B-convexity, the analytic Radon-Nikodym property, and individual stability of C_0 -semigroups

S.-Z. $Huang^1$

and

J.M.A.M. van Neerven²

Mathematisches Institut, Universität Tübingen Auf der Morgenstelle 10, D-72076 Tübingen, Germany

sen-zhong.huang@mathematik.uni-rostock.de J.vanNeerven@twi.tudelft.nl

Let $\mathbf{T} = \{T(t)\}_{t\geq 0}$ be a C_0 -semigroup on a Banach space X, with generator A and growth bound ω . Assume that $x_0 \in X$ is such that the local resolvent $\lambda \mapsto R(\lambda, A)x_0$ admits a bounded holomorphic extension to the right half-plane $\{\operatorname{Re} \lambda > 0\}$. We prove the following results:

- (i) If X has Fourier type $p \in (1, 2]$, then $\lim_{t\to\infty} ||T(t)(\lambda_0 A)^{-\beta}x_0|| = 0$ for all $\beta > \frac{1}{p}$ and $\lambda_0 > \omega$.
- (ii) If X has the analytic RNP, then $\lim_{t\to\infty} ||T(t)(\lambda_0 A)^{-\beta}x_0|| = 0$ for all $\beta > 1$ and $\lambda_0 > \omega$.
- (iii) If X is arbitrary, then weak- $\lim_{t\to\infty} T(t)(\lambda_0 A)^{-\beta}x_0 = 0$ for all $\beta > 1$ and $\lambda_0 > \omega$.

As an application we prove a Tauberian theorem for the Laplace transform of functions with values in a B-convex Banach space.

1991 Mathematics Subject Classification: 47D03, 47D06, 35B40, 44A10

Keywords: C_0 -semigroup, individual stability, resolvent estimates, B-convex, Fourier type, analytic Radon-Nikodym property, Tauberian theorems

¹ Support by the DAAD is gratefully acknowledged. This work is part of a research project supported by the Deutsche Forschungsgemeinschaft DFG. Present address: Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 18055 Rostock, Germany.

² Support by the Human Capital and Mobility programme of the European Community is gratefully acknowledged. Present address: Department of Mathematics, Delft Technical University, P.O. Box 5031, 2600 GA Delft, The Netherlands.

2

Running title: Individual stability

Proofs should be sent to:

J.M.A.M. van Neerven Department of Mathematics Delft University of Technology P.O. Box 5031 2600 GA Delft The Netherlands

0. Introduction

In this paper we address the problem to find sufficient conditions on the local spectra of individual orbits of a C_0 -semigroup $\mathbf{T} = \{T(t)\}_{t\geq 0}$ to ensure their strong convergence to zero. In recent work [1,2,9,15] it has become increasingly clear that most of the 'global' stability theory can be localized to individual orbits $T(\cdot)x$ by replacing the assumptions on the spectrum of the generator A to assumptions of the local spectrum of A at x.

For example, it has been proved by Weis and Wrobel [22] that **T** is exponentially stable, i.e. there exist M > 0 and $\omega > 0$ such that $||T(t)x|| \leq Me^{-\omega t} ||x||_{D(A)}$ for all $x \in D(A)$, if the resolvent $R(\lambda, A) = (\lambda - A)^{-1}$ exists and is uniformly bounded in the right half-plane {Re $\lambda > 0$ }. A little later and independently, in [15] the following local version of this result was proved: if $x_0 \in X$ is such that the map $\lambda \mapsto R(\lambda, A)x_0$ admits a bounded holomorphic extension to {Re $\lambda > 0$ }, then for each $\lambda_0 \in \rho(A)$ there exists a constant M > 0 such that

$$||T(t)R(\lambda_0, A)x_0|| \le M(1+t), \quad t \ge 0.$$

By a standard resolvent expansion argument, the Weis-Wrobel result is an immediate consequence of this. In [9], for Hilbert spaces it was proved that actually

$$\lim_{t \to \infty} \|T(t)R(\lambda_0, A)x_0\| = 0.$$

In this paper, we extend the result of [9] into various directions.

Let $p \in [1, 2]$. A Banach space X has Fourier type p if the Fourier transform extends to a bounded linear operator from $L^p(\mathbb{R}, X)$ into $L^q(\mathbb{R}, X)$, $\frac{1}{p} + \frac{1}{q} = 1$. Trivially, every Banach space has Fourier type p = 1, but certain spaces have nontrivial Fourier type; see Section 1.

A Banach space X has the analytic Radon-Nikodym property if for every $f \in H^p(D, X)$, the Hardy space of all X-valued holomorphic functions on the unit disc D, the radial limits $\lim_{r\uparrow 1} f(re^{i\theta})$ exist for almost all $\theta \in [0, 2\pi]$. This property will be discussed in more detail in Section 2.

Our main results read as follows.

Theorem 0.1. Let X be a Banach space with Fourier type $p \in (1, 2]$ and let A be the generator of a C_0 -semigroup **T** on X. If $x_0 \in X$ is such that the map $\lambda \mapsto R(\lambda, A)x_0$ admits a bounded holomorphic extension in the open right half-plane, then for all $\beta > \frac{1}{n}$ and $\lambda_0 > \omega_0(\mathbf{T})$ we have

$$\lim_{t \to \infty} \|T(t)(\lambda_0 - A)^{-\beta} x_0\| = 0.$$

Theorem 0.2. Let X be a Banach space with the analytic Radon-Nikodym property and let A be the generator of a C_0 -semigroup **T** on X. If $x_0 \in X$ is such that the map $\lambda \mapsto R(\lambda, A)x_0$ admits a bounded holomorphic extension in the open right half-plane, then for all $\beta > 1$ and $\lambda_0 > \omega_0(\mathbf{T})$ we have

$$\lim_{t \to \infty} \|T(t)(\lambda_0 - A)^{-\beta} x_0\| = 0.$$

Theorem 0.3. Let A be the generator of a C_0 -semigroup **T** on an arbitrary Banach space X. If $x_0 \in X$ is such that the map $\lambda \mapsto R(\lambda, A)x_0$ admits a bounded holomorphic extension in the open right half-plane, then for all $\beta > 1$ and $\lambda_0 > \omega_0(\mathbf{T})$ we have

weak-
$$\lim_{t \to \infty} T(t)(\lambda_0 - A)^{-\beta} x_0 = 0$$

In these results, $\omega_0(\mathbf{T})$ denotes the growth bound of \mathbf{T} , i.e. the infimum of all $\omega \in \mathbb{R}$ such that $||T(t)|| \leq M e^{\omega t}$ for some M > 0 and all $t \geq 0$. The restriction to real λ_0 is not essential; by a standard rescaling argument the same results hold for $\lambda_0 \in \mathbb{C}$ with $\operatorname{Re} \lambda_0 > \omega_0(\mathbf{T})$.

We also present a simple example which shows that $\lim_{t\to\infty} ||T(t)(\lambda_0 - A)^{-\beta}x_0|| = 0$ may fail for all $\beta \ge 0$ if no restrictions on the Banach space X are imposed.

The paper is organized as follows. In Section 1 we prove Theorems 0.1 and 0.3 and give a simple application to Tauberian theory for the Laplace transform of functions with values in a Banach space with non-trivial Fourier type. In Section 2 we present the proof of Theorem 0.2 and a second proof of Theorem 0.3.

1. Stability and *B*-convexity

Let A be a closed, densely defined operator in a Banach space X such that $(0, \infty) \subset \varrho(A)$, the resolvent set of A, and assume that there is a constant M > 0 such that

$$\|R(\lambda, A)\| \le \frac{M}{1+\lambda}, \quad \lambda > 0.$$
(1.1)

As is well-known, fractional powers of -A can be defined, and for $0 < \beta < 1$ we have the representation

$$(-A)^{-\beta}x = \frac{\sin \pi\beta}{\pi} \int_0^\infty t^{-\beta} R(t,A) x \, dt, \quad x \in X.$$
 (1.2)

For the theory of fractional powers the reader is referred to [21].

If A is the generator of a C_0 -semigroup **T**, then for all $\lambda_0 > \omega_0(\mathbf{T})$ the operator $A - \lambda_0$ satisfies an estimate of the type (1.1), and the fractional powers of $\lambda_0 - A$ are well-defined. We assume that the reader is familiar with the elementary theory of C_0 -semigroups; we refer to [14,17].

Let $p \in [1,2]$. A Banach space Y has Fourier type p if the Y-valued Hausdorff-Young theorem holds, i.e. if the Fourier transform extends to a bounded linear operator from $L^p(\mathbb{R}, Y)$ into $L^q(\mathbb{R}, Y)$, $\frac{1}{p} + \frac{1}{q} = 1$. Here, as usual, for $f \in L^p(\mathbb{R}, Y) \cap$ $L^1(\mathbb{R}, Y)$, the Fourier transform $\mathcal{F}f$ is defined by

$$\mathcal{F}f(s) := \int_{-\infty}^{\infty} e^{-ist} f(t) dt, \quad s \in \mathbb{R}.$$

Every Banach space has Fourier type 1 but only Banach spaces which are isomorphic to Hilbert spaces have Fourier type 2 [12]. The classical spaces $L^p(\mu)$ have Fourier type min $\{p,q\}, \frac{1}{p} + \frac{1}{q} = 1$ [18].

A Banach space Y is called B-convex if Y does not contain the spaces l_1^n uniformly, or equivalently, if it has non-trivial type, i.e. if it has type p for some $p \in (1, 2]$. The spaces $L^p(\mu)$ are B-convex and more generally, every Lebesgue-Bochner space $L^p(\mu, Y)$ with Y B-convex is B-convex (cf. [13, p. 247]) and every uniformly convex Banach space is B-convex. For more details the reader should consult [19]. Every B-convex Banach space has non-trivial Fourier type , i.e. Fourier type p for some $p \in (1, 2]$ [4], and conversely it is easy to show that a space with non-trivial Fourier type is B-convex (cf. [3, p. 354]).

In most of the results of this section, we investigate the behaviour of the map $t \mapsto PT(t)(\lambda_0 - A)^{-\beta}x_0$, assuming certain growth conditions on $\lambda \mapsto PR(\lambda, A)x_0$; here, P is an arbitrary bounded linear operator from X into some B-convex Banach space Y. Although we are primarily interested in the case Y = X and P = I, this slightly more general setting allows the following applications:

- Taking $Y = \mathbb{C}$ and $P = x^* \in X^*$ we obtain weak analogues of our results;
- We may consider the translation semigroup on $X = BUC(\mathbb{R}_+, Y)$ and the map $P: X \to Y, Pf := f(0)$. In this way the asymptotic behaviour of Y-valued BUC-functions can be studied via semigroup techniques;
- It may be possible to apply our results to matrix semigroups, taking for *P* a coordinate projection. Matrix semigroups arise, e.g., in the study of delay equations and higher order abstract Cauchy problems.

The first lemma imposes no restrictions on the Fourier type of Y.

Lemma 1.1. Let X and Y be Banach spaces and let $P : X \to Y$ be a bounded linear operator. Let A be the generator of a C_0 -semigroup **T** on X and let $x_0 \in X$ be

such that the map $\lambda \mapsto PR(\lambda, A)x_0$ admits a holomorphic extension $F(\lambda)$ in the open right half-plane. Suppose there exist $\omega_0 > \max\{0, \omega_0(\mathbf{T})\}, M > 0$, and $\alpha \in [-1, \infty)$ such that

$$||F(\lambda)|| \le M(1+|\lambda|)^{\alpha}, \quad 0 < \operatorname{Re} \lambda < \omega_0.$$

Fix $\lambda_0 > \max\{0, \omega_0(\mathbf{T})\}$. For all $\beta \ge 0$ with $\beta > \alpha$ the function $\lambda \mapsto PR(\lambda, A)(\lambda_0 - A)^{-\beta}x_0$ (Re $\lambda > \omega_0(\mathbf{T})$) admits a holomorphic extension $g(\lambda)$ in the open right halfplane, and for all $\omega_1 \in (0, \min\{\omega_0, \lambda_0\})$ there exists a constant C > 0 such that

$$\|g(\lambda)\| \le C(1+|\lambda|)^{\max\{\alpha-\beta,-1\}}, \qquad 0 < \operatorname{Re} \lambda < \omega_1.$$
(1.3)

Proof: Fix $\lambda_0 > \max\{0, \omega_0(\mathbf{T})\}$ and $0 < \omega_1 < \min\{\omega_0, \lambda_0\}$. Upon replacing ω_0 by some smaller number and ω_1 by a larger, we may assume that $\max\{0, \omega_0(\mathbf{T})\} < \omega_1 < \omega_0 < \lambda_0$.

Let $\beta = n + \delta$ with $n \in \mathbb{N}$ and $0 \le \delta < 1$ and put $y_0 := R(\lambda_0, A)^n x_0$. In view of the identity

$$R(\lambda, A)y_0 = \frac{R(\lambda, A)x_0}{(\lambda_0 - \lambda)^n} - \sum_{k=0}^{n-1} \frac{R(\lambda_0, A)^{k+1}x_0}{(\lambda_0 - \lambda)^{n-k}},$$

the map $\lambda \mapsto PR(\lambda, A)y_0$ admits a holomorphic extension $F_1(\lambda)$ to {Re $\lambda > 0$ } which satisfies

$$||F_1(\lambda)|| \le M'(1+|\lambda|)^{\max\{\alpha-n,-1\}}, \quad 0 < \operatorname{Re} \lambda < \omega_0,$$
 (1.4)

for some constant M' > 0.

If $\delta = 0$ (so $\beta = n$), then $g = F_1$ and the proof is complete. Therefore, in the rest of the proof we will assume that $\delta \in (0, 1)$.

We have

$$g(\lambda) = PR(\lambda, A)(\lambda_0 - A)^{-\beta} x_0 = PR(\lambda, A)(\lambda_0 - A)^{-\delta} y_0, \quad \text{Re}\lambda > \omega_0(\mathbf{T}).$$

Hence by (1.2) and the resolvent identity, for $\operatorname{Re} \lambda > \omega_0(\mathbf{T})$ we have

$$g(\lambda) = \frac{\sin \pi \delta}{\pi} \int_0^\infty t^{-\delta} PR(\lambda, A) R(\lambda_0 + t, A) y_0 dt$$
$$= \frac{\sin \pi \delta}{\pi} \int_0^\infty t^{-\delta} \frac{PR(\lambda, A) y_0 - PR(\lambda_0 + t, A) y_0}{t + \lambda_0 - \lambda} dt$$

Passing to the holomorphic extension, we see that

$$g(\lambda) = \frac{\sin \pi \delta}{\pi} \int_0^\infty t^{-\delta} \frac{F_1(\lambda) - F_1(\lambda_0 + t)}{t + \lambda_0 - \lambda} dt;$$
(1.5)

by (1.4) and the fact that $\alpha < \beta = n + \delta$ this integral converges absolutely and defines a holomorphic extension of g in the strip $\{0 < \text{Re } \lambda < \lambda_0\}$.

For $\omega > 0$ consider the functions $g_{\omega} : \mathbb{R} \to Y$ defined by

$$g_{\omega}(s) := g(\omega - is), \ s \in \mathbb{R}.$$

Then $g_{\omega}(s) = PR(\omega - is, A)(\lambda_0 - A)^{-\beta}x_0$ for $\omega > \omega_0(\mathbf{T})$. Noting that $||R(\lambda, A)|| \le$ const $\cdot (\operatorname{Re} \lambda - \omega_0)^{-1}$ for all $\operatorname{Re} \lambda > \lambda_0$, we see that $c := \sup_{\tau \ge \lambda_0} \tau ||F_1(\tau)|| < \infty$. Hence by (1.4) and (1.5), for all $0 < \omega < \omega_1$ and $s \in \mathbb{R}$ we have

$$||g_{\omega}(s)|| \leq \frac{\sin \pi \delta}{\pi} \int_{0}^{\infty} t^{-\delta} \frac{M'(1 + (\omega^{2} + s^{2})^{\frac{1}{2}})^{\max\{\alpha - n, -1\}} + c(\lambda_{0} + t)^{-1}}{((t + \lambda_{0} - \omega)^{2} + s^{2})^{\frac{1}{2}}} dt$$

$$\leq \text{const} \cdot (1 + s^{2})^{\frac{1}{2} \cdot \max\{\alpha - n - \delta, -1\}},$$

where the constant is independent of $s \in \mathbb{R}$ and $\omega \in (0, \omega_1)$. ////

We can now state and prove the first main result.

Theorem 1.2. Let P be a bounded linear operator from a Banach space X into a Banach space Y with Fourier type $p \in (1, 2]$. Let A be the generator of a C_0 -semigroup **T** on X and let $x_0 \in X$ be such that the map $\lambda \mapsto PR(\lambda, A)x_0$ admits a holomorphic extension $F(\lambda)$ in the open right half-plane. If there exist $\omega_0 > \max\{0, \omega_0(\mathbf{T})\}, M > 0$, and $\alpha \in [-1, \infty)$ such that

$$||F(\lambda)|| \le M(1+|\lambda|)^{\alpha}, \quad 0 < \operatorname{Re} \lambda < \omega_0,$$

then for all $\beta \geq 0$ with $\beta > \alpha + \frac{1}{p}$ and all $\lambda_0 > \omega_0(\mathbf{T})$ we have

$$PT(\cdot)(\lambda_0 - A)^{-\beta} x_0 \in L^q(\mathbb{R}_+, Y), \quad \frac{1}{p} + \frac{1}{q} = 1.$$

Proof: Without loss of generality we may assume that $\omega_0(\mathbf{T}) \geq 0$. Fix $\lambda_0 > \omega_0(\mathbf{T})$. By taking a smaller value of ω_0 , we may furthermore assume that $\omega_0(\mathbf{T}) < \omega_0 < \lambda_0$. Fix $\omega_1 \in (\omega_0(\mathbf{T}), \omega_0)$.

Let the functions g_{ω} be defined as in the proof of Lemma 1.1. In view of $\beta - \alpha > \frac{1}{p}$ and p > 1 the estimate obtained there shows that $g_{\omega} \in L^p(\mathbb{R}, Y)$, uniformly for $\omega \in (0, \omega_1)$. Let $C := \sup_{0 < \omega < \omega_1} \|g_{\omega}\|_p$.

Since Y has Fourier type p, the Fourier transform $G_{\omega} := \frac{1}{2\pi} \mathcal{F} g_{\omega}$ of g_{ω} defines an element of $L^q(\mathbb{R}, Y)$.

Let $\omega \in (0, \omega_1)$ be fixed. We claim that

$$G_{\omega}(t) = e^{-\omega t} PT(t) (\lambda_0 - A)^{-\beta} x_0 \quad \text{for a.a. } t > 0.$$

To see this we define, for each r > 0, $g_{\omega,r} := g_{\omega} \cdot \chi_{[-r,r]}$. Then $\lim_{r\to\infty} g_{\omega,r} = g_{\omega}$ in the norm of $L^p(\mathbb{R}, Y)$, so for the Fourier transforms $G_{\omega,r} = \frac{1}{2\pi} \mathcal{F} g_{\omega,r}$ we have $\lim_{r\to\infty} G_{\omega,r} = G_{\omega}$ in $L^q(\mathbb{R}, Y)$. Let Γ be the rectangle spanned by the points $\omega - ir$, $\omega + ir$, $\omega_0 + ir$, and $\omega_0 - ir$. By Cauchy's theorem, for all t > 0 we have

$$\frac{1}{2\pi i} \int_{\omega-ir}^{\omega+ir} e^{zt} g(z) \, dz = \frac{1}{2\pi i} \int_{\omega_0-ir}^{\omega_0+ir} e^{zt} g(z) \, dz + R_r(t)
= \frac{1}{2\pi i} \int_{\omega_0-ir}^{\omega_0+ir} e^{zt} PR(z,A) (\lambda_0 - A)^{-\beta} x_0 \, dz + R_r(t),$$
(1.6)

where $R_r(t)$ represents the integrals over the two horizontal parts of Γ . From (1.3) we see that $\lim_{r\to\infty} ||R_r(t)|| = 0$ for all t > 0. Also, by the complex inversion theorem for the Laplace transform, the Cesàro means of the integral on the right hand side in (1.6) converge to $PT(t)(\lambda_0 - A)^{-\beta}x_0$ as $r \to \infty$; here we use that $\omega_0 > \omega_0(\mathbf{T})$. It follows that for all t > 0,

$$\lim_{m \to \infty} \frac{1}{m} \int_0^m \frac{1}{2\pi i} \int_{\omega - ir}^{\omega + ir} e^{zt} g(z) \, dz \, dr = PT(t) (\lambda_0 - A)^{-\beta} x_0. \tag{1.7}$$

On the other hand, for t > 0 we have

$$G_{\omega,r}(t) = \frac{1}{2\pi} \int_{-r}^{r} e^{-ist} g(\omega - is) \, ds = \frac{1}{2\pi i} e^{-\omega t} \int_{\omega - ir}^{\omega + ir} e^{zt} g(z) \, dz \tag{1.8}$$

It follows from (1.7) and (1.8) that

$$\lim_{m \to \infty} \left(\left(\frac{1}{m} \int_0^m G_{\omega, r} \, dr \right)(t) \right) = \lim_{m \to \infty} \frac{1}{m} \int_0^m G_{\omega, r}(t) \, dr$$
$$= e^{-\omega t} PT(t) (\lambda_0 - A)^{-\beta} x_0$$

for all t > 0. In the first identity we used the fact that the map $r \mapsto G_{\omega,r}$ is continuous as a map into $C_0(\mathbb{R}, Y)$ by the Riemann-Lebesgue lemma. Therefore the integrals with respect to r can be regarded as Bochner integrals in $C_0(\mathbb{R}, Y)$ and we may use the continuity of point evaluations.

We also have

$$\lim_{m \to \infty} \left(\frac{1}{m} \int_0^m G_{\omega, r} \, dr \right) = \lim_{r \to \infty} G_{\omega, r} = G_{\omega}$$

in the norm of $L^q(\mathbb{R}, Y)$. Since norm convergent sequences have pointwise a.e. convergent subsequences, we see that $G_{\omega}(t) = e^{-\omega t} PT(t)(\lambda_0 - A)^{-\beta} x_0$ for almost all t > 0 and the claim is proved.

It follows that $t \mapsto e^{-\omega t} PT(t)(\lambda_0 - A)^{-\beta} x_0$ defines an element of $L^q(\mathbb{R}_+, Y)$ and

$$\|e^{-\omega(\cdot)q}PT(\cdot)(\lambda_0 - A)^{-\beta}x_0\|_q \le \|G_{\omega}\|_q \le \frac{c_p}{2\pi}\|g_{\omega}\|_p \le \frac{c_pC}{2\pi}.$$

By the monotone convergence theorem, upon letting $\omega \downarrow 0$ we obtain

$$||PT(\cdot)(\lambda_0 - A)^{-\beta} x_0||_q \le \frac{c_p C}{2\pi}.$$

////

For $\alpha = 0$, this gives Theorem 0.1.

Let $x_0 \in X$ and $x_0^* \in X^*$ be such that the map $\lambda \mapsto \langle x_0^*, R(\lambda, A) x_0 \rangle$ admits a bounded holomorphic extension to $\{\operatorname{Re} \lambda > 0\}$. Taking $Y = \mathbb{C}$ and $P = x_0^*$, Theorem 1.2 shows that

$$\int_0^\infty |\langle x_0^*, T(t)(\lambda_0 - A)^{-\beta} x_0 \rangle|^q < \infty$$

for all $p \in (1, 2]$, $\beta > \frac{1}{p}$; $\frac{1}{p} + \frac{1}{q} = 1$. This is an individual version of [16, Theorem 5.1], and this observation can be used to show that for $\alpha = 0$ and p = 2, the bound $\beta > \alpha + \frac{1}{p} \ (= \frac{1}{2})$ in Theorem 1.2 is optimal in the sense that a counterexample exists for all $\beta \in [0, \frac{1}{2})$. Indeed, assume that the theorem holds for $\alpha = 0$, p = 2 and some $\beta \ge 0$. Suppose that **T** is a C_0 -semigroup on a Banach space X whose resolvent $R(\lambda, A)$ is uniformly bounded in {Re $\lambda > 0$ }. Let $\lambda_0 > \max\{0, \omega_0(\mathbf{T})\}$. Then by the observation just made,

$$\int_0^\infty |\langle x^*, T(t)(\lambda_0 - A)^{-\beta} x \rangle|^2 < \infty, \quad \forall x \in X, \ x^* \in X^*.$$

For each $x \in X$ and $x^* \in X^*$ put

$$f_{x,x^*}(t) := \langle x^*, T(t)(\lambda_0 - A)^{-\beta} x \rangle, \quad t \ge 0.$$

Then $f_{x,x^*} \in L^2(\mathbb{R}_+)$ and by general considerations involving the closed graph theorem there exists a constant C > 0 such that $||f_{x,x^*}||_2 \leq C||x|| \cdot ||x^*||$ for all $x \in X$ and $x^* \in X^*$. By the Plancherel theorem, $s \mapsto \langle x^*, R(is, A)(\lambda_0 - A)^{-\beta}x \rangle \in L^2(\mathbb{R})$. Hence for all $\gamma > \frac{1}{2}$ and $\omega > 0$, by Hölder's inequality the function

$$g_{\omega,x,x^*}(s) := (\omega + is)^{-\gamma} \langle x^*, R(-is, A)(\lambda_0 - A)^{-\beta} x \rangle$$

belongs to $L^1(\mathbb{R})$. In particular, the Fourier transforms $\mathcal{F}g_{\omega,x,x^*}$ are bounded. Claim: $\frac{1}{2\pi}\mathcal{F}g_{\omega,x,x^*}(t) = \langle x^*, T(t)(\omega - A)^{-\gamma}(\lambda_0 - A)^{-\beta}x \rangle$ for all t > 0. Indeed, for t > 0 we have, with $A_{\omega} := A - \omega$,

$$\frac{1}{2\pi} \mathcal{F}g_{\omega,x,x^*}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ist} (\omega + is)^{-\gamma} \langle x^*, R(-is, A)(\lambda_0 - A)^{-\beta} x \rangle \, ds$$
$$= \frac{1}{2\pi i} e^{\omega t} \int_{\operatorname{Re}\lambda = -\omega} e^{\lambda t} (-\lambda)^{-\gamma} \langle x^*, R(\lambda, A_\omega)(\lambda_0 - A)^{-\beta} x \rangle \, d\lambda$$

If $x \in D(A) = D(A_{\omega})$, then by [16, Lemma 3.3] the right most hand equals

$$e^{\omega t} \langle x^*, T_{\omega}(t)(-A_{\omega})^{-\gamma} (\lambda_0 - A)^{-\beta} x \rangle = \langle x^*, T(t)(\omega - A)^{-\gamma} (\lambda_0 - A)^{-\beta} x \rangle,$$

where $T_{\omega}(t) := e^{-\omega t}T(t)$. For general $x \in X$, we choose a sequence $x_n \to x$ with $x_n \in D(A)$ for all n. Then $f_{x_n,x^*} \to f_{x,x^*}$ in $L^2(\mathbb{R}_+)$ for all $x^* \in X^*$, hence $g_{\omega,x_n,x^*} \to g_{\omega,x,x^*}$ in $L^1(\mathbb{R})$, and so $\mathcal{F}g_{\omega,x_n,x^*} \to \mathcal{F}g_{\omega,x,x^*}$ in $C_0(\mathbb{R})$. Therefore, for all t > 0,

$$\frac{1}{2\pi} \mathcal{F}g_{\omega,x,x^*}(t) = \lim_{n \to \infty} \frac{1}{2\pi} \mathcal{F}g_{\omega,x_n,x^*}(t)$$
$$= \lim_{n \to \infty} \langle x^*, T(t)(\omega - A)^{-\gamma}(\lambda_0 - A)^{-\beta}x_n \rangle$$
$$= \langle x^*, T(t)(\omega - A)^{-\gamma}(\lambda_0 - A)^{-\beta}x \rangle.$$

This proves the claim.

It follows that $t \mapsto \langle x^*, T(t)(\omega - A)^{-\gamma}(\lambda_0 - A)^{-\beta}x \rangle$ is bounded, and since this is true for all $x \in X$, $x^* \in X^*$, and $\gamma > \frac{1}{2}$, the uniform boundedness theorem and standard arguments involving fractional powers show that

$$\sup_{t \ge 0} \|T(t)(\lambda_0 - A)^{-\beta - \gamma}\| < \infty$$

for all $\gamma > \frac{1}{2}$. On the other hand, in [22] for each $\delta \in [0, 1)$ an example of a C_0 semigroup **T** is given which has uniformly bounded resolvent in the right half-plane
and satisfies

$$\limsup_{t \to \infty} \|T(t)(\lambda_0 - A)^{-\delta}\| = \infty.$$

Thus, if Theorem 1.2 holds for $\alpha = 0$, p = 2, and $\beta \ge 0$, we must have $\beta \ge \frac{1}{2}$.

For Y = X and P = I and $p \in (1, 2]$, Theorem 1.2 has the following consequence:

Corollary 1.3. Let X be a Banach space with Fourier type $p \in (1, 2]$, let A be the generator of a C_0 -semigroup **T** on X. Let $x_0 \in X$ be such that the local resolvent $\lambda \mapsto R(\lambda, A)x_0$ admits a holomorphic extension $F(\lambda)$ in the open right half-plane. If there exist $\omega_0 > \max\{0, \omega_0(\mathbf{T})\}, M > 0$ and $\alpha \in [-1, \infty)$ such that

$$||F(\lambda)|| \le M(1+|\lambda|)^{\alpha}, \quad 0 < \operatorname{Re} \lambda < \omega_0,$$

then for all $\beta \geq 0$ with $\beta > \alpha + \frac{1}{p}$ and all $\lambda_0 > \omega_0(\mathbf{T})$ we have

$$\lim_{t \to \infty} \|T(t)(\lambda_0 - A)^{-\beta} x_0\| = 0.$$

Proof: By Theorem 1.2 applied to the case Y = X and P = I we find that the function $f(t) := T(t)(\lambda_0 - A)^{-\beta}x_0$ defines an element of $L^q(\mathbb{R}_+, X), \frac{1}{p} + \frac{1}{q} = 1$. Hence a standard argument (cf. the proof of [17, Theorem 4.4.1]) shows that $\lim_{t\to\infty} ||f(t)|| = 0$. ////

Recalling that a B-convex Banach space X has non-trivial Fourier type, we see from Corollary 1.3 that

$$\lim_{t \to \infty} \|T(t)R(\lambda, A)x_0\| = 0$$

whenever **T** is a C_0 -semigroup on a B-convex space X and $x_0 \in X$ is such that the local resolvent $R(\lambda, A)x_0$ admits a bounded holomorphic extension to the open right half-plane. This improves the result of [9] mentioned in the introduction.

We next discuss the analogue of Corollary 1.3 for general operators P. Although the proof of Corollary 1.3 breaks down, for slightly larger values of β we can prove:

Theorem 1.4. Let P be a bounded operator from a Banach space X into a B-convex Banach space Y. Let A be the generator of a C_0 -semigroup \mathbf{T} on X and let $x_0 \in X$ be such that the map $\lambda \mapsto PR(\lambda, A)x_0$ extends to a holomorphic function $F(\lambda)$ in the open right half-plane. If there exist $\omega_0 > \max\{0, \omega_0(\mathbf{T})\}, M > 0$ and $\alpha \in [-1, \infty)$ such that

$$||F(\lambda)|| \le M(1+|\lambda|)^{\alpha}, \quad 0 < \operatorname{Re} \lambda < \omega_0,$$

then for all $\beta > \alpha + 1$ and $\lambda_0 > \max\{0, \omega_0(\mathbf{T})\}$ we have

$$\lim_{t \to \infty} \|PT(t)(\lambda_0 - A)^{-\beta} x_0\| = 0.$$

Proof: Without loss of generality we may assume that $\omega_0(\mathbf{T}) \geq 0$. Fix $\lambda_0 > \omega_0(\mathbf{T})$. Let $p \in (1,2]$ be the Fourier type of Y. Then Y has also Fourier type p' for all $p' \in (1,p]$. Hence, since $\beta > 0$ by assumption, upon replacing p by a smaller value we may assume that $\beta > \frac{1}{q}$, $\frac{1}{p} + \frac{1}{q} = 1$. This enables us to choose $\delta \geq 0$ such that $\delta > \alpha + \frac{1}{p}$ in such a way that $\frac{1}{q} < \gamma := \beta - \delta < 1$. Consider the functions

$$f(t) := PT(t)(\lambda_0 - A)^{-\delta} x_0, \quad g(t) := PT(t)(\lambda_0 - A)^{-\beta} x_0; \quad t \ge 0.$$

By Theorem 1.2, $f \in L^q(\mathbb{R}_+, Y)$. For $t \ge 0$ we have

$$g(t) = PT(t)(\lambda_0 - A)^{-\delta - \gamma} x_0$$

= $PT(t)(\lambda_0 - A)^{-\delta} \left(\frac{\sin \pi \gamma}{\pi} \int_0^\infty s^{-\gamma} R(\lambda_0 + s, A) x_0 \, ds\right)$
= $\frac{\sin \pi \gamma}{\pi} P(\lambda_0 - A)^{-\delta} \int_0^\infty s^{-\gamma} \int_0^\infty e^{-(\lambda_0 + s)r} T(t + r) x_0 \, dr \, ds$
= $\frac{\sin \pi \gamma}{\pi} \int_0^\infty s^{-\gamma} \int_0^\infty e^{-(\lambda_0 + s)r} f(t + r) x_0 \, dr \, ds.$ (1.9)

Now,

$$\left\| \int_{0}^{\infty} e^{-(\lambda_{0}+s)r} f(t+r) x_{0} \, dr \right\| \leq \left(\int_{0}^{\infty} e^{-(\lambda_{0}+s)rp} \, dr \right)^{\frac{1}{p}} \cdot \left(\int_{0}^{\infty} \|f(t+r)\|^{q} \, dr \right)^{\frac{1}{q}} \\ = \frac{1}{(p(\lambda_{0}+s))^{\frac{1}{p}}} \left(\int_{t}^{\infty} \|f(r)\|^{q} \, dr \right)^{\frac{1}{q}}.$$

Combining this estimate with (1.9) yields

$$||g(t)|| \le \frac{\sin \pi \gamma}{\pi p^{\frac{1}{p}}} \int_0^\infty s^{-\gamma} (\lambda_0 + s)^{-\frac{1}{p}} \, ds \cdot \left(\int_t^\infty ||f(r)||^q \, dr \right)^{\frac{1}{q}}.$$

Since $\frac{1}{q} < \gamma < 1$, the first integral in the above expression is absolutely convergent, and the second tends to 0 as $t \to \infty$. This proves that $\lim_{t\to\infty} ||g(t)|| = 0$. ////

Theorem 0.3 is a special case of Theorem 1.4 by taking $\alpha = 0$, $Y = \mathbb{C}$, and $P = x^*$. Of course, Theorem 0.3 can be proved without reference to *B*-convexity: Take Y = X and $P = x^*$ in the proofs of Theorems 1.2 and 1.5 and use the Hausdorff-Young theorem instead of the Fourier type. A similar remark applies to Corollary 2.3 below.

For $\alpha = 0$, Theorem 1.4 fails for every $0 \leq \beta < 1$ (the case $\beta = 1$ remains open). Indeed, consider the case that the resolvent $R(\lambda, A)$ itself is uniformly bounded in $\{\operatorname{Re} \lambda > 0\}$. Then the assumptions of Theorem 1.4 are satisfied for $\alpha = 0$, all $x_0 \in X$, and all functionals $P = x^* \in X^*$. Hence if the theorem holds for some $\beta \geq 0$, then from the uniform boundedness principle we conclude

$$\sup_{t\geq 0} \|T(t)(\lambda_0 - A)^{-\beta}\| < \infty.$$

For $0 \leq \beta < 1$, this contradicts the example in [22] cited in the discussion after Theorem 1.2.

We next turn to a version of Theorem 1.4 which holds for $\beta > \alpha + \frac{1}{p}$ rather than $\beta > \alpha + 1$. The price for this is the a priori assumption that $PT(\cdot)x_0$ is bounded.

Theorem 1.5. Let P be a bounded linear operator from a Banach space X into a Banach space Y with Fourier type $p \in (1, 2]$. Let A be the generator of a C_0 -semigroup **T** on X and let $x_0 \in X$ be such that the orbit $t \mapsto PT(t)x_0$ is bounded and $\lambda \mapsto PR(\lambda, A)x_0$ admits a holomorphic extension $F(\lambda)$ to the open right half-plane. If there exist $\omega_0 > \max\{0, \omega_0(\mathbf{T})\}, M > 0$ and $\alpha \in [-1, \infty)$ such that

$$||F(\lambda)|| \le M(1+|\lambda|)^{\alpha}, \quad 0 < \operatorname{Re} \lambda < \omega_0,$$

then for all $\lambda_0 > \omega_0(\mathbf{T})$ and $\beta \ge 1$ with $\beta > \alpha + \frac{1}{p}$ we have

$$\lim_{t \to \infty} \|PT(t)(\lambda_0 - A)^{-\beta} x_0\| = 0$$

Proof: Without loss of generality we may assume that $\omega_0(\mathbf{T}) \ge 0$. Fix $\lambda_0 > \omega_0(\mathbf{T})$ and $\beta \ge 1$ with $\beta > \alpha + \frac{1}{p}$. For each $\delta \ge 0$ consider the function

$$f_{\delta}(t) := PT(t)(\lambda_0 - A)^{-\delta} x_0, \quad t \ge 0.$$

We have to show that $\lim_{t\to\infty} ||f_{\beta}(t)|| = 0$. Theorem 1.2 shows that $f_{\beta} \in L^q(\mathbb{R}, Y)$, $\frac{1}{p} + \frac{1}{q} = 1$.

Let $\delta = n + \gamma$ with $n \in \mathbb{N}$ and $\gamma \in [0, 1)$. If $\gamma \in (0, 1)$, then

$$\begin{aligned} \|PT(\tau)(\lambda_0 - A)^{-\gamma} x_0\| &= \frac{\sin \pi \gamma}{\gamma} \left\| \int_0^\infty r^{-\gamma} PT(\tau) R(\lambda_0 + r, A) x_0 \, dr \right\| \\ &= \frac{\sin \pi \gamma}{\gamma} \left\| \int_0^\infty r^{-\gamma} \int_0^\infty e^{-(\lambda_0 + r)s} PT(\tau + s) x_0 \, ds \, dr \right\| \\ &\leq \frac{\sin \pi \gamma}{\gamma} \int_0^\infty Cr^{-\gamma} (\lambda_0 + r)^{-1} \, dr, \end{aligned}$$

where $C := \sup_{t \ge 0} \|PT(t)x_0\|$. If $\gamma = 0$, then $\|PT(\tau)x_0\| \le C$. In either case, we see that $C_{\gamma} := \sup_{\tau \ge 0} \|PT(\tau)(\lambda_0 - A)^{-\gamma}x_0\| < \infty$. Using this, we obtain

$$\|f_{\delta}(t)\| = \left\| \int_{0}^{\infty} \dots \int_{0}^{\infty} e^{-\lambda_{0}(s_{1}+\dots+s_{n})} PT(t+s_{1}+\dots+s_{n})(\lambda_{0}-A)^{-\gamma}x_{0} \, ds_{n} \dots ds_{1} \right\|$$

$$\leq C_{\gamma}\lambda_{0}^{-n}$$

for all $t \ge 0$, so f_{δ} is bounded. In particular, such an estimate holds for f_{β} . Also, f_{β} is differentiable and

$$f'_{\beta}(t) = PT(t)A(\lambda_0 - A)^{-\beta}x_0 = -f_{\beta-1}(t) + \lambda_0 f_{\beta}(t).$$

Therefore, also $f'_{\beta}(\cdot)$ is bounded (here we use that $\beta \geq 1$) and hence the bounded function $f_{\beta}(\cdot)$ is uniformly continuous. Then also $||f_{\beta}(\cdot)||^{q} = ||PT(\cdot)(\lambda_{0} - A)^{-\beta}x_{0}||^{q}$ is bounded and uniformly continuous, and it is an immediate consequence of Theorem 1.2 that $||f_{\beta}(t)|| \to 0$ as $t \to \infty$. //// Assuming boundedness and uniform continuity of $PT(\cdot)x_0$, we obtain a stronger result. Let us say that a function F is polynomially bounded in the strip $\{0 < \text{Re } \lambda < \omega_0\}$ if there exist M > 0 and $n \in \mathbb{N}$ such that

$$||F(\lambda)|| \le M(1+|\lambda|)^n, \quad 0 < \operatorname{Re} \lambda < \omega_0.$$
(1.10)

Corollary 1.6. Let *P* be a bounded linear operator from *X* into a *B*-convex space *Y*. Let *A* be the generator of a C_0 -semigroup **T** on *X* and let $x_0 \in X$ be such that the orbit $t \mapsto PT(t)x_0$ is bounded and uniformly continuous. If the map $\lambda \mapsto PR(\lambda, A)x_0$ extends to a holomorphic function in the open right half-plane which is polynomially bounded in $\{0 < \operatorname{Re} \lambda < \omega_0\}$ for some $\omega_0 > \max\{0, \omega_0(\mathbf{T})\}$, then $\lim_{t\to\infty} \|PT(t)x_0\| = 0$.

Proof: Fix $\lambda > \omega_0(\mathbf{T})$. Let **S** denote the left translation semigroup on the space $Z := BUC(\mathbb{R}_+, Y)$ defined by $(S(t)f)(s) = f(t+s); s, t \ge 0$. The function $f(t) := PT(t)x_0$ defines an element of Z. From the identity

$$PT(t)R(\lambda,A)^{n+1}x_0 = \int_0^\infty \dots \int_0^\infty e^{-\lambda(s_1+\dots+s_{n+1})} PT(s_1+\dots+s_{n+1}+t)x_0 \, ds_{n+1}\dots \, ds_1$$

it is easy to see that also $f_{\lambda}(t) := PT(t)R(\lambda, A)^{n+1}x_0$ defines an element of Z; here $n \in \mathbb{N}$ is chosen such that (1.10) holds.

By Theorem 1.5,

$$\lim_{t \to \infty} \|S(t)f_{\lambda}\|_{Z} = \lim_{t \to \infty} \left(\sup_{s \ge 0} \|PT(t+s)R(\lambda,A)^{n+1}x_{0}\| \right) = 0.$$

Therefore, $f_{\lambda} \in Z_0 := \{f \in Z : \lim_{t \to \infty} \|S(t)f\|_Z = 0\}$. For $\operatorname{Re} \lambda > \omega_0(\mathbf{T})$ and $s \ge 0$ we have, denoting by B the generator of \mathbf{S} ,

$$(R(\lambda, B)^{n+1}f)(s) = \int_0^\infty \dots \int_0^\infty e^{-\lambda(t_1 + \dots + t_{n+1})} (S(t_1 + \dots + t_{n+1})f)(s) dt_{n+1} \dots dt_1$$

= $\int_0^\infty \dots \int_0^\infty e^{-\lambda(t_1 + \dots + t_{n+1})} PT(t_1 + \dots + t_{n+1} + s) x_0 dt_{n+1} \dots dt_1$
= $PT(s)R(\lambda, A)^{n+1}x_0 = f_\lambda(s).$

Hence $f = \lim_{\lambda \to \infty} \lambda^{n+1} R(\lambda, B)^{n+1} f = \lim_{\lambda \to \infty} \lambda^{n+1} f_{\lambda} \in Z_0$ by the closedness of Z_0 . Hence $\lim_{t\to\infty} \|S(t)f\| = 0$, and thus $\lim_{t\to\infty} \|PT(t)x_0\| = \lim_{t\to\infty} \|(S(t)f)(0)\| = 0$. ////

The technique of this proof goes back to Kantorovitz [10]; see [2] for another application.

The following example shows that our results break down if no restrictions on the Banach space X are imposed.

Example 1.7. Let $X = C_0(\mathbb{R})$ and consider the left translation group **S** on X. Let B be its generator. Let $f \in X$ be any non-zero function with support in [0, 1]. Then for all $\operatorname{Re} \lambda > 0$ and $s \in \mathbb{R}$ we have

$$\left| (R(\lambda, B)f)(s) \right| = \left| \int_0^\infty e^{-\lambda t} f(s+t) \, dt \right| \le \|f\|_\infty.$$

Consequently,

$$\sup_{\operatorname{Re}\lambda>0} \|R(\lambda,B)f\|_{\infty} \le \|f\|_{\infty},$$

but since **S** is isometric and $(\lambda_0 - B)^{-\beta}$ is injective we see that

$$\lim_{t \to \infty} \|S(t)(\lambda_0 - B)^{-\beta} f\|_{\infty} = \|(\lambda_0 - B)^{-\beta} f\|_{\infty} \neq 0; \quad \forall \beta \ge 0, \, \lambda_0 > 0.$$

As an application of Corollary 1.6 we shall derive a Tauberian theorem for the Laplace transform of functions in $L^{\infty}(\mathbb{R}_+, Y)$, where Y is a *B*-convex Banach space. This serves merely as an illustration of what can be done with the above theory; by considering bounded, uniformly continuous orbits much of the sharpness of the preceding results is lost and it may well be that more direct methods will lead to a sharper Tauberian theorem (cf. the remarks at the end of the paper).

Lemma 1.8. Let Y be a B-convex Banach space and assume that the Laplace transform \hat{g} of a function $g \in BUC(\mathbb{R}_+, Y)$ is polynomially bounded in some strip $\{0 < \operatorname{Re} \lambda < \omega_0\}$. Then $\lim_{t \to \infty} ||g(t)|| = 0$.

Proof: Consider the left translation semigroup **S** in $BUC(\mathbb{R}_+, Y)$ with generator B. Let P be the bounded operator from $BUC(\mathbb{R}_+, Y)$ into Y defined by Ph = h(0). Then $PS(t)g = g(t) \otimes \mathbf{1}$ and $PR(\lambda, B)g = \hat{g}(\lambda) \otimes \mathbf{1}$ for all $t \ge 0$ and $\operatorname{Re} \lambda > 0$. Since Y is B-convex, we can apply Corollary 1.6 to **S** and deduce that $\lim_{t\to\infty} ||g(t)|| = \lim_{t\to\infty} ||PS(t)g|| = 0$. ////

Theorem 1.9. Let Y be a B-convex Banach space and let $f \in L^{\infty}(\mathbb{R}_+, Y)$. If the Laplace transform \hat{f} is polynomially bounded in some strip $\{0 < \operatorname{Re} \lambda < \omega_0\}$ and can be holomorphically extended to a neighbourhood of 0, then

$$\lim_{t \to \infty} \left\| \int_0^t f(s) \, ds - \hat{f}(0) \right\| = 0.$$

Proof: The proof is inspired by [2, Theorem 4.3].

Upon replacing f(t) by $f(t) - e^{-t}\hat{f}(0)$ we may assume that $\hat{f}(0) = 0$. By a special case of Ingham's Tauberian theorem the function $g(t) := \int_0^t f(s) ds$ is bounded (see [11] for an elegant and elementary proof). Moreover, g is uniformly continuous and in

view of $\hat{f}(0) = 0$, 0 is a removable singularity of $\hat{g}(\lambda) = \lambda^{-1} \hat{f}(\lambda)$. It follows that \hat{g} is polynomially bounded in $\{0 < \text{Re } \lambda < \omega_0\}$. Therefore by Lemma 1.8,

$$\lim_{t \to \infty} \left\| \int_0^t f(s) \, ds \right\| = \lim_{t \to \infty} \|g(t)\| = 0.$$

||||

2. Stability and the analytic Radon-Nikodym property

In this section we will prove some analogues of the previous results for the case p = 1. As it turns out, this is possible if one assumes Y has the analytic Radon-Nikodym property.

We start by recalling some facts concerning vector-valued Hardy spaces over the disc $D = \{z \in \mathbb{C} : |z| < 1\}.$

For $p \in [1,\infty]$ we let $H^p(D,Y)$ denote the set of all holomorphic functions $f: D \to Y$ for which

$$||f||_p := \sup_{0 < r < 1} \left(\int_0^{2\pi} ||f(re^{i\theta})||^p \, d\theta \right)^{\frac{1}{p}} < \infty.$$

In case $p = \infty$ we interpret the above integral in terms of the supremum norm in the obvious way. It is not difficult to see that $H^p(D, Y)$ is a Banach space with respect to the norm $\|\cdot\|_p$. We let $H^p_0(D, Y)$ denote the closed subspace of $H^p(D, Y)$ consisting of all functions f for which the radial limits $\tilde{f}(e^{i\theta}) := \lim_{r \uparrow 1} f(re^{i\theta})$ exist for almost all θ . By Fatou's lemma,

$$\int_0^{2\pi} \|\tilde{f}(e^{i\theta})\|^p \, d\theta \le \liminf_{r \uparrow 1} \int_0^{2\pi} \|f(re^{i\theta})\|^p \, d\theta,$$

which shows that the boundary function \tilde{f} , if it exists a.e., belongs to $L^p(\Gamma)$, where $\Gamma = \{z \in \mathbb{C} : |z| = 1\}$. In this case, f can be recovered from \tilde{f} by the Poisson integral

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \tilde{f}(e^{i\eta}) \frac{1 - r^2}{1 - 2r\cos(\theta - \eta) + r^2} \, d\eta.$$

Defining $f_r(e^{i\theta}) := f(re^{i\theta})$, as in the scalar case it follows from this representation that

$$\lim_{r\uparrow 1} \|\tilde{f} - f_r\|_{L^p(\Gamma)} = 0.$$

A Banach space Y is said to have the analytic Radon-Nikodym property if $H_0^p(D,Y) = H^p(D,Y)$. Equivalently, Y has the analytic Radon-Nikodym property if for all $f \in H^p(D,Y)$ the radial limits $\tilde{f}(e^{i\theta}) := \lim_{r \uparrow 1} f(re^{i\theta})$ exist for almost all θ , and in this case we actually have $f_r \to \tilde{f}$ in the L^p -norm.

The role of the exponent p needs some clarification: it can be shown that if $H_0^p(D,Y) = H^p(D,Y)$ holds for some $p \in [1,\infty]$, then it holds for all $p \in [1,\infty]$.

The following facts are well-known:

- (i) If Y has the Radon-Nikodym property, then Y has the analytic Radon-Nikodym property;
- (ii) If Y has the analytic Radon-Nikodym property, then Y contains no closed subspace isomorphic to c_0 ;
- (iii) A Banach lattice Y has the analytic Radon-Nikodym property if and only if Y contains no closed subspace isomorphic to c_0 .

It follows from (i) that every reflexive Banach space and every separable dual Banach space has the analytic Radon-Nikodym property. By (iii), the spaces $L^{1}(\mu)$ have the analytic Radon-Nikoym property. The proofs can be found in [5,6].

By mapping a rectangle conformally onto the unit disc it is not difficult to prove the following result; cf. [7].

Proposition 2.1. Let Δ and Δ_r , 0 < r < 1, be the rectangles in \mathbb{C} spanned by the points $\pm a \pm ib$ and $\pm ra \pm irb$, respectively. Let f be a holomorphic Y-valued function in the interior of Δ . Assume that Y has the analytic Radon-Nikodym property and that

$$\sup_{0 < r < 1} \int_{\Delta_r} \|f(z)\| \, |dz| < \infty.$$

Then, the strong limits $\lim_{r\uparrow 1} f(rz)$ exist for almost all $z \in \Delta$ and define a function $\tilde{f} \in L^1(\Delta)$. Moreover,

$$\lim_{r\uparrow 1} \int_{\Delta} \|\tilde{f}(z) - f(rz)\| \, |dz| = 0$$

////

Theorem 2.2. Let P be a bounded operator from a Banach space X into a Banach space Y with the analytic Radon-Nikodym property. Let A be the generator of a C_0 -semigroup **T** on X. Assume that for some $x_0 \in X$, the map $\lambda \mapsto PR(\lambda, A)x_0$ admits a holomorphic extension $F(\lambda)$ to the open right half-plane. If there exist $\omega_0 > \max\{0, \omega_0(\mathbf{T})\}, M > 0$ and $\alpha \in [-1, \infty)$ such that

$$||F(\lambda)|| \le M(1+|\lambda|)^{\alpha}, \quad 0 < \operatorname{Re} \lambda < \omega_0,$$

then for all $\lambda_0 > \max\{0, \omega_0(\mathbf{T})\}\$ and $\beta > \alpha + 1$ we have

$$\lim_{t \to \infty} \|PT(t)(\lambda_0 - A)^{-\beta} x_0\| = 0.$$

Proof: Without loss of generality we may assume that $\omega_0(\mathbf{T}) \ge 0$. Fix $\lambda_0 > \omega_0(\mathbf{T})$. By taking a smaller value of ω_0 we may assume that $\omega_0(\mathbf{T}) < \omega_0 < \lambda_0$.

Fix $\gamma \in (\alpha + 1, \beta)$ and let $\delta := \beta - \gamma$.

Let $g(\lambda)$ denote the holomorphic extension in the open right half-plane of the function $\lambda \mapsto PR(\lambda, A)(\lambda_0 - A)^{-\gamma}x_0$. Fix $\omega_1 \in (\omega_0(\mathbf{T}), \omega_0)$. On the strip $\{0 < \operatorname{Re} \lambda < \omega_1\}$ we define $h(\lambda) := (\omega_0 - \lambda)^{-\delta}g(\lambda)$. By Lemma 1.1, for each $\zeta \in \mathbb{C}$ with $0 < \operatorname{Re} \zeta < \omega_1$ the function

$$s \mapsto h_{\zeta}(s) := h(\zeta - is) = (\omega_0 - \zeta + is)^{-\delta} g(\zeta - is)$$

belongs to $L^1(\mathbb{R}, Y)$, and the map $\zeta \mapsto h_{\zeta}$ is a bounded $L^1(\mathbb{R}, Y)$ -valued holomorphic function on $\{0 < \operatorname{Re} \zeta < \omega_1\}$.

Arguing as in the proof of the Claim following Theorem 1.2 we see that for $\omega \in (\omega_0(\mathbf{T}), \omega_1)$ the Fourier transform of h_{ω} is given by

$$\frac{1}{2\pi}\mathcal{F}h_{\omega}(t) = e^{-\omega t}PT(t)(\omega_0 - A)^{-\delta}(\lambda_0 - A)^{-\gamma}x_0.$$
(2.1)

Hence by uniqueness of analytic continuation,

$$\frac{1}{2\pi}\mathcal{F}h_{\zeta}(t) = e^{-\zeta t}PT(t)(\omega_0 - A)^{-\delta}(\lambda_0 - A)^{-\gamma}x_0, \quad 0 < \operatorname{Re}\zeta < \omega_1,$$

and we conclude that (2.1) holds for all $\omega \in (0, \omega_1)$.

Since Y has the analytic Radon-Nikodym property, we may apply Proposition 2.1 and conclude that the boundary function \tilde{h} of h exists a.e. on $i\mathbb{R}$, defines an element in $L^1_{loc}(i\mathbb{R}, Y)$, and that

$$\lim_{\omega \downarrow 0} \int_{-r}^{r} \|\tilde{h}(is) - h(\omega + is)\| \, ds = 0$$

for all r > 0. But then (1.3) and the definition of h easily implies that we actually have $\tilde{h} \in L^1(i\mathbb{R}, Y)$ and

$$\lim_{\omega \downarrow 0} \int_{-\infty}^{\infty} \|\tilde{h}(is) - h(\omega + is)\| \, ds = 0.$$

Hence by passing to the limit $\omega \downarrow 0$ in (2.1), we obtain

$$PT(\cdot)(\omega_0 - A)^{-\delta}(\lambda_0 - A)^{-\gamma}x_0 = \lim_{\omega \downarrow 0} e^{-\omega t}PT(\cdot)(\omega_0 - A)^{-\delta}(\lambda_0 - A)^{-\beta}x_0$$
$$= \frac{1}{2\pi}\lim_{\omega \downarrow 0} \mathcal{F}h(\omega - i(\cdot))(t) = \frac{1}{2\pi}\mathcal{F}\tilde{h}(-i(\cdot))(t).$$

Therefore, $PT(\cdot)(\omega_0 - A)^{-\delta}(\lambda_0 - A)^{-\gamma}x_0 \in C_0(\mathbb{R}_+, Y)$ by the Riemann-Lebesgue lemma. Recalling that $\delta + \gamma = \beta$, by standard arguments involving fractional powers this will give the desired result. ////

Theorem 0.2 is a special case of this.

Taking $Y = \mathbb{C}$ and $P := x_0^* \in X^*$, we obtain the following result, which contains Theorem 0.3 as a special case.

Corollary 2.3. Let A be the generator of a C_0 -semigroup \mathbf{T} on a Banach space X. Assume that for some $x_0 \in X$ and $x_0^* \in X^*$, the map $\lambda \mapsto \langle x_0^*, R(\lambda, A) x_0 \rangle$ admits a holomorphic extension $F(\lambda)$ to the open right half-plane. If there exist $\omega_0 > \max\{0, \omega_0(\mathbf{T})\}, M > 0$ and $\alpha \in [-1, \infty)$ such that

$$|F(\lambda)| \le M(1+|\lambda|)^{\alpha}, \quad 0 < \operatorname{Re} \lambda < \omega_0,$$

then for all $\lambda_0 > \max\{0, \omega_0(\mathbf{T})\}$ and $\beta \ge 0$ with $\beta > \alpha + 1$ we have

$$\lim_{t \to \infty} \langle x_0^*, T(t)(\lambda_0 - A)^{-\beta} x_0 \rangle = 0$$

The case $\alpha = 0$ of Theorem 2.2 can be used to show that Corollary 1.6, and therefore also Theorem 1.9, remains valid if B-convexity is replaced by the analytic Radon-Nikodym property. It is possible, however, to modify the proof of [11] to prove in a more direct way the stronger result: if Y has the analytic Radon-Nikodym property and $f \in L^{\infty}(\mathbb{R}_+, Y)$ is such that for all r > 0 we have

$$\limsup_{\omega \downarrow 0} \int_{-r}^{r} \left\| \frac{\hat{f}(\omega + is) - \hat{f}(0)}{\omega + is} \right\| \, ds < \infty,$$

then $\lim_{t\to\infty} \left\| \int_0^t f(s) \, ds - \hat{f}(0) \right\| = 0$. This was shown by Chill [7] and suggests that it may be possible to prove a similar result assuming *B*-convexity. It is important in this context to point out that *B*-convexity and the analytic Radon-Nikodym property are unrelated concepts in the sense that none implies the other. In fact, $L^1[0, 1]$ has the analytic Radon-Nikodym property (by observation (iii) at the beginning of this section) but no non-trivial type, so it is not *B*-convex. The following example shows that there exist *B*-convex spaces without the analytic Radon-Nikodym property:

Example 2.4. By the function space analogue of a result in [20] (the details are given in [24]), the operator of integration $I: L^1[0, 1] \to C[0, 1]$,

$$I(f)(t) := \int_0^t f(s) \, ds$$

factors through a space with type 2. Denoting $f_0(t) := t$ and defining $T : C[0, 1] \to C[0, 1]$ by $T(f) := f - f(1)f_0$, also $J := T \circ I$ factors through a space with type

2. Identifying [0, 1) with the unit circle Γ in the complex plane and letting $e_n(\theta) := \exp(2\pi i n \theta), \ \theta \in \Gamma, \ n \in \mathbb{Z}$, we can represent J as an operator from $L^1(\Gamma)$ into $C(\Gamma)$ by

$$J(e_n) = e_n/(2\pi i n), \quad n \in \mathbb{Z} \setminus \{0\}, \qquad J(e_0) = 0.$$

Recalling that type passes to quotients, it follows that the quotient operator J_0 : $L^1(\Gamma)/H_0^1 \to C(\Gamma)/A_0$ induced by J factors through a space with type 2; here H_0^1 and A_0 denote the closed linear span in $L^1(\Gamma)$ and $C(\Gamma)$, respectively, of $\{\theta \mapsto \exp(2\pi i n \theta) :$ $n = -1, -2, ...\}$. On the other hand, by a result of Pisier [8, Proposition V.5], J_0 cannot be factored through a space with the analytic Radon-Nikodym property.

Acknowledgement - The authors thank Professor Gilles Pisier for pointing our to us Example 2.4, Shangquan Bu for a helpful conversation, and Charles Batty and Ralph Chill for pointing out a flaw in a previous version of this paper.

Note added in proof - Recently, V. Wrobel [23] has shown that the bound $\beta > \frac{1}{p}$ in Theorem 0.1 is the best possible, in the sense that a counterexample can be constructed for every $\beta \in [0, \frac{1}{p})$. Whether or not the theorem holds for $\beta = \frac{1}{p}$ remains an open problem. In the same paper, an extension Theorem 0.1 into a different direction is obtained.

References

- C. J. K. Batty, J. M. A. M. van Neerven, and F. Räbiger, Local spectra and individual stability of uniformly bounded C₀-semigroups, *Trans. Amer. Math.* Soc. 350 (1998), 2071–2085.
- C. J. K. Batty, J. M. A. M. van Neerven, and F. Räbiger, Tauberian theorems and stability of solutions of the Cauchy problem, *Trans. Amer. Math. Soc.* 350 (1998), 2087–2103.
- O. Blasco and A. Pelczynski, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, *Trans. Am. Math. Soc.* 323 (1991), 335–367.
- 4. J. Bourgain, Vector-valued Hausdorff-Young inequalities and applications, *in*: Springer Lect. Notes in Math. 1317, Springer-Verlag, 1988, pp. 239–249.

- A. V. Bukhvalov, Hardy spaces of vector-valued functions, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk. SSSR 65 (1976), 5–16.
- A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in Banach space, *Math. Notes* **31** (1976), 104– 110.
- R. Chill, Tauberian theorems for vector-valued Fourier and Laplace transforms, Studia Math. 128 (1998), 55–69.
- 8. N. Ghoussoub, B. Maurey, and W. Schachermayer, Pluriharmonically dentable complex Banach spaces, J. Reine Angew. Math. 402 (1989), 76–127.
- 9. S. Z. Huang, A local version of Gearhart's theorem, to appear in: *Semigroup* Forum.
- S. Kantorovitz, The Hille-Yosida space of an arbitrary operator, J. Math. Anal. Appl. 136 (1988), 107–111.
- 11. J. Korevaar, On Newman's quick way to the prime number theorem, *Math. Intelligencer* **4** (1982), 108–115.
- 12. S. Kwapien, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, *Studia Math.* 44 (1972), 583–595.
- M. Ledoux and M. Talagrand, "Probability in Banach Spaces", Ergebnisse der Math. u. ihre Grenzgebiete, 3. Folge, Band 23, Springer-Verlag, 1991.
- 14. R. Nagel (ed.), "One-parameter Semigroups of Positive Operators", Lect. Notes in Math. 1184, Springer-Verlag, 1986.
- 15. J. M. A. M. van Neerven, Individual stability of C_0 -semigroups and uniform boundedness of the local resolvent, *Semigroup Forum* **53** (1996), 155–161.
- 16. J. M. A. M. van Neerven, B. Straub, and L. Weis, On the asymptotic behaviour of a semigroup of linear operators, *Indag. Math. N.S.* 6 (1995), 453–476.
- 17. A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations", Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- J. Peetre, Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Sem. Mat. Univ. Padova 42 (1969), 15–26.
- G. Pisier, "Factorisation of Linear Operators and Geometry of Banach Spaces", CBMS, Regional Conference Series, No. 60, AMS, Providence, 1986.
- 20. G. Pisier and Q. H. Xu, Random series in the real interpolation spaces between the spaces v_p , *in*: "Geometrical Aspects of Functional Analysis" (1985/86), Lect. Notes in Math. 1267, Springer-Verlag, 1987, pp. 185–209.

- H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators", Berlin VEB, 1978.
- 22. L. Weis and V. Wrobel, Asymptotic behavior of C_0 -semigroups in Banach spaces, *Proc. Amer. Math. Soc.* **124** (1996), 3663–3671.
- 23. V. Wrobel, Optimal individual stability estimates for C_0 -semigroups in Banach spaces, to appear in: Trans. Amer. Math. Soc.
- 24. Q. H. Xu, Espaces d'interpolation réels entre les espaces V_p : propriétés géométriques et applications probabilistes, *in*: "Séminaire d'Analyse Fonctionelle" (1985-87), Publ. Math. Univ. Paris VII, 28, Univ. Paris VII, Paris, 1988, pp. 77–123.