J.M.A.M. van Neerven¹

Department of Mathematics Delft University of Technology PO Box 5031, 2600 GA Delft The Netherlands J.vanNeerven@twi.tudelft.nl

Abstract - Let $\mathbf{T} = \{T(t)\}_{t \ge 0}$ be a C_0 -semigroup on a Banach space X. We prove the following results:

- (i) If X is separable, there exist separable Hilbert spaces X_0 and X_1 , continuous dense embeddings $j_0 : X_0 \to X$ and $j_1 : X \to X_1$, and C_0 -semigroups \mathbf{T}_0 and \mathbf{T}_1 on X_0 and X_1 respectively, such that $j_0 \circ T_0(t) = T(t) \circ j_0$ and $T_1(t) \circ j_1 = j_1 \circ T(t)$ for all $t \ge 0$.
- (ii) If **T** is \odot -reflexive, there exist reflexive Banach spaces X_0 and X_1 , continuous dense embeddings $j : D(A^2) \to X_0$, $j_0 : X_0 \to X$, $j_1 : X \to X_1$, and C_0 -semigroups \mathbf{T}_0 and \mathbf{T}_1 on X_0 and X_1 respectively, such that $T_0(t) \circ j = j \circ T(t)$. $j_0 \circ T_0(t) = T(t) \circ j_0$ and $T_1(t) \circ j_1 = j_1 \circ T(t)$ for all $t \ge 0$, and such that $\sigma(A_0) = \sigma(A) = \sigma(A_1)$, where A_k is the generator of \mathbf{T}_k , $k = 0, \emptyset, 1$.

1991 Mathematics Subject Classification: 47D03 Keywords: C_0 -semigroup, sandwich theorem, \odot -reflexivity

¹ This research has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

To appear in: J. London Math. Soc.

0. Introduction

In this paper we investigate the following problem: given a strongly continuous semigroup of bounded linear operators (briefly, a C_0 -semigroup) $\mathbf{T} = \{T(t)\}_{t \ge 0}$ on a Banach space X, is it possible to find spaces X_0 and X_1 , continuous dense embeddings $j_0: X_0 \to X$ and $j_1: X \to X_1$, and C_0 -semigroups \mathbf{T}_0 and \mathbf{T}_1 on X_0 and X_1 , respectively, such that $j_0 \circ T_0(t) = T(t) \circ j_0$ and $T_1(t) \circ j_1 = j_1 \circ T(t)$ for all $t \ge 0$?

Naturally, this question is only meaningful if we require the spaces X_0 and X_1 and/or the semigroups \mathbf{T}_0 and \mathbf{T}_1 in some sense to be 'better' than X and **T**. Below we provide two affirmative answers:

- (i) If X is separable, then X_0 and X_1 may be chosen to be separable *Hilbert* spaces;
- (ii) If **T** is \odot -reflexive, then X_0 and X_1 may be chosen to be *reflexive* Banach spaces, we may choose X_0 to be intermediate between $D(A^2)$ and X, and we may arrange that $\sigma(A_0) = \sigma(A) = \sigma(A_1)$, where A_k is the generator of **T**_k, $k = 0, \emptyset, 1$.

These results are proved in Sections 1 and 2, respectively.

1. Sandwiching between Hilbert space semigroups

Throughout this section, we fix a Banach space X, a C_0 -semigroup **T** on X. If H is a Banach space which is continuously embedded into X, for each t > 0 we define the linear subspace H_t of X by

$$H_t = \left\{ \int_0^t T(s) ih(s) \, ds : \ h \in L^2([0,t];H) \right\};$$

here $i: H \subset X$ denotes the inclusion mapping.

Theorem 1.1. If *H* is a reflexive Banach space which is continuously embedded into *X*, then there exists another reflexive Banach space X_0 , continuously embedded in *X*, such that:

- (i) **T** restricts to a C_0 -semigroup \mathbf{T}_0 on X_0 ;
- (ii) $H_t \subset X_0$ for all t > 0.

If X is separable, then H is separable as well. If H is a Hilbert space, then X_0 may be chosen to be a Hilbert space as well.

Proof: The space $\mathcal{H} := L^2([0,\infty); H)$ is reflexive; if H is a Hilbert space, then \mathcal{H} is a Hilbert space as well. Fix M > 0 and $\omega \in \mathbb{R}$ such that $||T(t)|| \leq M e^{\omega t}$ for all $t \geq 0$, and fix $\alpha > \omega$. Define $S : \mathcal{H} \to X$ by

$$Sh := \int_0^\infty e^{-\alpha t} T(t) ih(t) \, dt.$$

We check that this integral exists as a Bochner integral in X and that S is a bounded operator from \mathcal{H} into X. The integrand is strongly measurable, and

$$\begin{split} \int_{0}^{\infty} e^{-\alpha t} \|T(t)ih(t)\|_{X} \, dt &\leq \int_{0}^{\infty} e^{-\alpha t} \|T(t)\|_{\mathcal{L}(X)} \|i\|_{\mathcal{L}(H,X)} \|h(t)\|_{H} \, dt \\ &\leq M \|i\|_{\mathcal{L}(H,X)} \int_{0}^{\infty} e^{-(\alpha-\omega)t} \|h(t)\|_{H} \, dt \\ &\leq M \|i\|_{\mathcal{L}(H,X)} \left(\int_{0}^{\infty} e^{-2(\alpha-\omega)t} \, dt\right)^{1/2} \|h\|_{\mathcal{H}} =: C \|h\|_{\mathcal{H}}. \end{split}$$

On $X_0 := \operatorname{range} S$ we define a norm $\|\cdot\|_{X_0}$ by $\|Sh\|_{X_0} := \|\pi h\|_{\mathcal{H}/\ker S}$, where $\pi : \mathcal{H} \to \mathcal{H}/\ker S$ is the quotient map. The resulting space X_0 is isometrically isomorphic to $\mathcal{H}/\ker S$ and therefore reflexive; if H is a Hilbert space then X_0 is a Hilbert space as well. If X is separable, then also H is separable.

The quotient operator $\tilde{S} : \mathcal{H}/\ker S \to X$ defined by $\tilde{S}(\pi h) := Sh$, has norm $\leq C$. Consequently,

$$\|Sh\|_X = \|\tilde{S}(\pi h)\|_{\mathcal{H}/\ker S} \leqslant C \|\pi h\|_{\mathcal{H}/\ker S} = C \|Sh\|_{X_0}.$$

It follows that the inclusion $X_0 \subset X$ is continuous.

For $s \ge 0$ and $h \in \mathcal{H}$, define $h_s \in \mathcal{H}$ by

$$h_s(t) := \begin{cases} h(t-s), & t \ge s; \\ 0, & \text{otherwise} \end{cases}$$

Then

$$T(s)(Sh) = \int_0^\infty e^{-\alpha t} T(t+s)ih(t) dt = e^{\alpha s} \int_s^\infty e^{-\alpha t} T(t)ih(t-s) dt = e^{\alpha s} Sh_s.$$

Hence, $T(s)(Sh) \in X_0$. If $g \in \mathcal{H}$ is such that Sg = Sh, then the above identity shows that $Sg_s = Sh_s$, which implies that $\|\pi h_s\|_{\mathcal{H}/\ker S} \leq \|\pi h\|_{\mathcal{H}/\ker S}$. Consequently,

$$||T(s)(Sh)||_{X_0} = e^{\alpha s} ||\pi h_s||_{\mathcal{H}/\ker S} \leq e^{\alpha s} ||\pi h||_{\mathcal{H}/\ker S} = e^{\alpha s} ||Sh||_{X_0}.$$

It follows that T(s) restricts to a bounded operator $T_0(s)$ on X_0 of norm $\leq e^{\alpha s}$. We check that the resulting semigroup \mathbf{T}_0 is strongly continuous on X_0 . Let $i_0 : X_0 \subset X$ denote the inclusion mapping. By dominated convergence, for all $x^* \in X^*$ and $h \in \mathcal{H}$ we have

$$\begin{split} \lim_{s \downarrow 0} \langle T_0(s)Sh, i_0^* x^* \rangle &= \lim_{s \downarrow 0} \int_0^\infty e^{-\alpha t} \langle T(t+s)ih(t), x^* \rangle \, dt \\ &= \int_0^\infty e^{-\alpha t} \langle T(t)ih(t), x^* \rangle \, dt = \langle Sh, i_0 x^* \rangle. \end{split}$$

By the reflexivity of X_0 , the restriction mapping $i_0^* : X^* \to X_0^*$ has dense range. Since \mathbf{T}_0 is locally bounded on X_0 , it follows that \mathbf{T}_0 is weakly continuous on X_0 . Hence by a standard result from semigroup theory [Pz, Theorem 2.1.4], \mathbf{T}_0 is strongly continuous on X_0 . This proves (i).

To prove (ii) fix t > 0 and $h \in L^2([0, t], H)$. Define $\tilde{h} \in \mathcal{H}$ by

$$\tilde{h}(s) := \begin{cases} e^{\alpha s} h(s), & s \in [0, t]; \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\int_0^t T(s)ih(s)\,ds = S\tilde{h} \in X_0,$$

and therefore $H_t \subset X_0$ by definition of H_t .

If \mathbf{T} is uniformly exponentially stable, then X_0 may be chosen in such a way that \mathbf{T}_0 is uniformly exponentially stable on X_0 : one takes $\omega < \alpha < 0$ in the above proof. This observation also applies to the results below, but we have no particular application for it. We do not know whether, in case \mathbf{T} is uniformly bounded, it is possible to choose X_0 in such a way that \mathbf{T}_0 is uniformly bounded as well. However, using a weighted L^2 space to define \mathcal{H} , the proof of Theorem 1.1 can be modified to obtain \mathbf{T}_0 with at most linear growth.

The following theorem is in some sense 'dual' to Theorem 1.1. It depends on the following simple observation:

Lemma 1.2. Suppose X is a separable Banach space. There exists a separable Hilbert space H which is densely and continuously embedded in X.

Proof: Let (x_n) be a sequence of norm one vectors in X with dense linear span. Define a bounded operator $j: l^2 \to X$ by $j: (\alpha_n) \mapsto \sum_n n^{-1} \alpha_n x_n$. The restriction of j to $H := (\ker j)^{\perp}$ is an embedding.

Theorem 1.3. If X is separable, there exists a separable Hilbert space X_1 and a continuous dense embedding $j: X \to X_1$ such that

$$T_1(t)jx := jT(t)x \qquad (x \in X)$$

defines a C_0 -semigroup \mathbf{T}_1 on X_1 .

Proof: Define

$$X^{\odot} := \{ x^* \in X^* : \lim_{t \downarrow 0} \| T^*(t) x^* - x^* \| = 0 \}.$$

Thus, X^{\odot} is the largest subspace of X^* on which the adjoint semigroup \mathbf{T}^* acts in a strongly continuous way. The space X^{\odot} is a norm-closed, weak^{*}-dense, \mathbf{T}^* -invariant subspace of X^* which induces an equivalent norm in X in the sense that there exists a constant $M \ge 1$ such that

$$M^{-1}\|x\| \leqslant \sup\left\{|\langle x,x^{\odot}\rangle|:\ x^{\odot} \in X^{\odot}, \, \|x^{\odot}\| \leqslant 1\right\} \leqslant \|x\|$$

for all $x \in X$ [Ne, Chapter 1]. The restriction of \mathbf{T}^* to X^{\odot} will be denoted by \mathbf{T}^{\odot} .

By the separability of X we may choose a separable closed \mathbf{T}^{\odot} -invariant subspace Y of X^{\odot} which still induces an equivalent norm in X. Let H_Y be any separable Hilbert space which is densely embedded in Y; such a Hilbert space exists by Lemma 1.2. By Theorem 1.1 (i) there exists a continuously embedded, \mathbf{T}^{\odot} -invariant, separable Hilbert space Y_0 in Y such that \mathbf{T}^{\odot} restricts to a C_0 -semigroup on Y_0 . Put $\mathbf{T}_0^{\odot} := \mathbf{T}^{\odot}|_{Y_0}$.

Since H_Y is dense in Y, (ii) of Theorem 1.1 shows that the inclusion $j: Y_0 \subset Y$ is dense. Therefore the adjoint map $j^*: Y^* \to Y_0^*$ is injective with dense range; here Y_0^* denotes the Banach space dual of the (Hilbert) space Y_0 .

Since Y induces an equivalent norm in X, X is canonically isomorphic to a norm closed, weak^{*}-dense, $(\mathbf{T}^{\odot}|_Y)^*$ -invariant subspace of Y^{*}. Under this identification, j^* restricts to an injective map from X into Y_0 . We claim that this restriction still has dense range. Indeed, j^* is weak^{*}-to-weakly continuous as a map from Y^{*} to Y_0^* , being an adjoint operator taking values in a reflexive space. The claim now follows from the fact that X is weak^{*}-dense in Y^{*}.

We have obtained dense embedding $j_1 := j^*|_X$ from X into $X_1 := Y_0^*$. The adjoint semigroup $\mathbf{T}_1 := (\mathbf{T}_0^{\odot})^*$ is a C_0 -semigroup on X_1 , being the adjoint of a strongly continuous semigroup on a reflexive space. For all $x \in X$ and $x_1 \in X_1$ we have

$$\begin{aligned} \langle x_1, T_1(t)j_1x \rangle &= \langle x, jT_0^{\odot}(t)x_1 \rangle \\ &= \langle x, T^{\odot}(t)jx_0 \rangle \\ &= \langle T(t)x, jx_1 \rangle \\ &= \langle x_1, j_1T(t)x \rangle. \end{aligned}$$

This shows that $T_1(t) \circ j_1 = j_1 \circ T(t)$. Finally we observe that $X_1 = Y_0^*$ can be given the structure of a Hilbert space in a natural way by providing it with the inner product of Y_0 .

As a corollary we find that every semigroup on a separable Banach space is sandwiched between two Hilbert space semigroups:

Corollary 1.4. If **T** is a C_0 -semigroup on a separable Banach space X, then there exist separable Hilbert spaces X_0 and X_1 , continuous dense embeddings $j_0 : X_0 \to X$ and $j_1 : X \to X_1$, and C_0 -semigroups \mathbf{T}_0 and \mathbf{T}_1 on X_0 and X_1 respectively, such that $j_0 \circ T_0(t) = T(t) \circ j_0$ and $T_1(t) \circ j_1 = j_1 \circ T(t)$ for all $t \ge 0$.

Proof: Apply Theorem 1.1 and Lemma 1.2 to obtain X_0 and \mathbf{T}_0 , and apply Theorem 1.3 to obtain X_1 and \mathbf{T}_1 .

The constructions in Theorems 1.1 and 1.3 have their origin in the theory of stochastic differential equations (SDE's) on Hilbert spaces.

If **T** is C_0 -semigroup on a Hilbert space X and $Q \in \mathcal{L}(X)$ is a positive self-adjoint operator such that

$$\sup_{t>0} \operatorname{Trace} Q_t < \infty,$$

where the positive self-adjoint operators $Q_t \in \mathcal{L}(X)$ are defined by

$$Q_t x := \int_0^t T(s)QT^*(s)x \, ds \qquad (x \in X),$$

then $Q_{\infty}x := \lim_{t\to\infty} Q_t x$ defines a positive self-adjoint operator Q_{∞} which is the covariance operator of a unique centered Gaussian measure μ on X. It was shown in [CG] that the reproducing kernel Hilbert space H_{∞} associated with this measure is \mathbf{T} -invariant; this space H_{∞} is continuously embedded in X. This situation is covered by Theorem 1.1 in the following way. If we take H to be the reproducing kernel Hilbert space associated with Q (this space is continuously embedded in X) and let $\alpha = 0$, then the space X_0 constructed in Theorem 1.1 coincides with H_{∞} .

As to Theorem 1.3, a duality construction which in some sense resembles the one presented here was used in [BRS] to show that to every C_0 -semigroup **T** on a Hilbert space X, another Hilbert space X_1 and a Hilbert-Schmidt embedding $j_1 : X \to X_1$ can be associated in such a way that **T** extends to a C_0 -semigroup **T**₁ on X_1 . This result is applied to the study of SDE's with cylindrical noise.

2. The \odot -reflexive case

In this section we will prove versions of the above results for \odot -reflexive semigroups. It turns out that for this class of semigroups it is possible to control the spectra of the generators of \mathbf{T}_0 and \mathbf{T}_1 , the price to pay being that X_0 and X_1 are obtained only as reflexive Banach spaces.

We start with a lemma about equality of spectra, which may be compared to [Ar, Proposition 1.1].

Lemma 2.1. Let A be a closed operator with domain D(A) on a Banach space X. Suppose X_0 is a Banach space such that $D(A^2) \subset X_0 \subset X$ with continuous inclusions. Denote the part of A in X_0 by A_0 . If $\varrho(A) \cap \varrho(A_0) \neq \emptyset$, then $\sigma(A_0) = \sigma(A)$.

Proof: First we prove the inclusion $\rho(A) \subset \rho(A_0)$. Pick $\lambda \in \rho(A)$ and fix an arbitrary $\mu \in \rho(A) \cap \rho(A_0)$. If $x_0 \in X_0$, then $R(\lambda, A)R(\mu, A)x_0 \in D(A^2) \subset X_0$. Therefore,

$$R(\lambda, A)x_0 = R(\mu, A_0)x_0 + (\mu - \lambda)R(\lambda, A)R(\mu, A)x_0 \in X_0.$$

Hence $R(\lambda, A)X_0 \subset X_0$, and the restriction $R(\lambda, A)|_{X_0}$ defines a bounded operator on X_0 by the closed graph theorem. Clearly $R(\lambda, A)|_{X_0}$ is a two-sided inverse for $\lambda - A_0$, so $\lambda \in \varrho(A_0)$.

To prove the inclusion $\varrho(A_0) \subset \varrho(A)$, pick $\lambda \in \varrho(A_0)$ and fix an arbitrary $\mu \in \varrho(A)$. Define a bounded operator R_{λ} on X by

$$R_{\lambda}x := R(\mu, A)x + (\mu - \lambda)R(\mu, A)^{2}x + (\mu - \lambda)^{2}R(\lambda, A_{0})R(\mu, A)^{2}x \qquad (x \in X).$$

Then it is easily verified that R_{λ} is a two-sided inverse of $\lambda - A$, so $\lambda \in \varrho(A)$.

We now return to the setting of Section 1 and assume that A is the generator of a C_0 -semigroup **T** on X.

Lemma 2.2. If H is a Banach space such that $D(A) \subset H \subset X$ with continuous inclusions, then $D(A^2) \subset H_t$ for all t > 0.

Proof: Fix t > 0 and choose $\omega \in \varrho(A) \cap \mathbb{R}$ so large that $||e^{-\omega t}T(t)|_{D(A)}||_{\mathcal{L}(D(A))} < 1$. Then the restriction to D(A) of $I - e^{-\omega t}T(t)$ is invertible in D(A), and for $x \in D(A)$ we have

$$(\omega - A)^{-1}x = (I - e^{-\omega t}T(t))(\omega - A)^{-1}(I|_{D(A)} - e^{-\omega t}T(t)|_{D(A)})^{-1}x$$
$$= -\int_0^t e^{-\omega s}T(s)(I|_{D(A)} - e^{-\omega t}T(t)|_{D(A)})^{-1}x\,ds.$$

But

$$(I|_{D(A)} - e^{-\omega t}T(t)|_{D(A)})^{-1}x = \sum_{n=0}^{\infty} e^{-n\omega t}T(nt)x \in D(A) \subset H,$$

the sum being absolutely convergent in D(A). Therefore the function h defined by

$$h(s) := -e^{-\omega s} (I|_{D(A)} - e^{-\omega t} T(t)|_{D(A)})^{-1} x \qquad (s \in [0, t])$$

belongs to $L^2([0,t];H)$. From

$$(\omega - A)^{-1}x = \int_0^t T(s)h(s)\,ds,$$

we conclude that $(\omega - A)^{-1}x \in H_t$.

Denote $X^{\odot*} := (X^{\odot})^*$ and $X^{\odot\odot} := (X^{\odot})^{\odot}$, the \odot -dual of X^{\odot} with respect to the C_0 -semigroup \mathbf{T}^{\odot} . Define a map $k : X \to X^{\odot*}$ by

$$\label{eq:constraint} x^\odot, kx\rangle := \langle x, x^\odot\rangle \qquad (x^\odot \in X^\odot).$$

Since X^{\odot} induces an equivalent norm in X, the map k is an isomorphic embedding, and it is easy to see that $kX \subset X^{\odot \odot}$. If $kX = X^{\odot \odot}$, then **T** is said to be \odot -reflexive. By a theorem of de Pagter [Pa] (cf. also [Ne, Theorem 2.5.2]), this happens if and only if there exists $\mu \in \varrho(A)$ such that $R(\mu, A)$ is a weakly compact operator; in this case $R(\mu, A)$ is weakly compact for all $\mu \in \varrho(A)$.

Lemma 2.3. If **T** is \odot -reflexive, then there exists a reflexive Banach space H such that $D(A) \subset H \subset X$ with continuous inclusions.

Proof: Fix any $\lambda \in \varrho(A)$. Then $R(\lambda, A)$ is weakly compact. If $(x_n) \subset D(A)$ is a sequence which is bounded with respect to the graph norm of D(A), then $((\lambda - A)x_n)$ is a bounded sequence in X and therefore the identity $x_n = R(\lambda, A)((\lambda - A)x_n)$ shows that the sequence (x_n) is relatively weakly compact in X. This shows that the inclusion $D(A) \subset X$ is weakly compact. Hence by the factorization theorem of Davis-Figiel-Johnson-Pelczynski [DFJP], it factors through a reflexive Banach space. Accordingly there exists a reflexive Banach space H_0 and bounded operators $T_0 : D(A) \to H_0$ and $T_1 : H_0 \to X$ such that $T_1T_0x = x$ for all $x \in D(A)$. Let $H := \text{range } T_1$; H is a reflexive Banach space with respect to the norm $||T_1h_0|| := ||\pi h_0||_{H_0/\ker T_1}$, where $\pi : H_0 \to H_0/\ker T_1$ is the quotient mapping. We now have $D(A) \subset H \subset X$ with continuous inclusions, the first one being given by $T_1 \circ T_0$. **Theorem 2.4.** Suppose **T** is a \bigcirc -reflexive semigroup on a Banach space X. Then there exist reflexive Banach spaces X_0 and X_1 and a continuous dense embedding $j: X \to X_1$ such that:

- (i) $D(A^2) \subset X_0 \subset X$ with continuous and dense inclusions;
- (ii) **T** restricts to a C_0 -semigroup **T**₀ on X_0 ;
- (iii) $T_1(t)jx := jT(t)x \ (x \in X)$ defines a C_0 -semigroup on X_1 ;
- (iv) $\sigma(A_0) = \sigma(A) = \sigma(A_1)$, where A_k is the generator of \mathbf{T}_k , k = 0, 1.

Proof: Let X_0 be the space of Theorem 1.1. By Lemmas 2.3 and 2.2 we have $D(A^2) \subset H_t$ for all t > 0, and therefore $D(A^2) \subset X_0$ by Theorem 1.1 (ii). By the closed graph theorem this inclusion is continuous. Since $D(A^2)$ is dense in X, the inclusion $X_0 \subset X$ is dense. From $D(A_0^2) \subset D(A^2) \subset X_0$ we see that the inclusion $D(A^2) \subset X_0$ is dense as well. This proves (i) and (ii). Equality of the spectra $\sigma(A_0) = \sigma(A)$ follows from Lemma 2.1 and the easy observation that A_0 is indeed the part of A in X_0 .

The space X_1 is constructed as in the proof of Theorem 1.3, except for the following modifications. We now take $Y := X^{\odot}$, notice that the strongly continuous adjoint semigroup \mathbf{T}^{\odot} is \odot -reflexive (see e.g. [Ne, Corollary 2.5.8]), and apply Lemma 2.3 to see that there exists a reflexive space Y_0 such that:

- (i) $D((A^{\odot})^2) \subset Y_0 \subset Y = X^{\odot}$ with dense inclusions;
- (ii) \mathbf{T}^{\odot} restricts to a C_0 -semigroup \mathbf{T}_0^{\odot} on Y_0 ;

(iii)
$$\sigma(A_0^{\odot}) = \sigma(A^{\odot})$$

The adjoint $j^*: X^{\odot *} \to X_1 := Y_0^*$ of the inclusion $j: Y_0 \subset X^{\odot}$ is injective with dense range, and its restriction $j_1 = j^*|_X$ to X has dense range in X_1 again. Recalling the spectra of a generator, its adjoint, and its \odot -adjoint always agree, it follows that for the adjoint semigroup $\mathbf{T}_1 := (\mathbf{T}_0^{\odot})^*$ on X_1 we have $\sigma(A_1) = \sigma(A_0^{\odot}) = \sigma(A^{\odot}) = \sigma(A)$; cf. [Ne, Section 1.4].

Remark 2.5.

- (i) It would be interesting to know whether $D(A^2)$ can be replaced by D(A) in the above result.
- (ii) Assertions (i) and (ii) of Theorem 2.4 actually characterize \odot -reflexive semigroups. In fact, if the inclusion mapping $D(A^2) \subset X$ factors through a reflexive Banach space Y, then by factoring $R(\mu, A)^2$ through $D(A^2)$ it follows that $R(\mu, A)^2$ factors through Y as well, and therefore $R(\mu, A)^2$ is weakly compact. It is easy to prove [Pa] that then also $R(\mu, A)$ is weakly compact, and hence **T** is \odot -reflexive.
- (iii) The 'metamathematical' interpretation of Theorem 2.4 is as follows. Suppose \mathcal{C} is a set of conditions which implies a certain property \mathcal{P} for C_0 -semigroups on reflexive Banach spaces. Then \mathcal{C} also implies property \mathcal{P} for \odot -reflexive semigroups, provided the conditions \mathcal{C} are stable under similarity transformations and both \mathcal{C} and \mathcal{P} are stable under continuous dense inclusions. Indeed, if \mathbf{T} is \odot -reflexive and verifies the conditions \mathcal{C} , then its restriction $\mathbf{T}_{D(A^2)}$ to $D(A^2)$ also verifies \mathcal{C} (use the similarity transformation $T_{D(A^2)}(t) = R(\lambda, A)^2 T(t)(\lambda A)^2$).

Hence \mathbf{T}_0 verifies \mathcal{C} as well (inject $D(A^2)$ into X_0). By reflexivity it follows that \mathbf{T}_0 has property \mathcal{P} , and therefore (by injecting into X) \mathbf{T} has property \mathcal{P} .

This provides a canonical way of extending certain results for C_0 -semigroups on reflexive spaces to arbitrary \odot -reflexive semigroups.

Acknowledgement - I would like to thank Charles Batty for some helpful suggestions.

References

- [Ar] W. ARENDT, Spectrum and growth of positive semigroups, in: G. Ferreyra, G. Ruiz Goldstein and F. Neubrander (eds): *Evolution Equations*, Lect. Notes in Pure and Appl. Math. 168, Marcel Dekker Inc. (1995), 21-28.
- [BRS] V.I. BOGACHEV, M. RÖCKNER, AND B. SCHMULAND, Generalized Mehler semigroups and applications, Prob. Th. Relat. Fields 105 (1996), 193-225.
- [CG] A. CHOJNOWSKA-MICHALIK AND B. GOLDYS, On regularity properties of nonsymmetric Ornstein-Uhlenbeck semigroups in L^p spaces, Stoch. Stoch. Rep. 59 (1996), 183-209.
- [DFJP] W.J. DAVIS, T. FIGIEL, W.B. JOHNSON, AND A PELCZYNSKI, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
 - [Ne] J.M.A.M. VAN NEERVEN, The Adjoint of a Semigroup of Linear Operators, Springer Lect. Notes in Math. 1529, Springer-Verlag (1992).
 - [Pa] B. DE PAGTER, A characterization of sun-reflexivity, Math. Ann. 283 (1989), 511-518.
 - [Pz] A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag (1983).