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Abstract - Let A be a closed linear operator on a complex Banach space X

and let λ ∈ %(A) be a fixed element of the resolvent set of A. Let U and Y

be Banach spaces and let D ∈ L(U,X) and E ∈ L(X,Y ) be bounded linear

operators. We define rλ(A;D,E) by

sup
{
r ≥ 0 : λ ∈ %(A+D∆E) for all ∆ ∈ L(Y, U) with ‖∆‖ ≤ r

}

and prove that

rλ(A;D,E) =
1

‖ER(λ,A)D‖ .

We give two applications of this result. The first is an exact formula for the

so-called stability radius of the generator of a C0−semigroup of linear operators

on a Hilbert space; it is derived from a precise result about robustness under

perturbations of uniform boundedness in the right half-plane of the resolvent

of an arbitrary semigroup generator. The second application gives sufficient

conditions on the norm of the operators Bj ∈ L(X) in order that the classical

solutions of the delay equation

u̇(t) = Au(t) +
n∑

j=1

Bju(t− hj), t ≥ 0,

are exponentially stable in Lp([−h, 0];X).
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0. Introduction

In this paper we investigate robustness of certain properties of a closed linear operator

A on a Banach space X under small additive perturbations. Some ‘structure’ in the

perturbation will be allowed, in the following sense: we fix Banach spaces U and Y

and two operators D ∈ L(U,X) and E ∈ L(X,Y ) (or even E ∈ L(D(A), Y )), and

consider perturbations of the form D∆E, with ∆ ∈ L(Y, U). The question we address

is the following:

If A has a certain property (P), what is the supremum of all r ≥ 0 with the

following property: for all bounded linear operators ∆ ∈ L(Y, U) with norm

‖∆‖ ≤ r, the perturbed operator A+D∆E has property (P) as well.

Among the properties we consider are the following: containment of a given complex

number λ ∈ C in the resolvent set of the operator, containment of a given set Ω ⊂ C in

the resolvent set, and uniform boundedness of the resolvent on Ω. For these properties

we give a precise answer to the above question in terms of the so-called transfer

function λ 7→ ER(λ,A)D, where R(λ,A) := (λ−A)−1 is the resolvent of A.

In two subsequent sections, we give two applications of the abstract results of

Section 1. In Section 2 we prove some new results on robust stability. Among others

we obtain an exact formula for the stability radius for generators of Hilbert space

semigroups. In Section 3 we study the delay equation

u̇(t) = Au(t) +

n∑

j=1

Bju(t− hj), t ≥ 0,

where A is the generator of a C0−semigroup on a Banach space X. Regarding the

bounded operators Bj as a perturbation of an appropriate Cauchy problem corre-

sponding to the absence of delays, we obtain sufficient conditions on A and Bj for

exponential stability of classical solutions.

1. The abstract perturbation results

Throughout this section, X, U , and Y are fixed complex Banach spaces, A is a closed

linear operator on X with domain D(A), and D ∈ L(U,X) and E ∈ L(D(A), Y ) are

bounded linear operators; we regard D(A) as a Banach space with respect to the graph

norm ‖ · ‖D(A).
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Proposition 1.1. Let A be a closed linear operator on X and suppose λ ∈ %(A). If

∆ ∈ L(Y, U) satisfies

‖∆‖ ≤ (1− δ) 1

‖ER(λ,A)D‖ (1.1)

for some δ ∈ (0, 1), then λ ∈ %(A+D∆E), and

‖R(λ,A+D∆E)‖ ≤ ‖R(λ,A)‖
(

1 +
1

δ
‖D‖ ‖∆ER(λ,A)‖

)
.

Proof: Fix λ ∈ %(A). From ‖∆ER(λ,A)D‖ ≤ 1 − δ we see that I − ∆ER(λ,A)D is

invertible. Using the Neumann series we estimate

‖(I −∆ER(λ,A)D)−1‖ ≤
∞∑

n=0

(1− δ)n =
1

δ
.

It follows that I −D∆ER(λ,A) is invertible as well, and its inverse is given by

(I −D∆ER(λ,A))−1 = I +D(I −∆ER(λ,A)D)−1∆ER(λ,A).

By the above estimate,

‖(I −D∆ER(λ,A))−1‖ ≤ 1 +
1

δ
‖D‖ ‖∆ER(λ,A)‖.

From the identity λ−A−D∆E = (I−D∆ER(λ,A))(λ−A) we see that λ−A−D∆E is

closed, being the composition of a closed operator and a bounded invertible operator.

It also shows that λ − A − D∆E maps D(A) injectively onto X. Hence, the inverse

mapping (λ − A − D∆E)−1 is well defined on X, and being the inverse of a closed

operator, it is closed. Hence by the closed graph theorem, (λ − A − D∆E)−1 is

bounded, which means that λ ∈ %(A+D∆E). By the previous estimate, we obtain

‖R(λ,A+D∆E)‖ = ‖R(λ,A)(I −D∆ER(λ,A))−1‖

≤ ‖R(λ,A)‖
(

1 +
1

δ
‖D‖ ‖∆ER(λ,A)‖

)
.

This result shows that the property ‘λ ∈ %(A)’ is stable under small perturbations.

Next we show that the bound (1.1) is actually the best possible. To this end, for

λ ∈ %(A) we introduce the quantity

rλ(A;D,E) := sup {r ≥ 0 : λ ∈ %(A+D∆E) for all ∆ ∈ L(Y, U) with ‖∆‖ ≤ r} .
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Theorem 1.2. Let A be a closed linear operator on X. Then for all λ ∈ %(A) we

have

rλ(A;D,E) =
1

‖ER(λ,A)D‖ .

Proof: If 0 ≤ r < ‖ER(λ,A)D‖−1 and ‖∆‖ ≤ r, then λ ∈ %(A+D∆E) by Proposition

1.1. Hence, rλ(A;D,E) ≥ ‖ER(λ,A)D‖−1. In order to prove the converse inequality,

let us fix ε > 0. Choose u ∈ U , ‖u‖ = 1, such that

1

‖ER(λ,A)Du‖ ≤
1

‖ER(λ,A)D‖ + ε.

By the Hahn-Banach theorem we may choose y∗ ∈ Y ∗, ‖y∗‖ = 1, such that

〈
ER(λ,A)Du

‖ER(λ,A)Du‖ , y
∗
〉

= 1.

Define ∆ ∈ L(Y, U) by

∆y :=
〈y, y∗〉u

‖ER(λ,A)Du‖ , y ∈ Y.

Then ∆ER(λ,A)Du = u and

‖∆‖ ≤ 1

‖ER(λ,A)D‖ + ε.

Set v := R(λ,A)Du. Then ∆Ev = u 6= 0, so v 6= 0, and

(λ− A−D∆E)v = Du−D∆ER(λ,A)Du = Du−Du = 0.

This shows that λ−A−D∆E is not injective, which implies λ ∈ σ(A+D∆E).

We remark that the proofs of Proposition 1.1 and Theorem 1.2 are entirely based on

techniques in a paper of Latushkin, Montgomery-Smith, and Randolph [13], where

they are used to obtain the two-sided bounds (2.4) below for robust stability.

For a subset Ω ⊂ %(A) we define

rΩ(A;D,E) := sup {r ≥ 0 : Ω ⊂ %(A+D∆E) for all ∆ ∈ L(Y, U) with ‖∆‖ ≤ r} .

We then have the following straightforward generalization of Theorem 1.2:
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Corollary 1.3. Let A be a closed linear operator on X. If Ω ⊂ %(A), then

rΩ(A;D,E) = inf
λ∈Ω

1

‖ER(λ,A)D‖ .

We may also impose uniform boundedness of the resolvent on the set Ω by defining,

for a subset Ω ⊂ %(A) such that supλ∈Ω ‖R(λ,A)‖ <∞,

r∞Ω (A;D,E) := sup
{
r ≥ 0 : Ω ⊂ %(A+D∆E) and sup

λ∈Ω
‖R(λ,A+D∆E)‖ <∞

for all ∆ ∈ L(Y, U) with ‖∆‖ ≤ r
}
.

Corollary 1.4. Let A be a closed linear operator on X and assume that E extends

to a bounded operator from X into Y . If Ω ⊂ %(A) with supλ∈Ω ‖R(λ,A)‖ <∞, then

r∞Ω (A;D,E) =
1

supλ∈Ω ‖ER(λ,A)D‖ .

Proof: It is clear from the definition that r∞Ω (A;D,E) ≤ rΩ(A;D,E). Hence by Corol-

lary 1.3 we only need to prove the inequality r∞Ω (A;D,E) ≥ infλ∈Ω ‖ER(λ,A)D‖−1.

But this inequality follows immediately from Proposition 1.1, since ‖∆ER(λ,A)‖ ≤
‖∆E‖ ‖R(λ,A)‖ and supλ∈Ω ‖R(λ,A)‖ <∞.

2. Application to robust stability of C0−semigroups

Throughout this section we fix complex Banach space X, U , and Y , and bounded

linear operators D ∈ L(U,X) and E ∈ L(X,Y ). We further consider a C0−semigroup

T = {T (t)}t≥0 of bounded linear operators on X, and denote by A its generator. Our

terminology concerning semigroups is standard; for more information we refer to the

books [16] and [18].

In this section and the next we will be concerned with the behaviour under small

perturbations of the following four quantities (see [17, Chapter 1]):

• The spectral bound s(A) = sup{Reλ : λ ∈ σ(A)};
• The abscissa of uniform boundedness s0(A) of the resolvent of A,

s0(A) := inf
{
ω ∈ R : {Reλ > ω} ⊂ %(A) and sup

Reλ>ω
‖R(λ,A)‖ <∞

}
;
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• The growth bound ω1(A),

ω1(A) := inf
{
ω ∈ R : there exists M > 0 such that ‖T (t)x‖ ≤Meωt‖x‖D(A)

for all x ∈ D(A) and t ≥ 0
}

;

• The uniform growth bound ω0(A),

ω0(A) := inf
{
ω ∈ R : there exists M > 0 such that ‖T (t)‖ ≤Meωt

for all t ≥ 0
}
.

It is well-known [17, Sections 1.2, 4.1] that

−∞ ≤ s(A) ≤ ω1(A) ≤ s0(A) ≤ ω0(A) <∞. (2.1)

If ω0(A) < 0 (resp. ω1(A) < 0), then T is said to be uniformly exponentially stable

(resp. exponentially stable). Below we will use the following simple fact concerning

s0(A): if {Reλ > 0} ⊂ %(A) and supReλ>0 ‖R(λ,A)‖ < ∞, then s0(A) < 0; see [17,

Lemma 2.3.4].

We start by studying the behaviour of abscissa of uniform boundedness under

small additive perturbations. To this end, for a semigroup with s0(A) < 0 we define

rs0(A;D,E) := sup {r ≥ 0 : s0(A+D∆E) < 0 for all ∆ ∈ L(Y, U) with ‖∆‖ ≤ r} .

Recalling that the suprema along vertical lines Reλ = c of a bounded holomorphic

X−valued function on {Reλ > 0} decrease as c increases, an application of Corollary

1.4 to Ω = {Reλ > 0} shows the following:

Theorem 2.1. Suppose A is the generator of a C0−semigroup on X. If s0(A) < 0,

then

rs0(A;D,E) =
1

supω∈R ‖ER(iω, A)D‖ .

For a uniformly exponentially stable C0−semigroup we now define

rω0
(A;D,E) := sup {r ≥ 0 : ω0(A+D∆E) < 0 for all ∆ ∈ L(Y, U) with ‖∆‖ ≤ r} .

It is a well-known theorem of Gearhart [4], cf. [17, Corollary 2.2.5], that for C0−semi-

groups on a Hilbert space, the abscissa of uniform boundedness of the resolvent and

the uniform growth bound always coincide. Hence if X is isomorphic to a Hilbert

space, Theorem 2.1 assumes the following form:
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Corollary 2.2. Suppose A is the generator of a C0−semigroup on X. If X is

isomorphic to a Hilbert space, and if ω0(A) < 0, then

rω0
(A;D,E) =

1

supω∈R ‖ER(iω, A)D‖ .

Remark: It is not assumed that U and Y are isomorphic to Hilbert spaces.

The quantity rω0
(A;D,E) is called the stability radius of A with respect to the ‘per-

turbation structure’ (D,E) and was introduced, in the finite-dimensional setting, by

Hinrichsen and Pritchard [5]; see also their survey paper [6]. In order to state some

known results about the stability radius, for p ∈ [1,∞) we define the input-output

operator Lp(A;D,E) ∈ L(Lp(R+;U), Lp(R+;Y )) by

Lp(A;D,E)f(s) := E

∫ s

0

T (s− t)Df(t) dt s ≥ 0, f ∈ Lp(R+;U).

This operator is easily seen to be bounded if ω0(A) < 0; conversely, if U = Y = X,

then boundedness of Lp(A; I, I) implies ω0(A) < 0 [17, Theorem 3.3.1]. The following

results are well-known:

• If X, U , and Y are finite dimensional, then

rω0
(A;D,E) =

1

supω∈R ‖ER(iω, A)D‖ . (2.2)

• If X is a Banach space, and U and Y are Hilbert spaces, then

1

‖L2(A;D,E)‖ = rω0
(A;D,E) =

1

supω∈R ‖ER(iω, A)D‖ . (2.3)

• If X, U , and Y are arbitrary Banach spaces, then for all p ∈ [1,∞),

1

‖Lp(A;D,E)‖ ≤ rω0
(A;D,E) ≤ 1

supω∈R ‖ER(iω, A)D‖ . (2.4)

The identities (2.2) and (2.3) are due to Hinrichsen and Pritchard [6] and Pritchard

and Townley [19] (where a more general setup is considered), respectively. Notice that

in some sense our Corollary 2.2 complements the second identity in (2.3).

The inequalities (2.4) were obtained by Latushkin, Montgomery-Smith and Ran-

dolph [13] by using the theory of evolutionary semigroups; this further enabled them

to extend certain results on time-varying systems due to Hinrichsen and Pritchard [7].

They also showed that the inequality between the first and the third term in (2.4)

may be strict. More results on the time-varying case may be found in [2].

In the case of positive semigroups, Theorem 2.1 and Corollary 2.2 simplify somewhat:
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Corollary 2.3. If X, U , and Y are Banach lattices, D ∈ L(U,X) and E ∈ L(X,Y )

are positive, and A is the generator of a positive C0−semigroup on X with s0(A) < 0,

then

rs0(A;D,E) =
1

‖EA−1D‖ .

If in addition X is isomorphic to a Hilbert space, then the same result holds for the

uniform growth bound.

Proof: From

|ER(iω, A)Du| ≤ E|R(iω, A)|D|u| ≤ ER(0, A)D|u|

[16, Corollary C-III-1.3] it follows that ‖ER(iω, A)D‖ ≤ ‖ER(0, A)D‖ = ‖EA−1D‖
for all ω ∈ R. Accordingly, the supremum in the expressions in Theorem 2.1 and

Corollary 2.2 is taken for ω = 0.

For a detailed treatment of the theory of positive semigroups we refer to the book [16].

The next application is concerned with semigroups which are uniformly continu-

ous for t > 0. First we recall that if A is the generator of a C0−semigroup which is

uniformly continuous for t > t0 for some t0 ≥ 0, then the spectral mapping theorem

σ(T (t))\{0} = exp(tσ(A))\{0}

holds for all t ≥ 0 [16, Theorem A-III-6.6], [17, Theorem 2.3.2]. In particular, this

implies that s(A) = s0(A) = ω0(A). We will combine Theorem 2.1 with the following

simple observation [16, Theorem A-II-1.30], a proof of which is included for the reader’s

convenience.

Lemma 2.4. If A is the generator of a C0−semigroup T on X which is uniformly

continuous for t > 0, and if B is a bounded linear operator on X, then the semigroup

generated by A+ B is uniformly continuous for t > 0.

Proof: Let S = {S(t)}t≥0 denote the semigroup generated by A+B. Put V0(t) := T (t),

t ≥ 0, and define the operators Vn(t) inductively by

Vn+1(t)x :=

∫ t

0

T (t− s)BVn(s)x ds, n ∈ N, x ∈ X, t ≥ 0.

As is well-known [18, Section 3.1], if ‖T (t)‖ ≤Meωt for all t ≥ 0, then

‖Vn(t)‖ ≤Meωt
Mn‖B‖ntn

n!
, n ∈ N, t ≥ 0,

and

S(t) =
∞∑

n=0

Vn(t), t ≥ 0,
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the convergence being uniform on compact subsets of [0,∞). Fix n ≥ 0 and positive

real numbers 0 < ε < δ0 < δ1 <∞. For δ0 ≤ t ≤ t′ ≤ δ1, from

Vn+1(t′)x−Vn+1(t)x =

∫ t′

t

T (t′− s)BVn(s)x ds+

∫ t

0

(T (t′− s)−T (t− s))BVn(s)x ds

we obtain, by splitting the second integral as
∫ t

0
=
∫ t
t−ε +

∫ t−ε
0

,

‖Vn+1(t′)− Vn+1(t)‖ ≤ Cn
(

(t′ − t) + ε+ sup
s∈[0,t−ε]

‖T (t′ − s)− T (t− s)‖
)
,

where Cn is a finite constant depending on M , ω, ‖B‖, δ0, δ1, and n only. It follows

that

lim sup
t′↓t

‖Vn+1(t′)− Vn+1(t)‖ ≤ Cnε,

and since ε can be taken arbitrarily small, we see that Vn+1(·) is uniformly continuous

for t > 0. Therefore the same is true for S(·).

Corollary 2.5. Suppose A is the generator of a uniformly exponentially stable

C0−semigroup on X which is uniformly continuous for t > 0. Then

rω0
(A;D,E) =

1

supω∈R ‖ER(iω, A)D‖ .

This result applies to compact semigroups, differentiable semigroups, and analytic

semigroups, since each of these is uniformly continuous for t > 0.

3. Delay equations in Lp([−h, 0];X)

Throughout this section, we fix a C0−semigroup T with generator A on a complex

Banach space X. We also fix p ∈ [1,∞) and non-negative real numbers 0 ≤ h1 < ... <

hn =: h.

Given bounded linear operators B1, ..., Bn on X, we will study the delay equation

(DEB1,...,Bn)

u̇(t) = Au(t) +

n∑

j=1

Bju(t− hj), t ≥ 0,

u(0) = x,

u(t) = f(t), t ∈ [−h, 0).
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Here, x ∈ X is the initial value and f ∈ Lp([−h, 0];X) is the ‘history’ function. This

equation has been investigated by Nakagiri [14, 15]; see also [1, 3, 8, 9, 12, 21] for

related studies.

A mild solution of (DEB1,...,Bn) is a function u(· ;x, f) ∈ Lploc([−h,∞);X) satis-

fying

u(t;x, f) =

{
T (t)x+

∫ t
0
T (t− s)∑n

j=1 Bju(s− hj ;x, f) ds, t ≥ 0,
f(t), t ∈ [−h, 0).

It follows from [14, Theorem 2.1] that for all x ∈ X and f ∈ Lp([−h, 0];X) a unique

mild solution u(· ;x, f) exists; this solution is continuous on [0,∞) and exponentially

bounded. In order to study the asymptotic behaviour of these solutions by semigroup

methods, we introduce the product space X := X×Lp([−h, 0];X) and define bounded

linear operators TB1,...,Bn(t) on X as follows. Given a function u ∈ Lploc([−h,∞);X),

for each t ≥ 0 we define ut ∈ Lp([−h, 0];X) by ut(s) := u(t+s), s ∈ [−h, 0]. Denoting

the unique mild solution of (DEB1,...,Bn) by u(· ;x, f), we now define

TB1,...,Bn(t)(x, f) := (u(t;x, f), ut(· ;x, f)), t ≥ 0.

By [15, Proposition 3.1] we have:

Proposition 3.1. The family TB1,...,Bn = {TB1,...,Bn(t)}t≥0 defines a C0−semigroup

of linear operators on X . Its generator AB1,...,Bn is given by

D(AB1,...,Bn) =
{

(x, f) ∈ X : f ∈W 1,p([−h, 0];X), f(0) = x ∈ D(A)
}
,

AB1,...,Bn(x, f) =
(
Ax+

n∑

j=1

Bjf(−hj), f ′
)
, (x, f) ∈ D(AB1,...,Bn).

Here W 1,p([−h, 0];X) is the space of absolutely continuous X−valued functions f on

[−h, 0] which are strongly differentiable a.e. with derivative f ′ ∈ Lp([−h, 0];X).

Whenever the operators B1, ..., Bn are understood, we will drop them from the

notation and simply write T and A.

The spectrum and resolvent of A are described by [15, Theorem 6.1]:

Proposition 3.2. We have λ ∈ %(A) if and only if λ ∈ %(A +
∑n
j=1 e

−λhjBj). In

this case the resolvent of A is given by

R(λ,A) = EλR
(
λ,A+

n∑

j=1

e−λhjBj
)
HλF + Tλ,
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where Eλ ∈ L(X,X ), Hλ ∈ L(X , X), F ∈ L(X ,X ), and Tλ ∈ L(X ,X ) are defined by

Eλx := (x, eλ · x);

Hλ(x, f) := x+

∫ 0

−h
eλsf(s) ds;

F (x, f) :=
(
x,

n∑

j=1

χ[−hj ,0](·)Bjf(−hj − · )
)

;

Tλ(x, f) :=
(

0,

∫ 0

·
eλ( · −ξ)f(ξ) dξ

)
.

Our first result relates the abscissa s0(A) to s0(A):

Theorem 3.3. Assume that s0(A) < 0. If

sup
ω∈R

∥∥∥
n∑

j=1

eiωhjBj

∥∥∥ < 1

supω∈R ‖R(iω, A)‖ ,

then s0(A) < 0.

Proof: Choose δ ∈ (0, 1) such that

sup
ω∈R

∥∥∥
n∑

j=1

eiωhjBj

∥∥∥ ≤ (1− δ) 1

supω∈R ‖R(iω, A)‖ .

Recalling that the suprema along vertical lines Reλ = c of bounded analytic functions

decrease as c increases, for all λ ∈ C with Re λ > 0 we have
∥∥∥
n∑

j=1

e−λhjBj
∥∥∥ ≤ sup

ω∈R

∥∥∥
n∑

j=1

eiωhjBj

∥∥∥ ≤ (1− δ) 1

supω∈R ‖R(iω, A)‖ ≤ (1− δ) 1

‖R(λ,A)‖ .

Therefore by Proposition 1.1, {Reλ > 0} ⊂ %(A+
∑n
j=1 e

−λhjBj), and for all λ ∈ C
with Reλ > 0 we have

∥∥∥R
(
λ,A+

n∑

j=1

e−λhjBj
)∥∥∥ ≤ ‖R(λ,A)‖


1 +

1

δ

∥∥∥
n∑

j=1

e−λhjBjR(λ,A)
∥∥∥




≤ ‖R(λ,A)‖
(

1 +
1− δ
δ

)
=

1

δ
‖R(λ,A)‖.

Hence by Proposition 3.2, {Reλ > 0} ⊂ %(A) and

‖R(λ,A)‖ =
∥∥∥EλR

(
λ,A+

n∑

j=1

e−λhjBj
)
HλF + Tλ

∥∥∥

≤ 1

δ
‖R(λ,A)‖ (1 + h

1
p ) (1 + h

1
q )
(

1 +

n∑

j=1

‖Bj‖
)

+ ‖T0‖

for all λ ∈ C with Reλ > 0; 1/p + 1/q = 1. Therefore, supReλ>0 ‖R(λ,A)‖ < ∞,

which implies s0(A) < 0.
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Note that by (2.1) in particular we have ω1(A) < 0, which means that the semigroup

T is exponentially stable. This, in turn, implies that there exist M > 0 and ω > 0

such that for all (x, f) ∈ D(A) = {(x, f) ∈ X ×W 1,p([−h, 0];X) : f(0) = x ∈ D(A)}
we have

‖u(t;x, f)‖ ≤Me−ωt‖(x, f)‖D(A).

Corollary 3.4. Suppose p = 2 and X is isomorphic to a Hilbert space. If ω0(A) < 0

and

sup
ω∈R

∥∥∥
n∑

j=1

eiωhjBj

∥∥∥ < 1

supω∈R ‖R(iω, A)‖ ,

then ω0(A) < 0.

Another situation in which information about ω0(A) may be obtained from s0(A) is

described in the following proposition.

Proposition 3.5. If the semigroup generated by A is uniformly continuous for t > 0,

then the semigroup generated by A is uniformly continuous for t > h.

Proof: We proceed as in the proof of [15, Proposition 3.1]. For (x, f) ∈ X we define

k(s;x, f) :=

n∑

j=1

Bju(s− hj ;x, f), s ≥ 0,

where u(· ;x, f) is the unique mild solution of (DEB1,...,Bn) with initial value (x, f).

For t > 0 set

Qt(x, f) :=

∫ t

0

T (t− s)k(s;x, f) ds, (x, f) ∈ X ,

and for ε ∈ (0, t] set

Qt,ε(x, f) :=

∫ t−ε

0

T (t− s)k(s;x, f) ds, (x, f) ∈ X .

The argument in [15] shows that there exist constants Mt > 0 and Nt > 0, both

increasing with t, such that

‖k(· ;x, f)‖Lp([0,t];X) ≤Mt‖(x, f)‖X

and

‖Qt,ε(x, f)−Qt(x, f)‖ ≤ ε 1
qNt‖(x, f)‖X ,

1

p
+

1

q
= 1.
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Define Kh := supσ∈[0,h] ‖T (σ)‖. Fix h+ ε ≤ t ≤ t′ ≤ 2h+ ε. Then, for all s ∈ [−h, 0],

‖u(t′ + s;x, f)− u(t+ s;x, f)‖
≤ ‖T (t′ + s)x− T (t+ s)x‖

+

∥∥∥∥∥

∫ t′+s

t+s

T (t′ + s− σ)k(σ;x, f) dσ

∥∥∥∥∥

+

∥∥∥∥
∫ t+s

t+s−ε
(T (t′ + s− σ)− T (t+ s− σ))k(σ;x, f) dσ

∥∥∥∥

+

∥∥∥∥
∫ t+s−ε

0

(T (t′ + s− σ)− T (t+ s− σ))k(σ;x, f) dσ

∥∥∥∥
≤ ‖T (t′ + s)− T (t+ s)‖ ‖(x, f)‖X

+ (t′ − t) 1
qN2h+ε‖(x, f)‖X

+ (Kh + 1)ε
1
qN2h+ε‖(x, f)‖X

+ (2h)
1
qM2h‖(x, f)‖X sup

σ∈[0,t+s−ε]
‖T (t′ + s− σ)− T (t+ s− σ)‖.

It follows that

lim sup
t′↓t

(
sup

‖(x,f)‖X≤1

sup
s∈[−h,0]

‖u(t′ + s;x, f)− u(t+ s;x, f)‖
)
≤ (Kh + 1)ε

1
qN2h+ε,

and therefore

lim sup
t′↓t

(
sup

‖(x,f)‖X≤1

‖ut′(x, f)− ut(x, f)‖Lp([−h,0];X)

)
≤ (Kh + 1)ε

1
q h

1
pN2h+ε.

It follows that

lim sup
t′↓t

‖T (t′)− T (t)‖ ≤ (Kh + 1)ε
1
q (1 + h

1
p )N2h+ε.

Since the choice of ε > 0 was arbitrary and N2h+ε decreases with ε, this proves that

limt′↓t ‖T (t′)− T (t)‖ = 0.

Corollary 3.6. Assume that A generates a uniformly exponentially stable C0−semi-

group which is uniformly continuous for t > 0. If

sup
ω∈R

∥∥∥
n∑

j=1

eiωhjBj

∥∥∥ < 1

supω∈R ‖R(iω, A)‖ ,

then ω0(A) < 0, i.e. T is uniformly exponentially stable.
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We now consider the case n = 1 in more detail and return to the notation TB and

AB to denote the semigroup on X and its generator governing the solutions of the

problem
u̇(t) = Au(t) +Bu(t− h), t ≥ 0,

u(0) = x,

u(t) = f(t), t ∈ [−h, 0).

Assuming that s0(A0) < 0 (A0 being the generator AB corresponding to the zero

operator B = 0), we define

rs0(A0) := sup {r ≥ 0 : s0(AB) < 0 for all B ∈ L(X) with ‖B‖ ≤ r} .

With this notation, the case n = 1 of Theorem 3.3 says that

rs0(A0) ≥ 1

supω∈R ‖R(iω, A)‖ .

In fact, we have the following more precise result.

Theorem 3.7. If s0(A) < 0, then

rs0(A0) = rs0(A; I, I) =
1

supω∈R ‖R(iω, A)‖ .

Proof: It only remains to prove the inequality

rs0(A0) ≤ 1

supω∈R ‖R(iω, A)‖ .

Fix ε > 0 and choose ω0 ∈ R such that

1

‖R(iω0, A)‖ ≤
1

supω∈R ‖R(iω, A)‖ + ε.

Define operators E ∈ L(D(A0), X) and D ∈ L(X,X ) by

E(x, f) := f(−h), Dx := (x, 0).

Using Proposition 3.2 it is easily verified that

ER(iω0,A0)Dx = e−iω0hR(iω0, A)x, x ∈ X,

and therefore ‖ER(iω0,A0)D‖ = ‖R(iω0, A)‖.By Theorem 1.2 there existsB0 ∈ L(X)

such that

‖B0‖ ≤
1

‖ER(iω0,A0)D‖ + ε
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and

iω0 ∈ σ(A0 +DB0E).

Noting that AB0
= A0 +DB0E, this means that iω0 ∈ σ(AB0

). Therefore AB0
cannot

have a uniformly bounded resolvent on {Reλ > 0}. The estimate

‖B0‖ ≤
1

‖ER(iω0,A0)D‖ + ε =
1

‖R(iω0, A)‖ + ε ≤ 1

supω∈R ‖R(iω, A)‖ + 2ε

then shows that

rs0(A0) ≤ 1

supω∈R ‖R(iω, A)‖ + 2ε.

In particular, if p = 2 and X is isomorphic to a Hilbert space, or if T is uniformly

continuous for t > 0, it follows that

rω0
(A0) = rω0

(A; I, I) =
1

supω∈R ‖R(iω, A)‖ ,

where rω0
(A0) is defined in the obvious way.

For the generator A of a positive semigroup on a Banach lattice X we have s(A) =

ω1(A) = s0(A); moreover, s(A) ∈ σ(A) whevener s(A) > −∞ [16, Theorem C-III-1.1].

This will be used to prove the following versions of Theorems 3.3 and 3.7:

Theorem 3.3′. Let A generate a positive C0−semigroup on a Banach lattice X, and

assume that the operators Bj are positive, j = 1, .., n. Then the semigroup TB1,...,Bn

is positive. If s0(A) < 0 and
∥∥∥
n∑

j=1

Bj

∥∥∥ < 1

‖A−1‖ ,

then s0(AB1,...,Bn) < 0.

Proof: It is an easy consequence of Proposition 3.2 that R(λ,AB1,...,Bn) ≥ 0 for suf-

ficiently large real λ. Then TB1,...,Bn(t) ≥ 0 for all t ≥ 0 by the exponential formula

[18, Theorem 1.8.3].

Since ‖R(λ,A)‖ ≤ ‖R(Reλ,A)‖ for all λ ∈ C with Reλ > s(A), for some δ ∈ (0, 1)

and all λ ≥ 0 we have

∥∥∥
n∑

j=1

e−λhjBj
∥∥∥ ≤

∥∥∥
n∑

j=1

Bj

∥∥∥ ≤ (1− δ) 1

‖R(0, A)‖ ≤ (1− δ) 1

‖R(λ,A)‖ .

Hence, [0,∞) ⊂ %(AB1,...,Bn) by Propositions 1.1 and 3.2. Since AB1,...,Bn generates

a positive semigroup, this implies that s0(AB1,...,Bn) = s(AB1,...,Bn) < 0.
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If n = 1 we have:

Theorem 3.7′. Let A generate a positive C0−semigroup on a Banach lattice X

with s0(A) < 0. Then

rs0(A0) = rs0(A; I, I) =
1

‖A−1‖ .

The identities rs0(A0) = rs0(A; I, I) in Theorems 3.7 and 3.7′ can be interpreted as

saying that the stability radius for boundedness of the resolvent for the delay problem

is independent of the delay h (and equals the stability radius for boundedness of the

resolvent for the undelay problem). In the situation of Theorem 3.7′, if in addition

B is assumed to be positive, then we further have s0(A + B) = ω1(A + B) and

s0(AB) = ω1(AB), so that we can reformulate this observation in terms of exponential

stability of the semigroups involved. In the state space C([−h, 0];X) this is a well-

known phenomenon; cf. [16, Corollary B-IV-3.10], where different methods are used.

For further results on stability of delay equations in C([−h, 0];X) the reader might

consult [10, 11, 20].
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