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Abstract - Let T = {T (t)}t>0 be a C0−semigroup on a Banach space X.
We prove the following results:

(i) If X is separable, there exist separable Hilbert spaces X0 and X1,
continuous dense embeddings j0 : X0 → X and j1 : X → X1, and
C0−semigroups T0 and T1 on X0 and X1 respectively, such that
j0 ◦ T0(t) = T (t) ◦ j0 and T1(t) ◦ j1 = j1 ◦ T (t) for all t > 0.

(ii) If T is �−reflexive, there exist reflexive Banach spaces X0 and X1,
continuous dense embeddings j : D(A2) → X0, j0 : X0 → X, j1 :
X → X1, and C0−semigroups T0 and T1 on X0 and X1 respectively,
such that T0(t) ◦ j = j ◦ T (t). j0 ◦ T0(t) = T (t) ◦ j0 and T1(t) ◦ j1 =
j1 ◦ T (t) for all t > 0, and such that σ(A0) = σ(A) = σ(A1), where
Ak is the generator of Tk, k = 0,∅, 1.
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0. Introduction

In this paper we investigate the following problem: given a strongly continuous semi-
group of bounded linear operators (briefly, a C0−semigroup) T = {T (t)}t>0 on a
Banach space X, is it possible to find spaces X0 and X1, continuous dense embed-
dings j0 : X0 → X and j1 : X → X1, and C0−semigroups T0 and T1 on X0 and X1,
respectively, such that j0 ◦ T0(t) = T (t) ◦ j0 and T1(t) ◦ j1 = j1 ◦ T (t) for all t > 0?

Naturally, this question is only meaningful if we require the spaces X0 and X1

and/or the semigroups T0 and T1 in some sense to be ‘better’ than X and T. Below
we provide two affirmative answers:

(i) If X is separable, then X0 and X1 may be chosen to be separable Hilbert spaces;
(ii) If T is �−reflexive, then X0 and X1 may be chosen to be reflexive Banach spaces,

we may choose X0 to be intermediate between D(A2) and X, and we may arrange
that σ(A0) = σ(A) = σ(A1), where Ak is the generator of Tk, k = 0,∅, 1.

These results are proved in Sections 1 and 2, respectively.

1. Sandwiching between Hilbert space semigroups

Throughout this section, we fix a Banach space X, a C0−semigroup T on X. If H is
a Banach space which is continuously embedded into X, for each t > 0 we define the
linear subspace Ht of X by

Ht =

{∫ t

0

T (s)ih(s) ds : h ∈ L2([0, t];H)

}
;

here i : H ⊂ X denotes the inclusion mapping.

Theorem 1.1. If H is a reflexive Banach space which is continuously embedded
into X, then there exists another reflexive Banach space X0, continuously embedded
in X, such that:
(i) T restricts to a C0−semigroup T0 on X0;
(ii) Ht ⊂ X0 for all t > 0.

If X is separable, then H is separable as well. If H is a Hilbert space, then X0 may
be chosen to be a Hilbert space as well.

Proof: The space H := L2([0,∞);H) is reflexive; if H is a Hilbert space, then H is a
Hilbert space as well. Fix M > 0 and ω ∈ R such that ‖T (t)‖ 6 Meωt for all t > 0,
and fix α > ω. Define S : H → X by

Sh :=

∫ ∞

0

e−αtT (t)ih(t) dt.
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We check that this integral exists as a Bochner integral in X and that S is a bounded
operator from H into X. The integrand is strongly measurable, and

∫ ∞

0

e−αt‖T (t)ih(t)‖X dt 6
∫ ∞

0

e−αt‖T (t)‖L(X)‖i‖L(H,X)‖h(t)‖H dt

6M‖i‖L(H,X)

∫ ∞

0

e−(α−ω)t‖h(t)‖H dt

6M‖i‖L(H,X)

(∫ ∞

0

e−2(α−ω)t dt

)1/2

‖h‖H =: C‖h‖H.

On X0 := rangeS we define a norm ‖ · ‖X0
by ‖Sh‖X0

:= ‖πh‖H/kerS , where π : H →
H/kerS is the quotient map. The resulting space X0 is isometrically isomorphic to
H/kerS and therefore reflexive; if H is a Hilbert space then X0 is a Hilbert space as
well. If X is separable, then also H is separable.

The quotient operator S̃ : H/kerS → X defined by S̃(πh) := Sh, has norm 6 C.
Consequently,

‖Sh‖X = ‖S̃(πh)‖H/kerS 6 C‖πh‖H/kerS = C‖Sh‖X0
.

It follows that the inclusion X0 ⊂ X is continuous.
For s > 0 and h ∈ H, define hs ∈ H by

hs(t) :=

{
h(t− s), t > s;
0, otherwise.

Then

T (s)(Sh) =

∫ ∞

0

e−αtT (t+ s)ih(t) dt = eαs
∫ ∞

s

e−αtT (t)ih(t− s) dt = eαsShs.

Hence, T (s)(Sh) ∈ X0. If g ∈ H is such that Sg = Sh, then the above identity shows
that Sgs = Shs, which implies that ‖πhs‖H/kerS 6 ‖πh‖H/kerS . Consequently,

‖T (s)(Sh)‖X0
= eαs‖πhs‖H/kerS 6 eαs‖πh‖H/kerS = eαs‖Sh‖X0

.

It follows that T (s) restricts to a bounded operator T0(s) on X0 of norm 6 eαs. We
check that the resulting semigroup T0 is strongly continuous on X0. Let i0 : X0 ⊂ X
denote the inclusion mapping. By dominated convergence, for all x∗ ∈ X∗ and h ∈ H
we have

lim
s↓0
〈T0(s)Sh, i∗0x

∗〉 = lim
s↓0

∫ ∞

0

e−αt〈T (t+ s)ih(t), x∗〉 dt

=

∫ ∞

0

e−αt〈T (t)ih(t), x∗〉 dt = 〈Sh, i0x∗〉.
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By the reflexivity of X0, the restriction mapping i∗0 : X∗ → X∗0 has dense range.
Since T0 is locally bounded on X0, it follows that T0 is weakly continuous on X0.
Hence by a standard result from semigroup theory [Pz, Theorem 2.1.4], T0 is strongly
continuous on X0. This proves (i).

To prove (ii) fix t > 0 and h ∈ L2([0, t], H). Define h̃ ∈ H by

h̃(s) :=

{
eαsh(s), s ∈ [0, t];
0, otherwise.

Then ∫ t

0

T (s)ih(s) ds = Sh̃ ∈ X0,

and therefore Ht ⊂ X0 by definition of Ht.

If T is uniformly exponentially stable, then X0 may be chosen in such a way that T0

is uniformly exponentially stable on X0: one takes ω < α < 0 in the above proof. This
observation also applies to the results below, but we have no particular application for
it. We do not know whether, in case T is uniformly bounded, it is possible to choose
X0 in such a way that T0 is uniformly bounded as well. However, using a weighted
L2 space to define H, the proof of Theorem 1.1 can be modified to obtain T0 with at
most linear growth.

The following theorem is in some sense ‘dual’ to Theorem 1.1. It depends on the
following simple observation:

Lemma 1.2. Suppose X is a separable Banach space. There exists a separable
Hilbert space H which is densely and continuously embedded in X.

Proof: Let (xn) be a sequence of norm one vectors in X with dense linear span. Define
a bounded operator j : l2 → X by j : (αn) 7→ ∑

n n
−1αnxn. The restriction of j to

H := (ker j)⊥ is an embedding.

Theorem 1.3. If X is separable, there exists a separable Hilbert space X1 and a
continuous dense embedding j : X → X1 such that

T1(t)jx := jT (t)x (x ∈ X)

defines a C0−semigroup T1 on X1.

Proof: Define
X� := {x∗ ∈ X∗ : lim

t↓0
‖T ∗(t)x∗ − x∗‖ = 0}.

Thus, X� is the largest subspace of X∗ on which the adjoint semigroup T∗ acts in a
strongly continuous way. The space X� is a norm-closed, weak∗−dense, T∗−invariant
subspace of X∗ which induces an equivalent norm in X in the sense that there exists
a constant M > 1 such that

M−1‖x‖ 6 sup
{
|〈x, x�〉| : x� ∈ X�, ‖x�‖ 6 1

}
6 ‖x‖
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for all x ∈ X [Ne, Chapter 1]. The restriction of T∗ to X� will be denoted by T�.
By the separability of X we may choose a separable closed T�−invariant subspace

Y of X� which still induces an equivalent norm in X. Let HY be any separable Hilbert
space which is densely embedded in Y ; such a Hilbert space exists by Lemma 1.2.
By Theorem 1.1 (i) there exists a continuously embedded, T�−invariant, separable
Hilbert space Y0 in Y such that T� restricts to a C0−semigroup on Y0. Put T�0 :=
T�|Y0

.
Since HY is dense in Y , (ii) of Theorem 1.1 shows that the inclusion j : Y0 ⊂ Y

is dense. Therefore the adjoint map j∗ : Y ∗ → Y ∗0 is injective with dense range; here
Y ∗0 denotes the Banach space dual of the (Hilbert) space Y0.

Since Y induces an equivalent norm in X, X is canonically isomorphic to a norm
closed, weak∗−dense, (T�|Y )∗−invariant subspace of Y ∗. Under this identification,
j∗ restricts to an injective map from X into Y0. We claim that this restriction still
has dense range. Indeed, j∗ is weak∗−to−weakly continuous as a map from Y ∗ to Y ∗0 ,
being an adjoint operator taking values in a reflexive space. The claim now follows
from the fact that X is weak∗−dense in Y ∗.

We have obtained dense embedding j1 := j∗|X from X into X1 := Y ∗0 . The
adjoint semigroup T1 := (T�0 )∗ is a C0−semigroup on X1, being the adjoint of a
strongly continuous semigroup on a reflexive space. For all x ∈ X and x1 ∈ X1 we
have

〈x1, T1(t)j1x〉 = 〈x, jT�0 (t)x1〉
= 〈x, T�(t)jx0〉
= 〈T (t)x, jx1〉
= 〈x1, j1T (t)x〉.

This shows that T1(t) ◦ j1 = j1 ◦ T (t). Finally we observe that X1 = Y ∗0 can be given
the structure of a Hilbert space in a natural way by providing it with the inner product
of Y0.

As a corollary we find that every semigroup on a separable Banach space is sandwiched
between two Hilbert space semigroups:

Corollary 1.4. If T is a C0−semigroup on a separable Banach space X, then there
exist separable Hilbert spaces X0 and X1, continuous dense embeddings j0 : X0 → X
and j1 : X → X1, and C0−semigroups T0 and T1 on X0 and X1 respectively, such
that j0 ◦ T0(t) = T (t) ◦ j0 and T1(t) ◦ j1 = j1 ◦ T (t) for all t > 0.

Proof: Apply Theorem 1.1 and Lemma 1.2 to obtain X0 and T0, and apply Theorem
1.3 to obtain X1 and T1.

The constructions in Theorems 1.1 and 1.3 have their origin in the theory of stochastic
differential equations (SDE’s) on Hilbert spaces.

If T is C0−semigroup on a Hilbert space X and Q ∈ L(X) is a positive self-adjoint
operator such that

sup
t>0

TraceQt <∞,
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where the positive self-adjoint operators Qt ∈ L(X) are defined by

Qtx :=

∫ t

0

T (s)QT ∗(s)x ds (x ∈ X),

then Q∞x := limt→∞Qtx defines a positive self-adjoint operator Q∞ which is the
covariance operator of a unique centered Gaussian measure µ on X. It was shown in
[CG] that the reproducing kernel Hilbert space H∞ associated with this measure is
T−invariant; this space H∞ is continuously embedded in X. This situation is covered
by Theorem 1.1 in the following way. If we take H to be the reproducing kernel Hilbert
space associated with Q (this space is continuously embedded in X) and let α = 0,
then the space X0 constructed in Theorem 1.1 coincides with H∞.

As to Theorem 1.3, a duality construction which in some sense resembles the one
presented here was used in [BRS] to show that to every C0−semigroup T on a Hilbert
space X, another Hilbert space X1 and a Hilbert-Schmidt embedding j1 : X → X1

can be associated in such a way that T extends to a C0−semigroup T1 on X1. This
result is applied to the study of SDE’s with cylindrical noise.

2. The �−reflexive case

In this section we will prove versions of the above results for �-reflexive semigroups.
It turns out that for this class of semigroups it is possible to control the spectra of the
generators of T0 and T1, the price to pay being that X0 and X1 are obtained only as
reflexive Banach spaces.

We start with a lemma about equality of spectra, which may be compared to [Ar,
Proposition 1.1].

Lemma 2.1. Let A be a closed operator with domain D(A) on a Banach space X.
Suppose X0 is a Banach space such that D(A2) ⊂ X0 ⊂ X with continuous inclusions.
Denote the part of A in X0 by A0. If %(A) ∩ %(A0) 6= ∅, then σ(A0) = σ(A).

Proof: First we prove the inclusion %(A) ⊂ %(A0). Pick λ ∈ %(A) and fix an arbitrary
µ ∈ %(A) ∩ %(A0). If x0 ∈ X0, then R(λ,A)R(µ,A)x0 ∈ D(A2) ⊂ X0. Therefore,

R(λ,A)x0 = R(µ,A0)x0 + (µ− λ)R(λ,A)R(µ,A)x0 ∈ X0.

Hence R(λ,A)X0 ⊂ X0, and the restriction R(λ,A)|X0
defines a bounded operator on

X0 by the closed graph theorem. Clearly R(λ,A)|X0
is a two-sided inverse for λ−A0,

so λ ∈ %(A0).
To prove the inclusion %(A0) ⊂ %(A), pick λ ∈ %(A0) and fix an arbitrary µ ∈

%(A). Define a bounded operator Rλ on X by

Rλx := R(µ,A)x+ (µ− λ)R(µ,A)2x+ (µ− λ)2R(λ,A0)R(µ,A)2x (x ∈ X).

Then it is easily verified that Rλ is a two-sided inverse of λ−A, so λ ∈ %(A).
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We now return to the setting of Section 1 and assume that A is the generator of a
C0−semigroup T on X.

Lemma 2.2. If H is a Banach space such that D(A) ⊂ H ⊂ X with continuous
inclusions, then D(A2) ⊂ Ht for all t > 0.

Proof: Fix t > 0 and choose ω ∈ %(A) ∩ R so large that ‖e−ωtT (t)|D(A)‖L(D(A)) < 1.
Then the restriction to D(A) of I − e−ωtT (t) is invertible in D(A), and for x ∈ D(A)
we have

(ω −A)−1x = (I − e−ωtT (t))(ω −A)−1(I|D(A) − e−ωtT (t)|D(A))
−1x

= −
∫ t

0

e−ωsT (s)(I|D(A) − e−ωtT (t)|D(A))
−1x ds.

But

(I|D(A) − e−ωtT (t)|D(A))
−1x =

∞∑

n=0

e−nωtT (nt)x ∈ D(A) ⊂ H,

the sum being absolutely convergent in D(A). Therefore the function h defined by

h(s) := −e−ωs(I|D(A) − e−ωtT (t)|D(A))
−1x (s ∈ [0, t])

belongs to L2([0, t];H). From

(ω −A)−1x =

∫ t

0

T (s)h(s) ds,

we conclude that (ω −A)−1x ∈ Ht.

Denote X�∗ := (X�)∗ and X�� := (X�)�, the �−dual of X� with respect to the
C0−semigroup T�. Define a map k : X → X�∗ by

〈x�, kx〉 := 〈x, x�〉 (x� ∈ X�).

Since X� induces an equivalent norm in X, the map k is an isomorphic embedding,
and it is easy to see that kX ⊂ X��. If kX = X��, then T is said to be �−reflexive.
By a theorem of de Pagter [Pa] (cf. also [Ne, Theorem 2.5.2]), this happens if and
only if there exists µ ∈ %(A) such that R(µ,A) is a weakly compact operator; in this
case R(µ,A) is weakly compact for all µ ∈ %(A).

Lemma 2.3. If T is �−reflexive, then there exists a reflexive Banach space H such
that D(A) ⊂ H ⊂ X with continuous inclusions.

Proof: Fix any λ ∈ %(A). Then R(λ,A) is weakly compact. If (xn) ⊂ D(A) is a
sequence which is bounded with respect to the graph norm of D(A), then ((λ−A)xn)
is a bounded sequence in X and therefore the identity xn = R(λ,A)((λ−A)xn) shows
that the sequence (xn) is relatively weakly compact inX. This shows that the inclusion
D(A) ⊂ X is weakly compact. Hence by the factorization theorem of Davis-Figiel-
Johnson-Pelczynski [DFJP], it factors through a reflexive Banach space. Accordingly
there exists a reflexive Banach space H0 and bounded operators T0 : D(A) → H0

and T1 : H0 → X such that T1T0x = x for all x ∈ D(A). Let H := rangeT1; H is
a reflexive Banach space with respect to the norm ‖T1h0‖ := ‖πh0‖H0/kerT1

, where

π : H0 → H0/kerT1 is the quotient mapping. We now have D(A) ⊂ H ⊂ X with
continuous inclusions, the first one being given by T1 ◦ T0.
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Theorem 2.4. Suppose T is a �−reflexive semigroup on a Banach space X. Then
there exist reflexive Banach spaces X0 and X1 and a continuous dense embedding
j : X → X1 such that:

(i) D(A2) ⊂ X0 ⊂ X with continuous and dense inclusions;

(ii) T restricts to a C0−semigroup T0 on X0;

(iii) T1(t)jx := jT (t)x (x ∈ X) defines a C0−semigroup on X1;

(iv) σ(A0) = σ(A) = σ(A1), where Ak is the generator of Tk, k = 0, 1.

Proof: Let X0 be the space of Theorem 1.1. By Lemmas 2.3 and 2.2 we have D(A2) ⊂
Ht for all t > 0, and therefore D(A2) ⊂ X0 by Theorem 1.1 (ii). By the closed graph
theorem this inclusion is continuous. Since D(A2) is dense in X, the inclusion X0 ⊂ X
is dense. From D(A2

0) ⊂ D(A2) ⊂ X0 we see that the inclusion D(A2) ⊂ X0 is dense
as well. This proves (i) and (ii). Equality of the spectra σ(A0) = σ(A) follows from
Lemma 2.1 and the easy observation that A0 is indeed the part of A in X0.

The space X1 is constructed as in the proof of Theorem 1.3, except for the follow-
ing modifications. We now take Y := X�, notice that the strongly continuous adjoint
semigroup T� is �−reflexive (see e.g. [Ne, Corollary 2.5.8]), and apply Lemma 2.3 to
see that there exists a reflexive space Y0 such that:

(i) D((A�)2) ⊂ Y0 ⊂ Y = X� with dense inclusions;

(ii) T� restricts to a C0−semigroup T�0 on Y0;

(iii) σ(A�0 ) = σ(A�).

The adjoint j∗ : X�∗ → X1 := Y ∗0 of the inclusion j : Y0 ⊂ X� is injective with dense
range, and its restriction j1 = j∗|X to X has dense range in X1 again. Recalling the
spectra of a generator, its adjoint, and its �−adjoint always agree, it follows that for
the adjoint semigroup T1 := (T�0 )∗ on X1 we have σ(A1) = σ(A�0 ) = σ(A�) = σ(A);
cf. [Ne, Section 1.4].

Remark 2.5.

(i) It would be interesting to know whether D(A2) can be replaced by D(A) in the
above result.

(ii) Assertions (i) and (ii) of Theorem 2.4 actually characterize �−reflexive semi-
groups. In fact, if the inclusion mapping D(A2) ⊂ X factors through a reflex-
ive Banach space Y , then by factoring R(µ,A)2 through D(A2) it follows that
R(µ,A)2 factors through Y as well, and therefore R(µ,A)2 is weakly compact. It
is easy to prove [Pa] that then also R(µ,A) is weakly compact, and hence T is
�−reflexive.

(iii) The ‘metamathematical’ interpretation of Theorem 2.4 is as follows. Suppose
C is a set of conditions which implies a certain property P for C0−semigroups
on reflexive Banach spaces. Then C also implies property P for �−reflexive
semigroups, provided the conditions C are stable under similarity transformations
and both C and P are stable under continuous dense inclusions. Indeed, if T is
�−reflexive and verifies the conditions C, then its restriction TD(A2) toD(A2) also
verifies C (use the similarity transformation TD(A2)(t) = R(λ,A)2T (t)(λ − A)2).
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Hence T0 verifies C as well (inject D(A2) into X0). By reflexivity it follows that
T0 has property P, and therefore (by injecting into X) T has property P.

This provides a canonical way of extending certain results for C0−semigroups
on reflexive spaces to arbitrary �−reflexive semigroups.
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