real Banach space, Q ∈ L(E∗, E) is positive
and symmetric, and S is a C0−semigroup on E such that Assumption 2.1 is veri-
fied. We will show that for t1 fixed the Radon-Nikodym derivative dµt0/dµt1 depends
continuously upon t0.

Our first aim is to establish a result concerning continuity of determinants.

Lemma 5.1. Fix τ > 0. For all g ∈ Hτ we have

lim
h↓0
‖Sτ−h→τ (h)S∗τ−h→τ (h)g − g‖Hτ = 0.

Proof: Fix x∗ ∈ E∗ and h ∈ [0, τ). Writing Th := Sτ−h→τ (h), for all y∗ ∈ E∗ we have

[T ∗hQτx
∗, T ∗hQτy

∗]Hτ = [Qτ−hS
∗(h)x∗, Qτ−hS

∗(h)y∗]Hτ−h ,

= 〈S(h)Qτ−hS
∗(h)x∗, y∗〉

= 〈Qτx∗ −Qhx∗, y∗〉
= [Qτx

∗ −Qhx∗, Qτy∗]Hτ .

Hence,
[ThT

∗
hQτx

∗ −Qτx∗, Qτy∗]Hτ = −[Qhx
∗, Qτy

∗]Hτ .

Taking the supremum with respect to all Qτy
∗ of norm 6 1, it follows that

‖ThT ∗hQτx∗ −Qτx∗‖Hτ = ‖Qhx∗‖Hτ 6 ‖Qhx∗‖Hh ,

the inequality being a consequence of Corollary 1.5. As h ↓ 0 the right hand side tends
to 0. Since ‖Th‖ 6 1 for all h by Theorem 1.4, the lemma now follows by a density
argument.

Lemma 5.2. Let H0 and H1 be separable Hilbert spaces, let S ∈ L(H0, H1) be
Hilbert-Schmidt and let (Tn) ⊂ L(H0) be a sequence of operators converging to I
strongly. Then

lim
n→∞

STnS
∗ = SS∗

in the space L1(H1) of trace class operators on H1.

Proof: The lemma is obvious if S is a rank one operator. By taking linear combina-
tions, it also holds for finite rank operators S. The general case then follows from a
3ε−argument, approximating S in the Hilbert-Schmidt norm by finite rank operators.

The preceding two lemmas combined with the fact [GGK, p. 119] that the mapping
T 7→ det(I−T ) is continuous with respect to the trace class norm lead to the following
result:
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Lemma 5.3. Let 0 < t0 < t1 be fixed and assume that the operator St1−t0→t1(t0) ∈
L(Ht1−t0 , Ht1) is Hilbert-Schmidt. Then the function

h 7→ det(I − St1−t0−h→t1(t0 + h)S∗t1−t0−h→t1(t0 + h)), h ∈ [0, t1 − t0),

is continuous.

In the following lemma, Cb(Ω) denotes the space of bounded real-valued continuous
functions on a topological space Ω.

Lemma 5.4. Suppose f̃ ∈ Cb(R n) and x∗1, ..., x
∗
n ∈ E∗ are given, and define f ∈

Cb(E) by
f(x) := f̃(〈x∗1, x〉, ..., 〈x∗n, x〉), x ∈ E.

Then for all t0 > 0 and x ∈ E we have we have

lim
h↓0

P (t0 + h)f(x)− P (t0)f(x) = 0.

Proof: We have

P (t0 + h)f(x) =

∫

E

f̃(〈x∗1, S(t0 + h)x+ y〉, ..., 〈x∗n, S(t0 + h)x+ y〉) dµt0+h(y)

=

∫

E

f̃(〈x∗1, z〉, ..., 〈x∗n, z〉) dµ(S(t0+h)x)
t0+h (z)

=

∫

R n
f̃(τ1, ..., τn) dν

(S(t0+h)x)
t0+h (τ),

where µ
(S(t0+h)x)
t0+h is the translation of µt0+h along S(t0 + h)x, and ν

(S(t0+h)x)
t0+h is the

image measure on R n of µ
(S(t0+h)x)
t0+h under the map T : E → R n given by Tz :=

(〈x∗1, z〉, ..., 〈x∗n, z〉). Thus, the Gaussian measure ν
(S(t0+h)x)
t0+h has mean (〈x∗1, S(t0 +

h)x〉, ..., 〈x∗n, S(t0 + h)x〉) and covariance TQt0+hT
∗. By Lévy’s theorem,

lim
h↓0

ν
(S(t0+h)x)
t0+h = ν

(S(t0)x)
t0 weakly.

But then

lim
h↓0

P (t0 + h)f(x) = lim
h↓0

∫

R n
f̃(τ1, ..., τn) dν

(S(t0+h)x)
t0+h (τ)

=

∫

R n
f̃(τ1, ..., τn) dν

(S(t0)x)
t0 (τ)

= P (t0)f(x).

It is well-known that the space of all cylindrical Cb(E)−functions as considered in
Lemma 5.4 are dense in L2(E, µ), for any Gaussian measure µ defined on the Borel
σ−algebra of E. This will be used in the following theorem, which is the main result
of this section.



25

Theorem 5.5. Assume that µt ∼ µt0 for all t ∈ [t0,∞) and that for all h > 0
the operator Sh→t0+h(t0) is Hilbert-Schmidt from Hh to Ht0+h. Fix t1 > t0, and for
τ ∈ [t0, t1] let gτ := dµτ/dµt1 denote the Radon-Nikodym derivative. Then

lim
h↓0
‖gt0+h − gt0‖L2(E,µt1 ) = 0.

Proof: The proof is divided into two steps.

Step 1 - We first prove that

lim
h↓0
‖gt0+h‖L2(E,µt1 ) = ‖gt0‖L2(E,µt1 ).

For τ ∈ [t0, t1], we define Tτ ∈ L(Ht1) by

Tτ := St1−τ→t1(τ)S∗t1−τ→t1(τ).

Then,

‖gt0+h‖2L2(E,µt1 ) =

=
1

det(I − Tt0+h)

∫

E

exp

(
−
∥∥∥∥
(√

I − Tt0+h

)−1√
Tt0+h(x)

∥∥∥∥
2
)
dµt1(x)

6 1

det(I − Tt0+h)

∫

E

exp

(
−1

2

∥∥∥∥
(√

I − Tt0+h

)−1√
Tt0+h(x)

∥∥∥∥
2
)
dµt1(x)

=
1√

det(I − Tt0+h)
‖gt0+h‖L1(E,µt1 )

=
1√

det(I − Tt0+h)
.

Therefore Step 1 is a consequence of Lemma 5.3.

Step 2 - The cylindrical functions as described in Lemma 5.4 are dense in L2(E, µt1),
and for each such f we have

lim
h↓0

∫

E

f(x)(gt0+h(x)− gt0(x)) dµt1(x) = lim
h↓0

P (t0 + h)f(0)− P (t0)f(0) = 0.

Since by Step 1 the norms ‖gt0+h‖L2(E,µt1 ) remain bounded as h ↓ 0, it follows

that limh↓0 gt0+h = gt0 weakly in L2(E, µt1). Together with Step 1 this implies that
limh↓0 gt0+h = gt0 strongly in L2(E, µt1).

We will apply this result to show that under certain conditions the Ornstein-Uhlenbeck
semigroup P associated with S and Q is pointwise continuous for t > t0, uniformly on
bounded sets in E, in the space BUC(E) of bounded real-valued uniformly continuous
functions on E. Before doing so we make the following simple observation.
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Proposition 5.6. Let f ∈ Cb(E) and t0 > 0 be fixed. If S(t0) is compact on E and

lim
h↓0

(
sup
x∈K
|P (h)f(x)− f(x)|

)
= 0 (5.1)

for all compact sets K ⊂ E, then for all bounded sets B ⊂ E we have

lim
h↓0

(
sup
x∈B
|P (t0 + h)f(x)− P (t0)f(x)|

)
= 0.

Proof: Given ε > 0 and a bounded set B ⊂ E, let K0 := S(t0)B and let K1 ⊂ E
be a compact set such that µt0(K1) > 1 − ε. Writing gh := P (h)f − f , we have
limh↓0 gh = 0 uniformly on the compact set {y0 + y1 : y0 ∈ K0, y1 ∈ K1}, and hence

lim
h↓0

(
sup
x∈B
|P (t0 + h)f(x)− P (t0)f(x)|

)

= lim
h↓0

(
sup
x∈B

∣∣∣∣
∫

E

gh(S(t0)x+ y) dµt0(y)

∣∣∣∣
)

6 2ε ‖f‖+ lim
h↓0

(
sup
x∈B

∫

K1

gh(S(t0)x+ y) dµt0(y)

)

= 2ε ‖f‖.

For Hilbert spaces E it is known that (5.1) holds for all f ∈ BUC(E); semigroups
on BUC(E) satisfying (5.1) have been studied from an abstract point of view in [Ce]
and [CG]. In our more general setting we do not know whether (5.1) holds without
additional assumptions. For this reason we will impose stronger assumptions on S and
Q.

Let t0 > 0 be fixed. The pair (S, Q) is said to be null controllable at t0 if S(t0)E ⊂
Ht0 . This condition arises in control theory in a natural way; for its interpretation
and further discussion we refer to [DZ3]. If the domain D(A) of the generator A of
a differentiable semigroup S is contained in the RKHS H associated with Q, then
(S, Q) is null controllable at all t > 0; this follows from [Nv, Lemma 2.2]. Under a
null controllability condition, the results of Section 4 and Theorem 5.5 are applicable.
This is the content of the following proposition.

Proposition 5.7. If (S, Q) is null controllable at t0, then:

(i) For all t > t0 we have µt ∼ µt0 ;
(ii) For all h > 0 the operator Sh→t0+h(t0) is Hilbert-Schmidt from Hh into Ht0+h;

(iii) For all t > t0 the operator S(t) is compact in E.

Proof: First notice that the null controllability condition implies S(t0)Ht0 ⊂ Ht0 ,
so that Ht = Ht0 for all t ∈ [t0,∞), and for each h > 0, Sh→t0+h(t0) is a strict
contraction.
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If we regard S(t0) as an element of L(E,Ht0), then Sh→t0+h(t0) admits the fac-
torization Sh→t0+h(t0) = jt0→t0+h ◦ S(t0) ◦ ih, where ih : Hh ⊂ E and jt0→t0+h :
Ht0 ⊂ Ht0+h are the inclusion maps. By a result of Kwapień and Szymański [KS],
there exists an orthonormal basis (gn) of Hh such that

∑∞
n=1 ‖ihgn‖2E <∞. But then

also
∞∑

n=1

‖Sh→t0+h(t0)gn‖2Ht0+h
6 ‖jt0→t0+h ◦ S(t0)‖L(E,Ht0+h)

∞∑

n=1

‖ihgn‖2E <∞,

proving that Sh→t0+h(t0) is Hilbert-Schmidt.
The last assertion follows from the fact that by assumption S(t0) factors through

Ht0 and the general fact from the theory of abstract Wiener spaces (cf. [Ku, Section
1.4]) that the inclusion map it0 : Ht0 ⊂ E is compact.

Corollary 5.8. Let t0 > 0 be fixed and suppose the pair (S, Q) is null controllable
at t0. Then for all bounded sets B ⊂ E and all f ∈ BUC(E) we have

lim
h↓0

(
sup
x∈B
|P (t0 + h)f(x)− P (t0)f(x)|

)
= 0.

Proof: The null controllability assumption S(t0)E ⊂ Ht0 implies that µt ∼ µt0 for
t ∈ [t0,∞), and that for all h > 0 the operator Sh→t0+h(t0) is Hilbert-Schmidt.

Fix f ∈ BUC(E), x ∈ E, and t1 > t0 arbitrary. Then for h ∈ [0, t1 − t0],

P (t0 + h)f(x)− P (t0)f(x) =

∫

E

f(S(t0 + h)x+ y)(gt0+h(y)− gt0(y)) dµt1(y)

+

∫

E

f(S(t0 + h)x+ y)− f(S(t0)x+ y) dµt0(y).

As h ↓ 0, by Theorem 5.5 the first integral tends to 0, uniformly in x. In order to
estimate the second integral, we note that S(t0) is compact by Proposition 5.7 (iii).
If B ⊂ E is a given bounded set, it then follows from the uniform continuity of f and
the strong continuity of S that

lim
h↓0

(
sup
x∈B

∣∣∣∣
∫

E

f(S(t0 + h)x+ y)− f(S(t0)x+ y) dµt0(y)

∣∣∣∣
)

= 0.

This shows that limh↓0 P (t0 + h)f(x)− P (t0)f(x) = 0, uniformly for x ∈ B.

The following example shows that the convergence is generally not uniformly on E,
even if E is one-dimensional.

Example 5.9. Let E = R , Q = I, and S(t) = e−t. Then
∫

R
exp(−i(e−ts+ τ)) dµt(τ) = exp(−i(e−ts))µ̂t(1) = (1− e−2t) exp(−i(e−ts)).

Hence, for f(s) := cos s we have

P (t)f(s) = (1− e−2t) cos (e−ts),

from which we deduce that ‖P (t0 + h)f − P (t0)f‖ = 2 for all t0 > 0 and h > 0.
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Remark 5.10. Strong continuity in BUC(E) with E a Hilbert space was in-
vestigated in [DL], where it was shown that for a given f ∈ BUC(E) we have
limh↓0 ‖P (h)f − f‖ = 0 if and only if

lim
h↓0

(
sup
x∈E
|f(S(h)x)− f(x)|

)
= 0.

6. The reproducing kernel Hilbert space H∞

In this section we will discuss some versions of the previous results assuming that an
invariant measure µ∞ exists.

We return to the cylindrical setting in an arbitrary real Banach space E, i.e.
Assumption 2.1 is not adopted and E need not be separable. Instead, will make the
following

Assumption 6.1. The strong limit (in E)

Q∞x
∗ := lim

t→∞
Qtx

∗

exists for all x∗ ∈ E∗ and defines a bounded linear operator Q∞ ∈ L(E∗, E).

It is clear that the operator Q∞ defined in this way is positive symmetric; its RKHS
is denoted by H∞, and the inclusion map H∞ ⊂ E is denoted by i∞. The proof of
Proposition 1.3 extends to show that Ht ⊂ H∞ for all t > 0.

Theorem 6.2. For all s > 0 we have S(s)H∞ ⊂ H∞, and S restricts to a
C0−contraction semigroup S∞ on H∞.

Proof: The invariance of H∞ is proved by repeating the proof of Theorem 1.4 with t
replaced by ∞; this also gives contractivity. It remains to prove strong continuity of
S∞ on H∞.

For all h ∈ H∞ and x∗ ∈ E∗ we have

lim
t↓0

[S∞(t)h,Q∞x
∗]H∞ = lim

t↓0
〈S(t)h, x∗〉 = 〈h, x∗〉 = [h,Qx∗]H∞ .

But S∞ being uniformly bounded on H∞, the linear subspace H0
∞ of all g ∈ H∞

such that limt↓0[S∞(t)h, g]H∞ = [h, g]H∞ is closed. Therefore, H0
∞ = H∞ and S∞ is

weakly continuous. By a standard result from semigroup theory [Pa, Theorem 2.1.4],
this implies that S∞ is strongly continuous.

Under the assumption that E is a Hilbert space and Q∞ is trace class, this result is
due to Chojnowska-Michalik and Goldys [CG3, Proposition 1] (see also [CG2, Lemma
4]). Our proof is a modification of the proof of [CG2]. In fact, an analysis of this proof
led us to the discovery of Theorem 1.4.
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Theorem 6.3. Let t0 > 0. Then Ht0 = H∞ if and only if ‖S∞(t0)‖H∞ < 1. In this
case, Ht0 = Ht = H∞ for all t ∈ (t0,∞).

Proof: We only need to prove that H∞ ⊂ Ht0 if and only if ‖S∞(t0)‖H∞ < 1.
We note that

S∗∞(t)Q∞ = (i∞S∞(t))∗ = (S(t)i∞)∗ = Q∞S
∗(t); (6.1)

here i∞ : H∞ → E is the inclusion map. First assume ‖S∞(t0)‖H∞ < 1. Using (6.1),
for all x∗ ∈ E∗ we have

‖Qt0x∗‖2Ht0 = 〈Q∞x∗, x∗〉 − 〈S(t0)Q∞S
∗(t0)x∗, x∗〉

= ‖Q∞x∗‖2H∞ − ‖Q∞S∗(t0)x∗‖2H∞
= ‖Q∞x∗‖2H∞ − ‖S∗∞(t0)Q∞x

∗‖2H∞
>
(
1− ‖S∞(t0)‖2H∞

)
‖Q∞x∗‖2H∞

This gives the inclusion H∞ ⊂ Ht0 .

The converse follows from an obvious modification of the proof of Theorem 1.7.

Under the assumption that E is Hilbert and Q∞ is trace class, this result was obtained
in the second part of [CG2, Lemma 4], with a similar proof. In fact, this motivated
our Theorem 1.7.

The following result gives a criterion for equality Ht0 = H∞ in terms of mapping
properties of S.

Theorem 6.4. If S(t0)H∞ ⊂ Ht0 , then Ht0 = Ht = H∞ for all t ∈ [t0,∞].

Proof: We always have Ht0 ⊂ Ht ⊂ H∞, so we only need prove the inclusion H∞ ⊂
Ht0 .

First note that for all x∗ ∈ E∗,

Q∞x
∗ = Qt0x

∗ + S(t0)(Q∞S
∗(t0)x∗) ∈ Ht0 .

Next fix h ∈ H∞ arbitrary. Let (x∗n) ⊂ E∗ be a sequence such that limn→∞Q∞x∗n = h
in H∞. Then

lim
n→∞

S(t0)Q∞S
∗(t0)x∗n = lim

n→∞
S(t0)S∗∞(t0)Q∞x

∗
n = S(t0)S∗∞(t0)h =: g

in H∞. Note that g ∈ Ht0 by the assumption on S(t0). Moreover, in H∞ we have

lim
n→∞

Qt0x
∗
n = lim

n→∞
(Q∞x

∗
n − S(t0)Q∞S

∗(t0)x∗n) = h− g.

On the other hand, from ‖Qt0x∗n‖Ht0 6 ‖Q∞x∗n‖H∞ we see that the sequence (Qt0x
∗
n)

is bounded in Ht0 . Let y be a weak limit point of (Qt0x
∗
n) in Ht0 . By the continuity

of the inclusion Ht0 ⊂ H∞, y is also a weak limit point of (Qt0x
∗
n) in H∞. Therefore

we must have y = h− g. In particular, h− g ∈ Ht0 . But then h = y + g ∈ Ht0 . This
proves that H∞ ⊂ Ht0 .
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For E Hilbert and Q∞ trace class, this is proved in [CG3, Proposition 3] by control
theoretic methods.

The following example, taken from [Go], shows that it may happen that Ht = Hs

for all t, s ∈ (0,∞), although the inclusions Ht ⊂ H∞ are strict. In [Go] these facts are
checked by explicit calculations; here, we derive them as consequences of our abstract
results and as such the example serves as an interesting illustration of them.

Example 6.5. Let E = l2 and denote by (en) the standard unit basis of E.
Define Q ∈ L(E) by Qen := en/n

3. Then Q is a non-negative self-adjoint trace class
operator and hence the covariance of a Gaussian measure µ on E. Define the operator
A by Aen := −en/n. Then A is bounded on E and S(t) := etA defines a uniformly
continuous semigroup of self-adjoint operators on E satisfying ‖S(t)‖ = 1 for all t > 0.

Fix t > 0. It is easy to check that

Qt =
A2

2
(1− S(2t)),

Q∞ =
A2

2
.

Since A2 and S(t) commute, so do Qt and S(t) and we see that S(t) maps ImQt into
itself. We check that S(t) extends to a bounded operator on Ht. For all h ∈ E of the
form h =

∑n
k=1 akek we have

‖S(t)Qth‖2Ht = ‖QtS(t)h‖2Ht
= [QtS(t)h, S(t)h]E

= [Qth, S(2t)h]E

=

n∑

k=1

a2
k · e−2t/k · 1

2k2
(1− e−2t/k)

6
n∑

k=1

a2
k ·

1

2k2
(1− e−2t/k)

= [h,Qth]E = ‖Qth‖2Ht .
Since the set of all Qth, with h of the above form, is dense in Ht, this shows that the
restriction of S(t) to ImQt extends to a contraction on Ht. Theorem 1.9 now shows
that Ht = Hs for all t, s ∈ (0,∞). On the other hand, S(t) also commutes with Q∞
and for t > 0 fixed we have

‖S∞(t)Q∞en‖2H∞ = ‖Q∞S(t)en‖2H∞
= [Q∞S(t)en, S(t)en]E

= e−2t/n[Q∞en, en]E

= e−2t/n‖Q∞en‖2H∞ .

Hence, ‖S∞(t)‖H∞ > e−t/n for all n, so ‖S∞(t)‖H∞ = 1. Hence by Theorem 6.3, the
inclusion Ht ⊂ H∞ is strict.
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Finally a simple computation shows that for all t0 > 0, the restriction of S(t0) to
Ht0 fails to be Hilbert-Schmidt. Hence, µt ⊥ µs for all t 6= s ∈ (0,∞) by Corollary
3.6.

For the rest of this section, E is assumed to be separable and we will assume the
following simultaneous strengthening of Assumptions 2.1 and 6.1:

Assumption 6.6. Assumption 6.1 holds and the cylindrical measure µ∞ associated
with Q∞ is countably additive.

In other words, we assume that the operator Q∞ is the covariance of a centered
Gaussian measure µ∞ on the Borel σ−algebra of E.

Remark 6.7. The following conditions are sufficient for Assumption 6.6 to hold:

(i) E is a Hilbert space and supt>0 TraceQt <∞ [DZ3, Chapter 11];
(ii) E is a Hilbert space, Q is trace class, and S is uniformly exponentially stable;

(iii) The cylindrical measure associated with Q is countably additive, S is uniformly
exponentially stable, S(s)H ⊂ H for all s > 0, and

∫ ∞

0

‖S(s)‖2L(H) ds <∞.

(iv) Assumption 2.1 holds, S is uniformly exponentially stable, and the pair (S, Q) is
null controllable at some t0 > 0.

We will investigate the question under what conditions we have equivalence µt0 ∼ µ∞
holds for a given t0 ∈ (0,∞).

Theorem 6.8. For a fixed t0 > 0, the measures µt0 and µ∞ are equivalent if and
only if the following two conditions are satisfied:

(i) ‖S∞(t0)‖H∞ < 1;
(ii) The operator S∞(t0)S∗∞(t0) is Hilbert-Schmidt on H∞.

For Hilbert spaces E, this was proved in [CG3, Theorem 2]. By the semigroup property,
this result implies:

Corollary 6.9. If µt0 ∼ µ∞ for some t0 > 0, then µt ∼ µ∞ for all t ∈ [t0,∞].

It is possible to give an explicit expression for the Radon-Nikodym density dµt0/dµ∞.
If µt0 ∼ µ∞ for some t0 > 0, then S∞(t0)S∗∞(t0) is Hilbert-Schmidt on H∞. If we
assume that S∞(t0) itself is Hilbert-Schmidt we can prove more:

Theorem 6.10. Suppose we have µt0 ∼ µ∞ for some t0 > 0. If S∞(t0) is Hilbert-
Schmidt on H∞, then the Radon-Nikodym derivative gt0 := dµt0/dµ∞ is µ∞−a.e.
given by

gt0(x) =
(

det
√
I − S∞(t0)S∗∞(t0)

)−1

×

× exp

(
−1

2
‖
(√

I − S∞(t0)S∗∞(t0)
)−1

(S∞(t0)S∗∞(t0))
1
2x‖2

)
.

Concerning continuous dependence, we have:
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Theorem 6.11. Under the above assumptions, the Radon-Nikodym derivative gt :=
dµt/dµ∞ exists for all t > t0 and belongs to L2(E, µ∞). The function t 7→ gt is
continuous from [t0,∞) into L2(E, µ∞).

Analogously to the situation encountered in Section 5, the assumptions of the theorem
are automatically satisfied under the null controllability assumption S(t0)E ⊂ Ht0 .
The proofs of Theorems 6.10 and 6.11 proceed as in Sections 4 and 5, respectively.
The main ingredient of Theorem 6.10 is the following version of Theorem 4.1:

Theorem 6.12. The semigroup P extends to a C0−semigroup on L2(E, µ∞) and
for all t > 0 we have

P (t) = Γ(S∗∞(t)).

For Hilbert spaces E, Theorems 6.10 and 6.12 are due to Chojnowska-Michalik and
Goldys [CG2], [CG3]. Their version of Theorem 6.10 is based on a very general
formula for Radon-Nikodym derivatives of Gaussian measures on Hilbert spaces due
to Fuhrman [Fu], who obtained the Hilbert space case of Theorem 6.10 under the null
controllability assumption S(t)E ⊂ Ht for all t > 0.

7. Extension to Gaussian Mehler semigroups

In [BRS], Bogachev, Röckner, and Schmuland introduced the concept of a generalized
Mehler semigroup. Under Assumption 2.1, the Ornstein-Uhlenbeck semigroups P
belong to this class. In this final section we will discuss briefly some extensions of our
results to this more general framwork.

Let E be a separable real Banach space, let S be a C0−semigroup on E, and
let {µt}t>0 be a one-parameter family of probability measures defined on the Borel
σ−algebra of E. The pair (S, {µt}t>0) is called a Mehler semigroup on E if

µt+s = (T (s)µt) ∗ µs, t, s > 0, (7.1)

where T (s)µt denotes the image measure of µt under T (s). This terminology is ex-
plained by the observation [BRS, Proposition 2.2] that (S, {µt}t>0) is a Mehler semi-
group if and only if

P (t)f(x) :=

∫

E

f(S(t)x− y) dµt(y), t > 0, x ∈ E,

defines a semigroup on the space Bb(E) of bounded Borel functions on E. More
generally, a pair (S, {µt}t>0), where S is a C0−semigroup on E and {µt}t>0 is a one-
parameter family of cylindrical probability measures on the ring of cylindrical sets in
E, is called a cylindrical Mehler semigroup on E if (7.1) holds.
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If Q ∈ L(E∗, E) is a positive and symmetric operator and S is a C0−semigroup
on E, then the pair (S, {µt}t>0), where µt is the unique cylindrical measure whose
Fourier transform is given by

µ̂t(x
∗) = exp

(
−1

2
〈Qtx∗, x∗〉

)
, x∗ ∈ E∗ (7.2)

is easily seen to be a cylindrical Mehler semigroup; it is a Mehler semigroup if As-
sumption 2.1 holds.

Motivated by this example, we say that (S, {µt}t>0) is Gaussian if for each t > 0
there exists a positive symmetric operator Qt ∈ L(E∗, E), the covariance of µt, such
that the Fourier transform of µt is given by (7.2). In this situation we denote by
Ht the RKHS associated with the covariance operator Qt of µt. By considering the
Fourier transform of (7.1) we have the identity [BRS, Proposition 2.2]

Qt+s = Qs + S(s)QtS
∗(s), t, s > 0. (7.3)

In particular, 〈Qt+sx∗, x∗〉 = 〈Qsx∗, x∗〉 + 〈QtS∗(s)x∗, S∗(s)x∗〉 for all t, s > 0 and
x∗ ∈ E∗. By positivity, this shows that the functions t 7→ 〈Qtx∗, x∗〉 are increasing.
Hence,

Ht0 ⊂ Ht1 whenever 0 < t0 < t1 <∞. (7.4)

Inspection of the proofs shows that (7.3) and (7.4) are all that is needed for most
of the results in this paper. These therefore extend to Gaussian (cylindrical) Mehler
semigroups without change.
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Note added in proof – After this paper had been accepted for publication, the author
realized that without any compactness assumption, (5.1) always holds if f ∈ BUC(E).
In fact, it turns out that one always has limt↓0 µt = δ0 weakly; this is a consequence
of Anderson’s inequality and easily implies the assertion just made. As a consequence,
in Corollary 5.8 the null controllability assumption can be omitted, and the character-
ization of strong continuity in BUC(E) mentioned in Remark 5.10 extends to Banach
spaces E. The details will be presented elsewhere.


