Robust stability of Cy—semigroups and an application
to stability of delay equations

A. Fischer J.M.A.M. van Neerven'
Institute for Dynamical Systems Department of Mathematics
University of Bremen Delft University of Technology
P.O. Box 330 440, D-28334 Bremen P.O. Box 5031, 2600 GA Delft
Germany The Netherlands

Abstract - Let A be a closed linear operator on a complex Banach space X
and let A\ € g9(A) be a fixed element of the resolvent set of A. Let U and Y
be Banach spaces and let D € L(U, X) and E € L(X,Y) be bounded linear
operators. We define 7)(A; D, E) by

sup{r > 0: XA € p(A+ DAE) for all A € L(Y,U) with ||A[| <}

and prove that

1
ADFY= — — .
(4D E) = e D]

We give two applications of this result. The first is an exact formula for the
so-called stability radius of the generator of a Cy—semigroup of linear operators
on a Hilbert space; it is derived from a precise result about robustness under
perturbations of uniform boundedness in the right half-plane of the resolvent
of an arbitrary semigroup generator. The second application gives sufficient
conditions on the norm of the operators B; € £(X) in order that the classical

solutions of the delay equation
n
i(t) = Au(t) + )  Bjul(t — hy), t>0,
j=1
are exponentially stable in LP([—h, 0]; X).
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0. Introduction

In this paper we investigate robustness of certain properties of a closed linear operator
A on a Banach space X under small additive perturbations. Some ‘structure’ in the
perturbation will be allowed, in the following sense: we fix Banach spaces U and Y
and two operators D € L(U,X) and E € L(X,Y) (or even E € L(D(A),Y)), and
consider perturbations of the form DAFE, with A € L(Y,U). The question we address
is the following;:

If A has a certain property (P), what is the supremum of all > 0 with the
following property: for all bounded linear operators A € £(Y,U) with norm
|A]| < r, the perturbed operator A + DAFE has property (P) as well.

Among the properties we consider are the following: containment of a given complex
number A € C in the resolvent set of the operator, containment of a given set 2 C C in
the resolvent set, and uniform boundedness of the resolvent on 2. For these properties
we give a precise answer to the above question in terms of the so-called transfer
function A — ER(\, A)D, where R(\, A) := (A — A)~! is the resolvent of A.

In two subsequent sections, we give two applications of the abstract results of
Section 1. In Section 2 we prove some new results on robust stability. Among others
we obtain an exact formula for the stability radius for generators of Hilbert space
semigroups. In Section 3 we study the delay equation

U,(t) = Au(t) + Zn: B]u(t - hj), t Z 07

where A is the generator of a Cy—semigroup on a Banach space X. Regarding the
bounded operators B; as a perturbation of an appropriate Cauchy problem corre-
sponding to the absence of delays, we obtain sufficient conditions on A and B; for
exponential stability of classical solutions.

1. The abstract perturbation results

Throughout this section, X, U, and Y are fixed complex Banach spaces, A is a closed
linear operator on X with domain D(A), and D € L(U, X) and E € L(D(A),Y) are
bounded linear operators; we regard D(A) as a Banach space with respect to the graph

norm || - ||D(A)-
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Proposition 1.1. Let A be a closed linear operator on X and suppose \ € o(A). If

A € L(Y,U) satisfies
1

_ 1.1
[ERO. A)D] )
for some 6 € (0,1), then X € p(A+ DAFE), and

|A[] < (1 —9)

1
RO A+ DAB)] < RO A)| (1+ 5101 IAER(, )] ).

Proof: Fix A € p(A). From ||[AER(A, A)D|| <1 — ¢ we see that I — AER(\, A)D is
invertible. Using the Neumann series we estimate
> 1
I—AER()\A)D)™!| < 1—6)" = .
1€ A AD)TH <) (1-9) 5

n=0

It follows that I — DAER(A, A) is invertible as well, and its inverse is given by
(I - DAER(N,A)™' =1+ D(I—AER(N A)D) 'AER(), A).
By the above estimate,
I(I = DAER(X, A)) Ml <1+ %HDII IAER(A, A)].

From the identity \A—A—DAFE = (I-DAER(X, A))(A—A) we see that \—A—DAFE is
closed, being the composition of a closed operator and a bounded invertible operator.
It also shows that A — A — DAFE maps D(A) injectively onto X. Hence, the inverse
mapping (A — A — DAE)~! is well defined on X, and being the inverse of a closed
operator, it is closed. Hence by the closed graph theorem, (A — A — DAE)™! is
bounded, which means that A € o(A + DAFE). By the previous estimate, we obtain

|R(\, A+ DAE)| = ||R(\, A)(I — DAER(), A))™!|
< IROLA)| (1+ D1 IAERO, A)]) .

This result shows that the property ‘A € o(A)’ is stable under small perturbations.
Next we show that the bound (1.1) is actually the best possible. To this end, for
A € o(A) we introduce the quantity

rx(A; D, E) :=sup{r >0: A€ p(A+ DAE) for all A € L(Y,U) with ||A]| <r}.
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Theorem 1.2. Let A be a closed linear operator on X. Then for all A\ € go(A) we
have

1
r\(A;D,E) = ———————.
IER(A, A)D|
Proof: If0 <r < |[ER(A\, A)D| =t and ||A]| < r, then A € o(A+ DAE) by Proposition
1.1. Hence, 75(A; D, E) > ||[ER(\, A)D||~!. In order to prove the converse inequality,
let us fix € > 0. Choose u € U, |lu|| =1, such that

1 1
<
IER(A, A)Dull — [[ER(A, A)

+e.
D]

By the Hahn-Banach theorem we may choose y* € Y*, ||y*|| = 1, such that

ER(N, A)Du _q
IERO, A)DulY )~

Define A € L(Y,U) by

(y, y*)u
Ay = Y.
YT UEROL ADu VS
Then AER(A, A)Du = u and
1
Al< ————— +¢.
1A= TERx, D]

Set v := R(\, A)Du. Then AEv =u # 0, so v # 0, and
(A=A —DAFE)y = Du— DAER(\, A)Du = Du — Du = 0.

This shows that A — A — DAF is not injective, which implies A € 0(A + DAFE). =

We remark that the proofs of Proposition 1.1 and Theorem 1.2 are entirely based on
techniques in a paper of Latushkin, Montgomery-Smith, and Randolph [13], where
they are used to obtain the two-sided bounds (2.4) below for robust stability.

For a subset 2 C p(A) we define

ro(A; D, E) :=sup{r >0: QC p(A+ DAE) for all A € L(Y,U) with ||A|| <r}.

We then have the following straightforward generalization of Theorem 1.2:
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Corollary 1.3. Let A be a closed linear operator on X. If Q C o(A), then

‘ 1
ro(AsD E) = il o D)

We may also impose uniform boundedness of the resolvent on the set {2 by defining,
for a subset €2 C p(A) such that sup,cq ||R(A, 4)| < oo,

ra (A; D, E) = sup{r >0: QCp(A+ DAF) and ilelg |R(A, A+ DAE)|| < o0

for all A € L(Y,U) with ||A|l < r}.

Corollary 1.4. Let A be a closed linear operator on X and assume that FE extends
to a bounded operator from X into Y. If Q C o(A) with sup,cq || R(A, A)|| < oo, then

1
Supeq [|ER(A, A)D||

rg (A; D, E) =

Proof: 1t is clear from the definition that r&’ (A4; D, E) < rq(A; D, E). Hence by Corol-
lary 1.3 we only need to prove the inequality r& (A4; D, E) > infycq [|[ER(), A)D||~L.
But this inequality follows immediately from Proposition 1.1, since [|[AER(A, A)|| <
|AE|||R(A, A)|| and supyeq ||R(A, A)|| < oo. "

2. Application to robust stability of Cy—semigroups

Throughout this section we fix complex Banach space X, U, and Y, and bounded
linear operators D € L(U, X ) and F € L(X,Y). We further consider a Cy—semigroup
T = {T'(t) }+>0 of bounded linear operators on X, and denote by A its generator. Our
terminology concerning semigroups is standard; for more information we refer to the

books [16] and [18].
In this section and the next we will be concerned with the behaviour under small
perturbations of the following four quantities (see [17, Chapter 1]):

e The spectral bound s(A) =sup{ReA: A€ d(A)};
e The abscissa of uniform boundedness sq(A) of the resolvent of A,

so(A) = inf{w €R: {Red>w) Co(d) and sup RO\, A)| < oo};
e A>W



e The growth bound wi(A),

wi(A) = inf{w €R: there exists M > 0 such that |T(t)z|| < Me“"|z]pa)

for all z € D(A) and t > 0};
e The uniform growth bound wq(A),

wo(A) := inf{w € R: there exists M > 0 such that ||T(t)| < Me**

for all t > O}.

It is well-known [17, Sections 1.2, 4.1] that

—00 < 8(A) <wi(A) < sp(A) <wp(A) < 0. (2.1)

If wo(A) < 0 (resp. w1(A) < 0), then T is said to be uniformly exponentially stable
(resp. exponentially stable). Below we will use the following simple fact concerning
so(A): if {ReX > 0} C p(A) and supge \so [|[R(A, A)|| < oo, then so(A) < 0; see [17,
Lemma 2.3.4].

We start by studying the behaviour of abscissa of uniform boundedness under
small additive perturbations. To this end, for a semigroup with so(A) < 0 we define

Tso(A; D, E) :==sup{r >0: so(A+ DAFE) <0 for all A € L(Y,U) with ||A|| <r}.

Recalling that the suprema along vertical lines Re A = ¢ of a bounded holomorphic

X —valued function on {Re A > 0} decrease as ¢ increases, an application of Corollary
1.4 to © = {Re A > 0} shows the following:

Theorem 2.1. Suppose A is the generator of a Cy—semigroup on X. If so(A) < 0,

then
1

s A’DvE = X .
raol A Dy B) = G B R (i, A)D)

For a uniformly exponentially stable Cy—semigroup we now define
Two(A; D, E) :=sup{r >0: wy(A+ DAFE) <0 for all A € L(Y,U) with ||A]| <r}.

It is a well-known theorem of Gearhart [4], cf. [17, Corollary 2.2.5], that for Cp—semi-
groups on a Hilbert space, the abscissa of uniform boundedness of the resolvent and
the uniform growth bound always coincide. Hence if X is isomorphic to a Hilbert
space, Theorem 2.1 assumes the following form:
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Corollary 2.2. Suppose A is the generator of a Cy—semigroup on X. If X is
isomorphic to a Hilbert space, and if wy(A) < 0, then

1

wo(A; D, E) = , .
reo (A D B) = G [ ER(iw, A)D]

Remark: It is not assumed that U and Y are isomorphic to Hilbert spaces.

The quantity r.,(A; D, E) is called the stability radius of A with respect to the ‘per-
turbation structure’ (D, E') and was introduced, in the finite-dimensional setting, by
Hinrichsen and Pritchard [5]; see also their survey paper [6]. In order to state some

known results about the stability radius, for p € [1,00) we define the input-output
operator L,(A; D, E) € L(LP(Ry;U), LP(R4;Y)) by

L,(A; D, E)f(s) := E/O T(s—t)Df(t)dt s>0, feLP(Ry;U).

This operator is easily seen to be bounded if wg(A4) < 0; conversely, if U =Y = X
then boundedness of LL,,(A; I, I) implies wp(A) < 0 [17, Theorem 3.3.1]. The following

results are well-known:

o If X, U, and Y are finite dimensional, then
1

el D) = e TERG, AD] 22
e If X is a Banach space, and U and Y are Hilbert spaces, then
1 1
L. WP G LERGe D) Y
e If X, U, and Y are arbitrary Banach spaces, then for all p € [1, 00),
o < (45 D, B) < 1 (24)

HLP<A’ DvE)H SupweR ||ER(ZW,A)D||

The identities (2.2) and (2.3) are due to Hinrichsen and Pritchard [6] and Pritchard
and Townley [19] (where a more general setup is considered), respectively. Notice that
in some sense our Corollary 2.2 complements the second identity in (2.3).

The inequalities (2.4) were obtained by Latushkin, Montgomery-Smith and Ran-
dolph [13] by using the theory of evolutionary semigroups; this further enabled them
to extend certain results on time-varying systems due to Hinrichsen and Pritchard [7].
They also showed that the inequality between the first and the third term in (2.4)
may be strict. More results on the time-varying case may be found in [2].

In the case of positive semigroups, Theorem 2.1 and Corollary 2.2 simplify somewhat:
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Corollary 2.3. If X, U, and Y are Banach lattices, D € L(U,X) and E € L(X,Y)
are positive, and A is the generator of a positive Cy—semigroup on X with so(A) < 0,
then

1
rso(A; D, E) = TEATD|"

If in addition X is isomorphic to a Hilbert space, then the same result holds for the
uniform growth bound.

Proof: From
|ER(iw, A)Du| < E|R(iw, A)|D]u| < ER(0, A)D|u|

[16, Corollary C-III-1.3] it follows that ||ER(iw, A)D|| < ||[ER(0, A)D|| = |[EA™1D||
for all w € R. Accordingly, the supremum in the expressions in Theorem 2.1 and
Corollary 2.2 is taken for w = 0. ]

For a detailed treatment of the theory of positive semigroups we refer to the book [16].
The next application is concerned with semigroups which are uniformly continu-

ous for ¢ > 0. First we recall that if A is the generator of a Cy—semigroup which is

uniformly continuous for ¢ > ¢y for some t5 > 0, then the spectral mapping theorem

o(T(t)\{0} = exp(to(A))\{0}

holds for all ¢ > 0 [16, Theorem A-III-6.6], [17, Theorem 2.3.2]. In particular, this
implies that s(A) = so(A) = wo(A4). We will combine Theorem 2.1 with the following
simple observation [16, Theorem A-II-1.30], a proof of which is included for the reader’s

convenience.

Lemma 2.4. If A is the generator of a Cy—semigroup T on X which is uniformly
continuous for t > 0, and if B is a bounded linear operator on X, then the semigroup
generated by A + B is uniformly continuous for t > 0.

Proof: Let S = {S(t) }+>0 denote the semigroup generated by A+B. Put Vy(t) := T'(¢),
t > 0, and define the operators V,,(t) inductively by

t
Vir1(t)x ::/ T(t — s)BV,(s)x ds, neN zeX, t>0.
0

As is well-known [18, Section 3.1], if ||T'(¢)| < Me“* for all ¢t > 0, then

Mm| Bt

wt
IVa(®)l) < Me =

neN, t>0,

and

S(t) = i Vo(t), >0,
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the convergence being uniform on compact subsets of [0, 00). Fix n > 0 and positive
real numbers 0 < £ < §y < d1 < 0o. For g <t <t/ < 6y, from

Vo1 () =V () :/t T(t' —s)BV,(s)x ds—i—/o (T(t'—s)—T(t—s))BV,(s)xrds

we obtain, by splitting the second integral as f; = ftt_a + f(f -,

s€[0,t—¢]

Va1 (t) = Vaa ()| < Cn ((t' —t)+e+ sup [T(t' —s)-T(t— S)H) ,

where C), is a finite constant depending on M, w, ||B||, do, 01, and n only. It follows
that
limlsup Vo1 (t) = Va1 (0] < Cre,
o
and since € can be taken arbitrarily small, we see that V,,11(-) is uniformly continuous
for t > 0. Therefore the same is true for S(-). "

Corollary 2.5. Suppose A is the generator of a uniformly exponentially stable
Co—semigroup on X which is uniformly continuous for t > 0. Then

1
sup,,er | ER(iw, A)D||

Two(A; D, E) =

This result applies to compact semigroups, differentiable semigroups, and analytic
semigroups, since each of these is uniformly continuous for ¢ > 0.

3. Delay equations in L?([—h,0]; X)

Throughout this section, we fix a Cyp—semigroup T with generator A on a complex
Banach space X. We also fix p € [1,00) and non-negative real numbers 0 < h; < ... <
h, =: h.

Given bounded linear operators By, ..., B,, on X, we will study the delay equation

a(t) = Au(t) + )  Bju(t—h;),  t>0,
(DEg,,....B,) =t
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Here, z € X is the initial value and f € LP([—h,0]; X) is the ‘history’ function. This
equation has been investigated by Nakagiri [14, 15]; see also [1, 3, 8, 9, 12, 21] for
related studies.

A mild solution of (DEp,

fying

B, ) is a function u(-;x, f) € LT

([—h,00); X) satis-

.....

ultz £y = LTz + [Tt =)0, Byu(s — hy;x, f)ds, >0,
(52, ) {f(t), " £ [—h,0).

It follows from [14, Theorem 2.1] that for all z € X and f € LP([—h,0]; X) a unique
mild solution u(-;z, f) exists; this solution is continuous on [0, 00) and exponentially
bounded. In order to study the asymptotic behaviour of these solutions by semigroup
methods, we introduce the product space X := X x LP([—h, 0]; X) and define bounded
linear operators 7p, .. B, (t) on X as follows. Given a function u € L} ([—h,o0);X),
for each t > 0 we define u; € LP([—h,0]; X) by u¢(s) := u(t+s), s € [—h,0]. Denoting

the unique mild solution of (DEp, .. p,) by u(-;z, f), we now define

.....

Tp,,...5,(t)(x, f) = (u(t; @, ), w32, f)),  t=0.

By [15, Proposition 3.1] we have:

Proposition 3.1. The family Tp, .., ={7p,,...B, (t) }+>0 defines a Cy—semigroup

.....

of linear operators on X. Its generator Ap, . B, is given by

B,) ={(z.f) € X+ feW"P([-h,0}; X), f(0) =2z €D(A)},

.....

Apy....n, (@, f) = (Ao + Y Bif(=hy). f'),  (0.f) € D(As,...5,).
j=1

Here W1P([—h,0]; X) is the space of absolutely continuous X —valued functions f on
[—h, 0] which are strongly differentiable a.e. with derivative f’ € LP([—h,0]; X).

Whenever the operators By, ..., B, are understood, we will drop them from the
notation and simply write 7 and A.

The spectrum and resolvent of A are described by [15, Theorem 6.1]:

Proposition 3.2. We have \ € p(A) if and only if A € o(A + Z;-Lzl e i B;). In
this case the resolvent of A is given by

R\ A) = EAR<)\, A+ Xn: e~ i Bj)HAF + 11,

j=1
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where E\ € L(X,X), Hy € L(X,X), F e L(X,X), and T\ € L(X,X) are defined by

Eyz = (z,e x);
0
e f)imot [ (s)ds
—h

F(x, f) = <$,i><[—hj,o1(')3jf(—hj - ')>;

0
Ty, )= (0, [ 95 ).
Our first result relates the abscissa s¢(A) to so(A):
Theorem 3.3. Assume that so(A) < 0. If

n
iwh
SupHE e B;
weR j=1

1
< ; )
sup, e || R(iw, A)|

then so(A) < 0.
Proof: Choose § € (0,1) such that

n
supHZ ei‘“thjH <(1-9)
weR =1

1
SuprR HR(ZQ}, A) H ‘

Recalling that the suprema along vertical lines Re A\ = ¢ of bounded analytic functions

decrease as c¢ increases, for all A\ € C with Re A > 0 we have

H;G—AthjH < ig%”; eiwthjH <(1-9) - ||2(ZW,A)H <(1-9)

1R, Al

Therefore by Proposition 1.1, {Re A > 0} C o(A + Z?zl e i B;), and for all A € C

with Re A > 0 we have

))R(A,A+§€_Athj> H < |R(A, A)]| (1 + ;jﬁ;exthjR()\7A)H>

< IR (14257 ) = FIRO AL

Hence by Proposition 3.2, {Re A > 0} C o(A) and

IR, A)) = [Bar (2, 4+ S By H\F + T3
j=1

1 1 1 -
< S IROA) (1 +85) 1+ h7) (143 1) + T
j=1

for all A € C with ReX > 0; 1/p + 1/q = 1. Therefore, supg, \so [[R\, A)|| < oo,

which implies sq(A) < 0.
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Note that by (2.1) in particular we have wq(A) < 0, which means that the semigroup
T is exponentially stable. This, in turn, implies that there exist M > 0 and w > 0
such that for all (z, f) € D(A) = {(x, f) € X x WbP([-h,0]; X) : f(0) =z € D(A)}
we have

lu(t; 2, )l < Me™"||(z, £)lIp(a).

Corollary 3.4. Suppose p = 2 and X is isomorphic to a Hilbert space. If wy(A) < 0

and
1

n
s
supH e JB-H < . )
Sl 2 e Bil| < S TRt A

then wy(A) < 0.

Another situation in which information about wg(.A) may be obtained from sg(.A) is
described in the following proposition.

Proposition 3.5. If the semigroup generated by A is uniformly continuous fort > 0,
then the semigroup generated by A is uniformly continuous for t > h.

Proof: We proceed as in the proof of [15, Proposition 3.1]. For (z, f) € X we define
k(s;x, f): ZBU — hjsz, f), s >0,

where u(-;x, f) is the unique mild solution of (DEp, . p, ) with initial value (z, f).

For t > 0 set

.....

Qi(x, f) = /0 T(t— s)k(s;x, f)ds, (z,f)e X

and for € € (0,1] set

Quela, f) = /0 (- s)k(sia, f)ds,  (x.f) € X.

The argument in [15] shows that there exist constants M; > 0 and N; > 0, both
increasing with ¢, such that

&G 2, F)llLeo,g:x) < Mell(2, )l

and

1Qec (e, ) — Qel, )| < ¥ Nell (2 )] % 4 g — 1
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Define Kj, := sup,¢jo p) [|T(0)|. Fix h+¢ <t <t <2h +¢. Then, for all s € [, 0],

Ju(t' + s;2, f) —u(t + s; 2, f)||
<|T(t" + s)x — T(t + s)z|]

ﬂ+s
+ / Tt +s—o)k(o;z, f)do
t+s

t+s
+ / (Tt'+s—0)—T({t+s—o0))k(o;z, f)do
t+s—e

t+s—e
+ / (Tt +s—0)—T(t+s—o0))k(o;z, f)do
0

< |IT(t +s) =Tt +9)| ||z, )l
+ (8 — )T Nonge || (2, ) 2
+ (Kp + 1)et Nope || (2, ) 2

+ 2R Moy [(z, fllx - sup | T(t +5—0) = T(t+s—0)|-
o€[0,t+s—¢]

It follows that

lim sup sup sup |lu(t' + sz, f) —u(t+ s;2, )| | < (Kp+ 1)6%N2h+€,
t/lt H(wvf)”XSl SE[—h,O]

and therefore

lim sup sup  |luy (x, f) —we(z, £l o(=n0:x) | < (Kp+1)eah? Nope.
t'lt I(z, F)llx<1

It follows that
limsup | T(¢) — T(t)|| < (Kp, + 1)ea (1 + h?)Nope.

|t

Since the choice of € > 0 was arbitrary and Nyj. decreases with e, this proves that
limy 4 || 7(¢') — 7 (¢)|| = 0. ]

Corollary 3.6. Assume that A generates a uniformly exponentially stable Cy—semi-
group which is uniformly continuous for t > 0. If

SupHZ eiwh B;
j=1

< ; )
sup, e || R(iw, A)|

weR

then wy(A) < 0, i.e. T is uniformly exponentially stable.
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We now consider the case n = 1 in more detail and return to the notation 75 and
Ap to denote the semigroup on X and its generator governing the solutions of the

problem
u(t) = Au(t) + Bu(t — h), t>0,

ut) = f(t),  te[-h,0).

Assuming that sg(Ag) < 0 (Ag being the generator Ap corresponding to the zero
operator B = 0), we define

Tso(Ag) :=sup{r >0: so(Ap) <0 for all B € £(X) with ||B| <r}.

With this notation, the case n = 1 of Theorem 3.3 says that

1
sup, e || R(iw, A)[|

TSO (A()) Z

In fact, we have the following more precise result.
Theorem 3.7. If so(A) <0, then

1

s =Ts A;Ial == - .
roolAo) = rao (i L 1) = G A

Proof: Tt only remains to prove the inequality

1
sup,,ep || R(iw, A)[|

TSQ (A()) S

Fix € > 0 and choose wg € R such that

1 1
. < .
[ R(iwo, A)|| ~ sup,cp || R(iw, A

+ €.

Define operators E € L(D(Ap), X) and D € L(X, X) by
E(z, f) = f(—h), Dz = (z,0).
Using Proposition 3.2 it is easily verified that
ER(iwg, Ag) Dz = e~ " R(iwy, A)z, xz e X,

and therefore || ER(iwg, Ao)D|| = || R(iwg, A)||. By Theorem 1.2 there exists By € L(X)

such that ]

<
s |ER(iwo, Ao)

1Bo te
D
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and
1wy € O’(.AQ + DBoE).

Noting that Ap, = Ao+ DBy E, this means that iwy € 0(Ap,). Therefore Apg, cannot
have a uniformly bounded resolvent on {Re A > 0}. The estimate

1 1 1

Byl < - +e=————+4+¢e< -
1501l < 5 RGws A0 D] + ¢~ TRwo, Al 5 = supys 1Rl A)]

+ 2¢

then shows that ]
rso (Ap) < - + 2e.
o) < S en TR G, A)]

In particular, if p = 2 and X is isomorphic to a Hilbert space, or if T is uniformly
continuous for ¢ > 0, it follows that

1
sup,, g || R(iw, A)[|’

rwo(A()) = rwo(A;I7I) =

where r,,,(Ap) is defined in the obvious way.

For the generator A of a positive semigroup on a Banach lattice X we have s(A) =
w1(A) = s9(A); moreover, s(A) € o(A) whevener s(A) > —oo [16, Theorem C-111-1.1].
This will be used to prove the following versions of Theorems 3.3 and 3.7:

Theorem 3.3'. Let A generate a positive Cy—semigroup on a Banach lattice X, and
assume that the operators B; are positive, j = 1,..,n. Then the semigroup 7g, .. B,
is positive. If so(A) < 0 and

H;Bj»kﬁ

.....

.....

ﬁmently large real A. Then 7p,
[18, Theorem 1.8.3].

Since ||[R(A, A)|| < ||R(Re A, A)|| for all A € C with Re A > s(A), for some § € (0,1)
and all A > 0 we have

HZ —\h;

.....

1 1
Mew.a) = TR AT

....... generates
) - S(ABl ..... Bn) < 0 |

.....

.....
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If n =1 we have:

Theorem 3.7'. Let A generate a positive Cy—semigroup on a Banach lattice X
with so(A) < 0. Then

1
Tso(Ao) =750 (A;1, 1) = m

The identities r4,(Ag) = 7s,(A; I, 1) in Theorems 3.7 and 3.7’ can be interpreted as
saying that the stability radius for boundedness of the resolvent for the delay problem
is independent of the delay h (and equals the stability radius for boundedness of the
resolvent for the undelay problem). In the situation of Theorem 3.7’, if in addition
B is assumed to be positive, then we further have sqg(A + B) = wi(A + B) and
so(Ap) = wi(Apg), so that we can reformulate this observation in terms of exponential
stability of the semigroups involved. In the state space C([—h,0]; X) this is a well-
known phenomenon; cf. [16, Corollary B-IV-3.10], where different methods are used.
For further results on stability of delay equations in C([—h,0]; X) the reader might
consult [10, 11, 20].
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