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Let H be a Hilbert space and E a Banach space. In this note we present a sufficient
condition for an operator R : H → E to be γ–radonifying in terms of Riesz sequences in
H . This result is applied to recover a result of Lutz Weis and the second named author
on the R-boundedness of resolvents, which is used to obtain a Datko-Pazy type theorem
for the stochastic Cauchy problem. We also present some perturbation results.

1 Introduction

The well-known Datko-Pazy theorem states that if (T (t))t≥0 is a strongly continuous semigroup on
a Banach space E such that all orbits T (·)x belong to the space Lp(R+, E) for some p ∈ [1,∞), then
(T (t))t≥0 is uniformly exponentially stable, or equivalently, there exists an ε > 0 such that all orbits
t 7→ eεtT (t)x belong to Lp(R+, E). For p = 2 and Hilbert spaces E this result is due to Datko [3],
and the general case was obtained by Pazy [14].

In this note we prove a stochastic version of the Datko-Pazy theorem for spaces of γ–radonifying
operators (cf. Section 2). Let us denote by γ(R+, E) the space of all strongly measurable functions
φ : R+ → E for which the integral operator

f 7→
∫ ∞

0

f(t)φ(t) dt

is well-defined and γ-radonifying from L2(R+) to E.

Theorem 1.1a (Stochastic Datko-Pazy Theorem, first version). Let A be the generator of a strongly

continuous semigroup (T (t))t≥0 on a Banach space E. The following assertions are equivalent:

(a) For all x ∈ E, T (·)x ∈ γ(R+, E).

(b) There exists an ε > 0 such that for all x ∈ E, t 7→ eεtT (t)x ∈ γ(R+, E).

∗The authors gratefully acknowledge financial support by a ‘VIDI subsidie’ (639.032.201) in the ‘Vernieuwingsimpuls’
programme of the Netherlands Organization for Scientific Research (NWO). The second named author is also
supported by a Research Training Network (HPRN-CT-2002-00281).
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If E is a Hilbert space, γ(R+, E) = L2(R+, E) and Theorem 1.1a is equivalent to the Datko’s theorem
mentioned above.

As explained in [12], γ–radonifying operators play an important role in the study of the following
stochastic abstract Cauchy problem on E:

(SCP)(A,B)

{
dU(t) = AU(t) dt + B dWH(t), t ≥ 0,
U(0) = 0.

Here, H is a separable Hilbert space, B ∈ B(H, E) is a bounded operator, and WH is an H-cylindrical
Brownian motion. Theorem 1.1a can be reformulated in terms of invariant measures for (SCP)(A,B)

as follows.

Theorem 1.1b (Stochastic Datko-Pazy theorem, second version). With the above notations, the

following assertions are equivalent:

(a) For all rank one operators B ∈ B(H, E), the problem (SCP)(A,B) admits an invariant measure.

(b) There exists an ε > 0 such that for all rank one operators B ∈ B(H, E), the problem

(SCP)(A+ε,B) admits an invariant measure.

For unexplained terminology and more information on the stochasic Cauchy problem and invariant
measures we refer to [2, 11, 12].

2 Riesz bases and γ-radonifying operators

Let H be a Hilbert space and E a Banach space. Let (γn)n≥1 be a sequence of independent standard
Gaussian random variables on a probability space (Ω,F , P). A bounded linear operator R : H → E
is called almost summing if

‖R‖γ∞(H,E) := sup

∥∥∥∥
N∑

n=1

γnRhn

∥∥∥∥
L2(Ω,E)

< ∞,

where the supremum is taken over all N ∈ N and all orthonormal systems {h1, . . . , hN} in H.
Endowed with this norm, the space γ∞(H, E) of all almost summing operators is a Banach space.
Moreover, γ∞(H, E) is an operator ideal in B(H, E). The closure of the finite rank operators in
γ∞(H, E) will be denoted by γ(H, E). Operators belonging to this space are called γ-radonifying.
Again γ(H, E) is an operator ideal in B(H, E).

Let us now assume that H is a separable Hilbert space. Under this assumption one has R ∈ γ∞(H, E)
if and only if for some (every) orthonormal basis (hn)n≥1 for H,

M := sup
N≥1

∥∥∥∥
N∑

n=1

γnRhn

∥∥∥∥
L2(Ω,E)

< ∞.

In that case, ‖R‖γ∞(H,E) = M . Furthermore, one has R ∈ γ(H, E) if and only if for some (every)
orthonormal basis (hn)n≥1 for H,

∑
n≥1 γnRhn converges in L2(Ω, E). In that case,

‖R‖γ(H,E) =

∥∥∥∥
∑

n≥1

γnRhn

∥∥∥∥
L2(Ω,E)

.
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If E does not contain a closed subspace isomorphic to c0, then by a result of Hoffmann-Jørgensen
and Kwapień [10, Theorem 9.29], γ(H, E) = γ∞(H, E).

We will apply the above notions to the space H = L2(R+, H) where H is a separable Hilbert space.
For an operator-valued function φ : R+ → B(H, E) which is H-strongly measurable in the sense
that t 7→ φ(t)h is strongly measurable for all h ∈ H , and weakly square integrable in the sense that
t 7→ φ∗(t)x∗ is square Bochner integrable for all x∗ ∈ E∗, let Rφ ∈ B(L2(R+, H), E) be defined as
the Pettis integral operator

Rφ(f) :=

∫

R+

φ(t)f(t) dt.

We say that φ ∈ γ(R+, H, E) if Rφ ∈ γ(L2(R+, H), E) and write

‖φ‖γ(R+,H,E) := ‖Rφ‖γ(L2(R+,H),E).

If H = K, where K = R or C is the underlying scalar field, we write γ(R+, E) for γ(R+, H, E). For
almost summing operators we use an analogous notation.

For more information we refer to [4, 8, 11, 12].

Hilbert and Bessel sequences. Let H be a Hilbert space and I ⊆ Z an index set. A sequence
(hi)i∈I in H is said to be a Hilbert sequence if there exists a constant C > 0 such that for all scalars
(αi)i∈I , (∥∥∥∥

∑

i∈I

αihi

∥∥∥∥
2)1/2

≤ C

(∑

i∈I

|αi|2
)1/2

.

The infimum of all admissible constants C > 0 will be denoted by CH({hi : i ∈ I}). A Hilbert
sequence that is a Schauder basis is called a Hilbert basis (cf. [17, Section 1.8]).

The sequence (hi)i∈I is said to be Bessel sequence if there exists a constant c > 0 such that for all
scalars (αi)i∈I ,

c

(∑

i∈I

|αi|2
)1/2

≤
(∥∥∥∥

∑

i∈I

αihi

∥∥∥∥
2)1/2

.

The supremum of all admissible constants c > 0 will be denoted by CB({hi : i ∈ I}). Notice that
every Bessel sequence is linearly independent. A Bessel sequence that is a Schauder basis is called
a Bessel basis. A sequence (hi)i∈I that is a Bessel sequence and a Hilbert sequence is said to be a
Riesz sequence. A sequence (hi)i∈I that is a Bessel basis and a Hilbert basis is said to be a Riesz

basis (cf. [17, Section 1.8]).

In the above situation if it is clear which sequence in H we refer to, we use the short-hand notation
CH and CB for CH({hi : i ∈ I}) and CB({hi : i ∈ I}).
In the next results we study the relation between γ–radonifying operators and Hilbert and Bessel
sequences.

Proposition 2.1. Let (fn)n≥1 be a Hilbert sequence in H.

(a) If R ∈ γ∞(H, E), then

sup
N≥1

∥∥∥∥
N∑

n=1

γnRfn

∥∥∥∥
L2(Ω,E)

≤ CH ‖R‖γ∞(H,E). (1)
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(b) If R ∈ γ(H, E), then
∑
n≥1

γnRfn converges in L2(Ω, E) and

∥∥∥∥
∑

n≥1

γnRfn

∥∥∥∥
L2(Ω,E)

≤ CH ‖R‖γ(H,E). (2)

Proof. (a): Fix N ≥ 1 and let {h1, . . . , hN} be an orthonormal system in H. Since (fn)n≥1 is a
Hilbert sequence there is a unique T ∈ B(H) such that Thn = fn for n = 1, . . . , N and Tx = 0 for all
x ∈ {h1, . . . , hN}⊥. Moreover, ‖T ‖ ≤ CH . By the right ideal property we have R ◦ T ∈ γ∞(H, E)
and, for all N ≥ 1,

∥∥∥∥
N∑

n=1

γnRfn

∥∥∥∥
L2(Ω,E)

=

∥∥∥∥
N∑

n=1

γnRThn

∥∥∥∥
L2(Ω,E)

≤ ‖R ◦ T ‖γ∞(H,E) ≤ CH ‖R‖γ∞(H,E).

(b): This is proved in a similar way.

Proposition 2.2. Let (fn)n≥1 be a Bessel sequence in H and let Hf denote its closed linear span.

(a) If sup
N≥1

∥∥∥∥
N∑

n=1
γnRfn

∥∥∥∥
L2(Ω,E)

< ∞, then R ∈ γ∞(Hf , E) and

‖R‖γ∞(Hf ,E) ≤ C−1
B sup

N≥1

∥∥∥∥
N∑

n=1

γnRfn

∥∥∥∥
L2(Ω,E)

. (3)

(b) If
∑
n≥1

γnRfn converges in L2(Ω, E), then R ∈ γ(Hf , E) and

‖R‖γ(Hf ,E) ≤ C−1
B

∥∥∥∥
∑

n≥1

γnRfn

∥∥∥∥
L2(Ω,E)

. (4)

Proof. Let (hn)n≥1 an orthonormal basis for Hf . Since (fn)n≥1 is a Bessel sequence there is a unique
T ∈ B(H, E) such that Tfn = hn and Tx = 0 for x ∈ H⊥

f . Notice that ‖T ‖ ≤ C−1
B . On the linear

span H0 of the sequence (fn)n≥1 we define an inner product by [x, y]T := [Tx, T y]H. Note that
this is well defined by the linear independence of the sequence (fn)n≥1. Let HT denote the Hilbert
space completion of H0 with respect to [·, ·]T . The identity mapping on Hf extends to a bounded
operator j : Hf →֒ HT with norm ‖j‖ ≤ C−1

B . Clearly, (jfn)n≥1 is an orthonormal sequence in HT

with dense span, and therefore it is an orthonormal basis for HT . It is elementary to verify that
the assumption on R may now be translated as saying that R extends in a unique way to an almost
summing operator (in part (a)), respectively a γ-radonifying operator (in part (b)), denoted by RT ,
from HT to E. We estimate

∥∥∥∥
∑

n≥1

αnjhn

∥∥∥∥
HT

=

∥∥∥∥
∑

n≥1

αnThn

∥∥∥∥
H

≤ C−1
B

∥∥∥∥
∑

n≥1

αnhn

∥∥∥∥
H

= C−1
B

(∑

n≥1

|αn|2
)1/2

.

From this we deduce that (jhn)n≥1 is a Hilbert sequence in HT with constant ≤ C−1
B . Hence we

may apply Proposition 2.1 to the operator RT : HT → E and the Hilbert sequence (jhn)n≥1 in HT

to obtain the result.
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As a consequence of the above results we obtain:

Theorem 2.3. Let (fn)n≥1 be a Riesz basis in the Hilbert space H.

(a) One has R ∈ γ∞(H, E) if and only if sup
N≥1

∥∥∥∥
N∑

n=1
γnRfn

∥∥∥∥
L2(Ω,E)

< ∞. In that case (1) and (3)

hold.

(b) One has R ∈ γ(H, E) if and only if
∑
n≥1

γnRfn converges in L2(Ω, E). In that case (2) and (4)

hold.

The following well-known lemma identifies a class of Riesz sequences in L2(R). For convenience we
include the short proof from [1, Theorem 2.1]. Let T be the unit circle in C.

Lemma 2.4. Let f ∈ L2(R) and define the sequence (fn)n∈Z in L2(R) by fn(t) = e2πnitf(t). Define

F : T → R as

F (e2πit) :=
∑

k∈Z

|f(t + k)|2

(a) The sequence (fn)n∈Z is a Bessel sequence in L2(R) if and only if there exists a constant A > 0
such that A ≤ F (e2πit) for almost all t ∈ [0, 1].

(b) The sequence (fn)n∈Z is a Hilbert sequence in L2(R) if and only if there exists a constant B > 0
such that F (e2πit) ≤ B for almost all t ∈ [0, 1].

In these cases, C2
B = ess inf F and C2

H = ess sup F respectively.

Proof. Both assertions are obtained by observing that for I ⊆ Z and (an)n∈I in C we may write

∥∥∥∥
∑

n∈I

anfn

∥∥∥∥
2

L2(R)

=
∑

k∈Z

∫ (k+1)

k

∣∣∣∣
∑

n∈I

ane2πnitf(t)

∣∣∣∣
2

dt

=
∑

k∈Z

∫ 1

0

∣∣∣∣
∑

n∈I

ane2πnitf(t + k)

∣∣∣∣
2

dt =

∫ 1

0

∣∣∣∣
∑

n∈I

ane2πnit

∣∣∣∣
2

F (e2πit) dt.

The following application of Lemma 2.4 will be used below.

Example 2.5. Let ρ ∈ [0, 1) and a > 0. For n ∈ Z let

fn(t) = e−at+2π(n+ρ)it1[0,∞)(t).

Then (fn)n∈Z is a Riesz sequence in L2(R) with constants C2
B = e−2a

e2a−1 and C2
H = e2a

e2a−1 . Indeed, let

f(t) := e−at+2πρit1[0,∞)(t). For all t ∈ [0, 1),

F (e2πit) =
∑

k∈Z

|f(t + k)|2 =

∞∑

k=0

e−2a(t+k) =
e2a(1−t)

e2a − 1
.

Now Lemma 2.4 implies the result.

Remark 2.6. Necessary and sufficient conditions on the complex coefficients cn and λn with Reλn > 0
in order that the functions z 7→ cn exp(−λnz) form a Riesz sequence can be found in [13, Section
10.3] and [7].
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3 Main results

In this section we use Proposition 2.1 to obtain an alternative proof of [12, Theorem 3.4] on the
R–boundedness of certain Laplace transforms. This result is applied to strongly continuous semi-
groups to obtain estimates for the abscissa of R–boundedness of the resolvent. From this we deduce
Theorem 1.1a as well as bounded perturbation results for the existence of solutions and invariant
measures for the problem (SCP)(A,B).

Let (rn)n≥1 be a Rademacher sequence on a probability space (Ω, F , P). A family of operators
T ⊆ B(E) is called R-bounded if there exists a constant C > 0 such that for all N ≥ 1 and all
sequences (Tn)N

n=1 ⊆ T and (xn)N
n=1 ⊆ E we have

E

∥∥∥
N∑

n=1

rnTnxn

∥∥∥
2

≤ C2
E

∥∥∥
N∑

n=1

rnxn

∥∥∥
2

.

The least possible constant C is called the R-bound of T , notation R(T ). Clearly, every R-bounded
family T is uniformly bounded and supT∈T ‖T ‖ ≤ R(T ).

Following [12], for an operator T ∈ B(L2(R+), E) we define the Laplace transform T̂ : {λ ∈
C : Reλ > 0} → E as

T̂ (λ) := Teλ.

Here eλ ∈ L2(R+) is given by eλ(t) = e−λt. For a Banach space F and a bounded operator

Θ : F → B(L2(R+), E) we define the Laplace transform Θ̂ : {λ ∈ C : Reλ > 0} → B(F, E) as

Θ̂(λ)y := Θ̂y(λ) Reλ > 0, y ∈ F.

The following result is a slight refinement of [12, Theorem 3.4]. The main novelty is the simple proof
of the estimate (5).

Theorem 3.1. Let F be a Banach space. Let Θ : F → γ∞(L2(R+), E) be a bounded operator and

let δ > 0. Then Θ̂ is R–bounded on the half-plane {λ ∈ C : Reλ > δ} and there exists a universal

constant C such that

R
(
{Θ̂(λ) : Reλ ≥ δ}

)
≤ ‖Θ‖ C√

δ
.

Proof. Let δ > 0. Consider the set {λ ∈ C : Reλ = δ}. Fix σ ∈ [δ/2,
3/2δ] and ρ ∈ [0, 1). For n ∈ Z

let gn : R+ → C be given by
gn(t) = e−σt+(n+ρ)δit.

By a substitution, this reduces to Example 2.5, whence (gn)n≥1 is a Riesz sequence in L2(R+) with

constant 0 < CH ≤
(

C
δ

)1/2
where C := 2π e2π

e2π−1 . For y ∈ F , we may apply Proposition 2.1 to obtain

∥∥∥∥
N∑

n=−N

γnΘ̂(σ − (n + ρ)δi)y

∥∥∥∥
L2(Ω,E)

=

∥∥∥∥
N∑

n=−N

γn(Θy)gn

∥∥∥∥
L2(Ω,E)

≤ CH‖Θy‖γ∞(Ω,E) ≤
(C

δ

)1/2
‖Θ‖ ‖y‖.

(5)

The rest of the proof follows the lines in [12].
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In what follows we let (T (t))t≥0 be a strongly continuous semigroup on E with generator A. We
recall from [11, 12] that the problem (SCP)(A,B) admits a (unique) solution if and only if T (·)B
belongs to γ([0, T ], H, E) for some (all) T > 0. Furthermore, an invariant measure exists if and only
if T (·)B belongs to γ(R+, H, E).

The next theorem improves [12, Theorem 1.3], where the bound sR(A) ≤ 0 was obtained.

Theorem 3.2. Assume that for all x ∈ E, T (·)x ∈ γ∞(R+, E). Then sR(A) < 0, i.e., there exists

an ε > 0 such that {R(λ, A) : Reλ ≥ −ε} is R–bounded.

Proof. By the closed graph theorem there exists an M > 0 such that ‖T (·)x‖γ∞(R+,E) ≤ M‖x‖. By
Theorem 3.1, {λ ∈ C : Reλ > 0} ⊆ ̺(A) and

R ({R(λ, A) : Reλ ≥ δ}) ≤ c√
δ

(6)

for all δ > 0, where c := CM with C the universal constant of Theorem 3.1. The following standard
argument shows that this implies the bound

s(A) ≤ − 1

4c2
. (7)

Choose δ > 0 and let µ ∈ σ(A) be such that Reµ > s(A) − δ. With λ = 1
4c2 + i Imµ it follows that

1

4c2
− s(A) + δ ≥ dist(λ, σ(A)) ≥ 1

‖R(λ, A)‖ ≥
√

Reλ

c
=

1

2c2
.

Thus s(A) ≤ − 1
4c2 + δ. Since δ > 0 was arbitrary, this gives (7).

Now let ε0 := 1
4c2 . For λ with −ε0 < Reλ < 3ε0 we may write

R(λ, A) =
∑

n≥0

(ε0 − Reλ)nR(ε0 + iImλ, A)n+1.

Fix 0 < ε < ε0. We claim that {R(λ, A) : Reλ = −ε} is R–bounded. To see this let (rk)K
k=1 be

a Rademacher sequence on (Ω, F , P), let (λk)K
k=1 be such that Reλk = −ε, and let (xk)K

k=1 be a
sequence in E. We may estimate

∥∥∥∥
K∑

k=1

rkR(λk, A)xk

∥∥∥∥
L2(Ω,E)

=

∥∥∥∥
∑

n≥0

K∑

k=1

rk(ε0 + ε)nR(ε0 + iImλk, A)n+1xk

∥∥∥∥
L2(Ω,E)

≤
∑

n≥0

(ε0 + ε)n

∥∥∥∥
K∑

k=1

rkR(ε0 + iImλk, A)n+1xk

∥∥∥∥
L2(Ω,E)

≤
∑

n≥0

(ε0 + ε)n

(
c√
ε0

)n+1∥∥∥∥
K∑

k=1

rkxk

∥∥∥∥
L2(Ω,E)

=
1

ε0 − ε

∥∥∥∥
K∑

k=1

rkxk

∥∥∥∥
L2(Ω,E)

,

where we used that ε0 = 1/4c2 . This proves the claim. Now the result is obtained via [16, Proposition
2.8].
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As an application of Theorem 3.2 we have the following bounded perturbation result for the existence
of a solution for the perturbed problem.

Theorem 3.3. Let P ∈ B(E) and B ∈ B(H, E). If (SCP)(A,B) has a solution, then (SCP)(A+P,B)

has a solution as well.

Proof. For ω ∈ R denote Aω = A − ω and Tω(·) := e−ω·T (·). It follows from [12, Proposition
4.5] that for all ω > ω0(A), Tω(·)B ∈ γ(R+, H, E). From [9, Corollary 2.17] it follows that for all
ω > ω0(A) + 1,

R ({R(λ, Aω) : Reλ ≥ 0}) ≤ c

ω − ω0(A) − 1
,

where c is a constant depending only on T . Choose ω1 > ω0(A)+1 so large that c
ω1−ω0(A)−1‖P‖ < 1.

By [12, Lemma 5.1], R(i·, Aω1
)B ∈ γ(R+, H, E).

Denote by (S(t))t≥0 the semigroup generated by A+P (cf. [5, Section III.1] or [15, Chapter III])
and let Sω1

(t) := e−ω1tS(t), t ≥ 0. Since

R ({R(is, Aω1
)P : s ∈ R}) ≤ R ({R(is, Aω1

) : s ∈ R}) ‖P‖ =: C < 1,

it follows from iR ⊆ ̺(Aω1
) that iR ⊆ ̺(Aω1

+ P ) and

R(is, Aω1
+P )B =

∞∑

n=0

(
R(is, Aω1

)P
)n

R(is, Aω1
)B =: RA,P,ω1

(s)R(is, Aω1
)B.

Moreover, as in Theorem 3.2, and using the fact that C < 1, {RA,P,ω1
(s) : s ∈ R} is R–bounded

with constant 1
1−C . From [8, Proposition 4.11] we deduce that

‖R(i·, Aω1
+P )B‖γ(R,H,E) ≤ 1

1−C ‖R(i·, Aω1
)B‖γ(R,H,E).

Now [12, Lemma 5.1] shows that Sω1
(·)B ∈ γ(R+, H, E). It follows from the right ideal property

that for all t > 0,
‖S(·)B‖γ(0,t,H,E) ≤ etω1‖Sω1

(·)B‖γ(0,t,H,E)

and the result can be obtained via [11, Theorem 7.1].

Concerning existence and uniqueness of invariant measures we obtain:

Theorem 3.4. Assume that s(A) < 0 and that {R(is, A) : s ∈ R} is R–bounded. Let B ∈ B(H, E)
such that (SCP)(A,B) admits an invariant measure. Then there exists a δ > 0 such that for all

P ∈ B(E) with ‖P‖ < δ, (SCP)(A+P,B) admits a unique invariant measure.

Proof. Let δ > 0 such that R ({R(is, A) : s ∈ R}) ≤ 1/δ. Then, if ‖P‖ < δ,

R ({R(is, A)P : s ∈ R}) ≤ R ({R(is, A) : s ∈ R})‖P‖ =: C < 1.

As in Theorem 3.3 it can be deduced that

‖R(i·, A+P )B‖γ(R,H,E) ≤ 1
1−C ‖R(i·, A)B‖γ(R,H,E).

The existence of an invariant measure now follows from [12, Proposition 4.4 and Lemma 5.1].

By [12, Corollary 4.3], for uniqueness it suffices to note that R(λ, A + P ) is uniformly bounded for
Reλ > 0.
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In particular, the R-boundedness of {R(is, A) : s ∈ R} implies that an invariant measure for
(SCP)(A,B), if one exists, is unique. On the other hand, if iR ⊆ ̺(A) but {R(is, A) : s ∈ R} fails to

be R-bounded, then Theorem 3.2 shows that there exists a rank one operator B′ ∈ B(H, E) such that
the problem (SCP)(A,B′) fails to have an invariant measure. As a result we obtain that if (SCP)(A,B)

fails to have a unique invariant measure, then there exists a rank one operator B′ ∈ B(H, E) such
that the problem (SCP)(A,B′) fails to have an invariant measure. A related result can be found in

[6].

Proof of Theorems 1.1a and 1.1b. If T (·)x ∈ γ(R+, E) for all x ∈ E, then by Theorem 3.2 s(A) < 0
and {R(is, A) : s ∈ R} is R–bounded. Thus, Theorem 3.4 applies to the bounded perturbation
P = δ · IE .
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