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sen-zhong.huang@mathematik.uni-rostock.de

J.vanNeerven@twi.tudelft.nl

Let T = {T (t)}t≥0 be a C0-semigroup on a Banach space X , with generator A and growth

bound ω. Assume that x0 ∈ X is such that the local resolvent λ 7→ R(λ,A)x0 admits a

bounded holomorphic extension to the right half-plane {Reλ > 0}. We prove the following

results:

(i) If X has Fourier type p ∈ (1, 2], then limt→∞ ‖T (t)(λ0 − A)−βx0‖ = 0 for all β > 1
p

and λ0 > ω .

(ii) If X has the analytic RNP, then limt→∞ ‖T (t)(λ0 − A)−βx0‖ = 0 for all β > 1 and

λ0 > ω.

(iii) If X is arbitrary, then weak-limt→∞ T (t)(λ0 −A)−βx0 = 0 for all β > 1 and λ0 > ω.

As an application we prove a Tauberian theorem for the Laplace transform of functions with values

in a B−convex Banach space.
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0. Introduction

In this paper we address the problem to find sufficient conditions on the local spectra of

individual orbits of a C0−semigroup T = {T (t)}t≥0 to ensure their strong convergence

to zero. In recent work [1,2,9,15] it has become increasingly clear that most of the

‘global’ stability theory can be localized to individual orbits T (·)x by replacing the

assumptions on the spectrum of the generator A to assumptions of the local spectrum

of A at x.

For example, it has been proved by Weis and Wrobel [22] that T is exponentially

stable, i.e. there exist M > 0 and ω > 0 such that ‖T (t)x‖ ≤ Me−ωt‖x‖D(A) for all

x ∈ D(A), if the resolvent R(λ,A) = (λ − A)−1 exists and is uniformly bounded in

the right half-plane {Reλ > 0}. A little later and independently, in [15] the following

local version of this result was proved: if x0 ∈ X is such that the map λ 7→ R(λ,A)x0

admits a bounded holomorphic extension to {Reλ > 0}, then for each λ0 ∈ %(A) there

exists a constant M > 0 such that

‖T (t)R(λ0, A)x0‖ ≤M(1 + t), t ≥ 0.

By a standard resolvent expansion argument, the Weis-Wrobel result is an immediate

consequence of this. In [9], for Hilbert spaces it was proved that actually

lim
t→∞

‖T (t)R(λ0, A)x0‖ = 0.

In this paper, we extend the result of [9] into various directions.

Let p ∈ [1, 2]. A Banach space X has Fourier type p if the Fourier transform

extends to a bounded linear operator from Lp(R , X) into Lq(R , X), 1
p + 1

q = 1.

Trivially, every Banach space has Fourier type p = 1, but certain spaces have non-

trivial Fourier type; see Section 1.

A Banach space X has the analytic Radon-Nikodym property if for every f ∈
Hp(D,X), the Hardy space of all X-valued holomorphic functions on the unit disc D,

the radial limits limr↑1 f(reiθ) exist for almost all θ ∈ [0, 2π]. This property will be

discussed in more detail in Section 2.

Our main results read as follows.

Theorem 0.1. Let X be a Banach space with Fourier type p ∈ (1, 2] and let A be the

generator of a C0−semigroup T on X. If x0 ∈ X is such that the map λ 7→ R(λ,A)x0

admits a bounded holomorphic extension in the open right half-plane, then for all

β > 1
p and λ0 > ω0(T) we have

lim
t→∞

‖T (t)(λ0 − A)−βx0‖ = 0.



4

Theorem 0.2. Let X be a Banach space with the analytic Radon-Nikodym property

and let A be the generator of a C0−semigroup T on X. If x0 ∈ X is such that the map

λ 7→ R(λ,A)x0 admits a bounded holomorphic extension in the open right half-plane,

then for all β > 1 and λ0 > ω0(T) we have

lim
t→∞

‖T (t)(λ0 − A)−βx0‖ = 0.

Theorem 0.3. Let A be the generator of a C0−semigroup T on an arbitrary Banach

space X. If x0 ∈ X is such that the map λ 7→ R(λ,A)x0 admits a bounded holomorphic

extension in the open right half-plane, then for all β > 1 and λ0 > ω0(T) we have

weak- lim
t→∞

T (t)(λ0 − A)−βx0 = 0.

In these results, ω0(T) denotes the growth bound of T, i.e. the infimum of all ω ∈ R
such that ‖T (t)‖ ≤ Meωt for some M > 0 and all t ≥ 0. The restriction to real λ0 is

not essential; by a standard rescaling argument the same results hold for λ0 ∈ C with

Reλ0 > ω0(T).

We also present a simple example which shows that limt→∞ ‖T (t)(λ0−A)−βx0‖ =

0 may fail for all β ≥ 0 if no restrictions on the Banach space X are imposed.

The paper is organized as follows. In Section 1 we prove Theorems 0.1 and 0.3 and

give a simple application to Tauberian theory for the Laplace transform of functions

with values in a Banach space with non-trivial Fourier type. In Section 2 we present

the proof of Theorem 0.2 and a second proof of Theorem 0.3.

1. Stability and B-convexity

Let A be a closed, densely defined operator in a Banach space X such that

(0,∞) ⊂ %(A), the resolvent set of A, and assume that there is a constant M > 0 such

that

‖R(λ,A)‖ ≤ M

1 + λ
, λ > 0. (1.1)

As is well-known, fractional powers of −A can be defined, and for 0 < β < 1 we have

the representation

(−A)−βx =
sinπβ

π

∫ ∞

0

t−βR(t, A)x dt, x ∈ X. (1.2)

For the theory of fractional powers the reader is referred to [21].
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If A is the generator of a C0−semigroup T, then for all λ0 > ω0(T) the operator

A − λ0 satisfies an estimate of the type (1.1), and the fractional powers of λ0 − A
are well-defined. We assume that the reader is familiar with the elementary theory of

C0−semigroups; we refer to [14,17].

Let p ∈ [1, 2]. A Banach space Y has Fourier type p if the Y -valued Hausdorff-

Young theorem holds, i.e. if the Fourier transform extends to a bounded linear op-

erator from Lp(R , Y ) into Lq(R , Y ), 1
p

+ 1
q

= 1. Here, as usual, for f ∈ Lp(R , Y ) ∩
L1(R , Y ), the Fourier transform Ff is defined by

Ff(s) :=

∫ ∞

−∞
e−istf(t) dt, s ∈ R .

Every Banach space has Fourier type 1 but only Banach spaces which are isomorphic

to Hilbert spaces have Fourier type 2 [12]. The classical spaces Lp(µ) have Fourier

type min{p, q}, 1
p

+ 1
q

= 1 [18].

A Banach space Y is called B−convex if Y does not contain the spaces ln1 uni-

formly, or equivalently, if it has non-trivial type, i.e. if it has type p for some p ∈ (1, 2].

The spaces Lp(µ) are B−convex and more generally, every Lebesgue-Bochner space

Lp(µ, Y ) with Y B−convex is B−convex (cf. [13, p. 247]) and every uniformly convex

Banach space is B−convex. For more details the reader should consult [19]. Every

B−convex Banach space has non-trivial Fourier type , i.e. Fourier type p for some

p ∈ (1, 2] [4], and conversely it is easy to show that a space with non-trivial Fourier

type is B−convex (cf. [3, p. 354]).

In most of the results of this section, we investigate the behaviour of the map

t 7→ PT (t)(λ0 − A)−βx0, assuming certain growth conditions on λ 7→ PR(λ,A)x0;

here, P is an arbitrary bounded linear operator from X into some B-convex Banach

space Y . Although we are primarily interested in the case Y = X and P = I, this

slightly more general setting allows the following applications:

• Taking Y = C and P = x∗ ∈ X∗ we obtain weak analogues of our results;

• We may consider the translation semigroup on X = BUC(R +, Y ) and the map

P : X → Y , Pf := f(0). In this way the asymptotic behaviour of Y -valued

BUC-functions can be studied via semigroup techniques;

• It may be possible to apply our results to matrix semigroups, taking for P a coor-

dinate projection. Matrix semigroups arise, e.g., in the study of delay equations

and higher order abstract Cauchy problems.

The first lemma imposes no restrictions on the Fourier type of Y .

Lemma 1.1. Let X and Y be Banach spaces and let P : X → Y be a bounded

linear operator. Let A be the generator of a C0-semigroup T on X and let x0 ∈ X be
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such that the map λ 7→ PR(λ,A)x0 admits a holomorphic extension F (λ) in the open

right half-plane. Suppose there exist ω0 > max{0, ω0(T)}, M > 0, and α ∈ [−1,∞)

such that

‖F (λ)‖ ≤M(1 + |λ|)α, 0 < Reλ < ω0.

Fix λ0 > max{0, ω0(T)}. For all β ≥ 0 with β > α the function λ 7→ PR(λ,A)(λ0 −
A)−βx0 (Reλ > ω0(T)) admits a holomorphic extension g(λ) in the open right half-

plane, and for all ω1 ∈ (0,min{ω0, λ0}) there exists a constant C > 0 such that

‖g(λ)‖ ≤ C(1 + |λ|)max{α−β,−1}, 0 < Reλ < ω1. (1.3)

Proof: Fix λ0 > max{0, ω0(T)} and 0 < ω1 < min{ω0, λ0}. Upon replacing ω0 by

some smaller number and ω1 by a larger, we may assume that max{0, ω0(T)} < ω1 <

ω0 < λ0.

Let β = n+ δ with n ∈ N and 0 ≤ δ < 1 and put y0 := R(λ0, A)nx0. In view of

the identity

R(λ,A)y0 =
R(λ,A)x0

(λ0 − λ)n
−
n−1∑

k=0

R(λ0, A)k+1x0

(λ0 − λ)n−k
,

the map λ 7→ PR(λ,A)y0 admits a holomorphic extension F1(λ) to {Reλ > 0} which

satisfies

‖F1(λ)‖ ≤M ′(1 + |λ|)max{α−n,−1}, 0 < Reλ < ω0, (1.4)

for some constant M ′ > 0.

If δ = 0 (so β = n), then g = F1 and the proof is complete. Therefore, in the rest

of the proof we will assume that δ ∈ (0, 1).

We have

g(λ) = PR(λ,A)(λ0 −A)−βx0 = PR(λ,A)(λ0 −A)−δy0, Reλ > ω0(T).

Hence by (1.2) and the resolvent identity, for Re λ > ω0(T) we have

g(λ) =
sinπδ

π

∫ ∞

0

t−δPR(λ,A)R(λ0 + t, A)y0 dt

=
sinπδ

π

∫ ∞

0

t−δ
PR(λ,A)y0 − PR(λ0 + t, A)y0

t+ λ0 − λ
dt.

Passing to the holomorphic extension, we see that

g(λ) =
sinπδ

π

∫ ∞

0

t−δ
F1(λ)− F1(λ0 + t)

t+ λ0 − λ
dt; (1.5)
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by (1.4) and the fact that α < β = n+ δ this integral converges absolutely and defines

a holomorphic extension of g in the strip {0 < Re λ < λ0}.
For ω > 0 consider the functions gω : R → Y defined by

gω(s) := g(ω − is), s ∈ R .

Then gω(s) = PR(ω − is, A)(λ0 − A)−βx0 for ω > ω0(T). Noting that ‖R(λ,A)‖ ≤
const · (Reλ−ω0)−1 for all Re λ > λ0, we see that c := supτ≥λ0

τ‖F1(τ)‖ <∞. Hence

by (1.4) and (1.5), for all 0 < ω < ω1 and s ∈ R we have

‖gω(s)‖ ≤ sinπδ

π

∫ ∞

0

t−δ
M ′(1 + (ω2 + s2)

1
2 )max{α−n,−1} + c(λ0 + t)−1

((t+ λ0 − ω)2 + s2)
1
2

dt

≤ const · (1 + s2)
1
2 ·max{α−n−δ,−1},

where the constant is independent of s ∈ R and ω ∈ (0, ω1). ////

We can now state and prove the first main result.

Theorem 1.2. Let P be a bounded linear operator from a Banach space X into a

Banach space Y with Fourier type p ∈ (1, 2]. Let A be the generator of a C0-semigroup

T on X and let x0 ∈ X be such that the map λ 7→ PR(λ,A)x0 admits a holomorphic

extension F (λ) in the open right half-plane. If there exist ω0 > max{0, ω0(T)}, M > 0,

and α ∈ [−1,∞) such that

‖F (λ)‖ ≤M(1 + |λ|)α, 0 < Reλ < ω0,

then for all β ≥ 0 with β > α+ 1
p and all λ0 > ω0(T) we have

PT (·)(λ0 − A)−βx0 ∈ Lq(R+, Y ),
1

p
+

1

q
= 1.

Proof: Without loss of generality we may assume that ω0(T) ≥ 0. Fix λ0 > ω0(T).

By taking a smaller value of ω0, we may furthermore assume that ω0(T) < ω0 < λ0.

Fix ω1 ∈ (ω0(T), ω0).

Let the functions gω be defined as in the proof of Lemma 1.1. In view of β−α > 1
p

and p > 1 the estimate obtained there shows that gω ∈ Lp(R , Y ), uniformly for

ω ∈ (0, ω1). Let C := sup0<ω<ω1
‖gω‖p.

Since Y has Fourier type p, the Fourier transform Gω := 1
2π
Fgω of gω defines an

element of Lq(R , Y ).

Let ω ∈ (0, ω1) be fixed. We claim that

Gω(t) = e−ωtPT (t)(λ0 − A)−βx0 for a.a. t > 0.
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To see this we define, for each r > 0, gω,r := gω · χ[−r,r]. Then limr→∞ gω,r = gω
in the norm of Lp(R , Y ), so for the Fourier transforms Gω,r = 1

2π
Fgω,r we have

limr→∞Gω,r = Gω in Lq(R , Y ). Let Γ be the rectangle spanned by the points ω− ir,
ω + ir, ω0 + ir, and ω0 − ir. By Cauchy’s theorem, for all t > 0 we have

1

2πi

∫ ω+ir

ω−ir
eztg(z) dz =

1

2πi

∫ ω0+ir

ω0−ir
eztg(z) dz +Rr(t)

=
1

2πi

∫ ω0+ir

ω0−ir
eztPR(z, A)(λ0 − A)−βx0 dz +Rr(t),

(1.6)

where Rr(t) represents the integrals over the two horizontal parts of Γ. From (1.3) we

see that limr→∞ ‖Rr(t)‖ = 0 for all t > 0. Also, by the complex inversion theorem

for the Laplace transform, the Cesàro means of the integral on the right hand side in

(1.6) converge to PT (t)(λ0 − A)−βx0 as r → ∞; here we use that ω0 > ω0(T). It

follows that for all t > 0,

lim
m→∞

1

m

∫ m

0

1

2πi

∫ ω+ir

ω−ir
eztg(z) dz dr = PT (t)(λ0 − A)−βx0. (1.7)

On the other hand, for t > 0 we have

Gω,r(t) =
1

2π

∫ r

−r
e−istg(ω − is) ds =

1

2πi
e−ωt

∫ ω+ir

ω−ir
eztg(z) dz (1.8)

It follows from (1.7) and (1.8) that

lim
m→∞

((
1

m

∫ m

0

Gω,r dr

)
(t)

)
= lim
m→∞

1

m

∫ m

0

Gω,r(t) dr

= e−ωtPT (t)(λ0 − A)−βx0

for all t > 0. In the first identity we used the fact that the map r 7→ Gω,r is continuous

as a map into C0(R , Y ) by the Riemann-Lebesgue lemma. Therefore the integrals with

respect to r can be regarded as Bochner integrals in C0(R , Y ) and we may use the

continuity of point evaluations.

We also have

lim
m→∞

(
1

m

∫ m

0

Gω,r dr

)
= lim
r→∞

Gω,r = Gω

in the norm of Lq(R , Y ). Since norm convergent sequences have pointwise a.e. conver-

gent subsequences, we see that Gω(t) = e−ωtPT (t)(λ0 − A)−βx0 for almost all t > 0

and the claim is proved.
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It follows that t 7→ e−ωtPT (t)(λ0−A)−βx0 defines an element of Lq(R+, Y ) and

‖e−ω(·)qPT (·)(λ0 −A)−βx0‖q ≤ ‖Gω‖q ≤
cp
2π
‖gω‖p ≤

cpC

2π
.

By the monotone convergence theorem, upon letting ω ↓ 0 we obtain

‖PT (·)(λ0 − A)−βx0‖q ≤
cpC

2π
.

////

For α = 0, this gives Theorem 0.1.

Let x0 ∈ X and x∗0 ∈ X∗ be such that the map λ 7→ 〈x∗0, R(λ,A)x0〉 admits a

bounded holomorphic extension to {Reλ > 0}. Taking Y = C and P = x∗0, Theorem

1.2 shows that ∫ ∞

0

|〈x∗0, T (t)(λ0 − A)−βx0〉|q <∞

for all p ∈ (1, 2], β > 1
p ; 1

p + 1
q = 1. This is an individual version of [16, Theorem

5.1], and this observation can be used to show that for α = 0 and p = 2, the bound

β > α+ 1
p (= 1

2 ) in Theorem 1.2 is optimal in the sense that a counterexample exists

for all β ∈ [0, 1
2). Indeed, assume that the theorem holds for α = 0, p = 2 and some

β ≥ 0. Suppose that T is a C0-semigroup on a Banach space X whose resolvent

R(λ,A) is uniformly bounded in {Reλ > 0}. Let λ0 > max{0, ω0(T)}. Then by the

observation just made,

∫ ∞

0

|〈x∗, T (t)(λ0 − A)−βx〉|2 <∞, ∀x ∈ X, x∗ ∈ X∗.

For each x ∈ X and x∗ ∈ X∗ put

fx,x∗(t) := 〈x∗, T (t)(λ0 − A)−βx〉, t ≥ 0.

Then fx,x∗ ∈ L2(R+) and by general considerations involving the closed graph theo-

rem there exists a constant C > 0 such that ‖fx,x∗‖2 ≤ C‖x‖ · ‖x∗‖ for all x ∈ X and

x∗ ∈ X∗. By the Plancherel theorem, s 7→ 〈x∗, R(is, A)(λ0−A)−βx〉 ∈ L2(R ). Hence

for all γ > 1
2 and ω > 0, by Hölder’s inequality the function

gω,x,x∗(s) := (ω + is)−γ〈x∗, R(−is, A)(λ0 −A)−βx〉

belongs to L1(R ). In particular, the Fourier transforms Fgω,x,x∗ are bounded.

Claim: 1
2πFgω,x,x∗(t) = 〈x∗, T (t)(ω −A)−γ(λ0 − A)−βx〉 for all t > 0.
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Indeed, for t > 0 we have, with Aω := A− ω,

1

2π
Fgω,x,x∗(t) =

1

2π

∫ ∞

−∞
e−ist(ω + is)−γ〈x∗, R(−is, A)(λ0 − A)−βx〉 ds

=
1

2πi
eωt
∫

Reλ=−ω
eλt(−λ)−γ〈x∗, R(λ,Aω)(λ0 −A)−βx〉 dλ

If x ∈ D(A) = D(Aω), then by [16, Lemma 3.3] the right most hand equals

eωt〈x∗, Tω(t)(−Aω)−γ(λ0 − A)−βx〉 = 〈x∗, T (t)(ω −A)−γ(λ0 −A)−βx〉,

where Tω(t) := e−ωtT (t). For general x ∈ X, we choose a sequence xn → x with

xn ∈ D(A) for all n. Then fxn,x∗ → fx,x∗ in L2(R+) for all x∗ ∈ X∗, hence gω,xn,x∗ →
gω,x,x∗ in L1(R ), and so Fgω,xn,x∗ → Fgω,x,x∗ in C0(R ). Therefore, for all t > 0,

1

2π
Fgω,x,x∗(t) = lim

n→∞
1

2π
Fgω,xn,x∗(t)

= lim
n→∞

〈x∗, T (t)(ω −A)−γ(λ0 − A)−βxn〉

= 〈x∗, T (t)(ω −A)−γ(λ0 − A)−βx〉.

This proves the claim.

It follows that t 7→ 〈x∗, T (t)(ω − A)−γ(λ0 − A)−βx〉 is bounded, and since this

is true for all x ∈ X, x∗ ∈ X∗, and γ > 1
2 , the uniform boundedness theorem and

standard arguments involving fractional powers show that

sup
t≥0
‖T (t)(λ0 −A)−β−γ‖ <∞

for all γ > 1
2
. On the other hand, in [22] for each δ ∈ [0, 1) an example of a C0-

semigroup T is given which has uniformly bounded resolvent in the right half-plane

and satisfies

lim sup
t→∞

‖T (t)(λ0 −A)−δ‖ =∞.

Thus, if Theorem 1.2 holds for α = 0, p = 2, and β ≥ 0, we must have β ≥ 1
2
.

For Y = X and P = I and p ∈ (1, 2], Theorem 1.2 has the following consequence:

Corollary 1.3. Let X be a Banach space with Fourier type p ∈ (1, 2], let A be the

generator of a C0−semigroup T on X. Let x0 ∈ X be such that the local resolvent

λ 7→ R(λ,A)x0 admits a holomorphic extension F (λ) in the open right half-plane. If

there exist ω0 > max{0, ω0(T)}, M > 0 and α ∈ [−1,∞) such that

‖F (λ)‖ ≤M(1 + |λ|)α, 0 < Reλ < ω0,
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then for all β ≥ 0 with β > α+ 1
p and all λ0 > ω0(T) we have

lim
t→∞

‖T (t)(λ0 − A)−βx0‖ = 0.

Proof: By Theorem 1.2 applied to the case Y = X and P = I we find that the

function f(t) := T (t)(λ0−A)−βx0 defines an element of Lq(R+, X), 1
p + 1

q = 1. Hence

a standard argument (cf. the proof of [17, Theorem 4.4.1]) shows that limt→∞ ‖f(t)‖ =

0. ////

Recalling that a B−convex Banach space X has non-trivial Fourier type, we see

from Corollary 1.3 that

lim
t→∞

‖T (t)R(λ,A)x0‖ = 0

whenever T is a C0−semigroup on a B−convex space X and x0 ∈ X is such that the

local resolvent R(λ,A)x0 admits a bounded holomorphic extension to the open right

half-plane. This improves the result of [9] mentioned in the introduction.

We next discuss the analogue of Corollary 1.3 for general operators P . Although

the proof of Corollary 1.3 breaks down, for slightly larger values of β we can prove:

Theorem 1.4. Let P be a bounded operator from a Banach space X into a

B−convex Banach space Y . Let A be the generator of a C0−semigroup T on X

and let x0 ∈ X be such that the map λ 7→ PR(λ,A)x0 extends to a holomorphic

function F (λ) in the open right half-plane. If there exist ω0 > max{0, ω0(T)}, M > 0

and α ∈ [−1,∞) such that

‖F (λ)‖ ≤M(1 + |λ|)α, 0 < Reλ < ω0,

then for all β > α+ 1 and λ0 > max{0, ω0(T)} we have

lim
t→∞

‖PT (t)(λ0 − A)−βx0‖ = 0.

Proof: Without loss of generality we may assume that ω0(T) ≥ 0. Fix λ0 > ω0(T).

Let p ∈ (1, 2] be the Fourier type of Y . Then Y has also Fourier type p′ for all

p′ ∈ (1, p]. Hence, since β > 0 by assumption, upon replacing p by a smaller value

we may assume that β > 1
q
, 1
p

+ 1
q

= 1. This enables us to choose δ ≥ 0 such that

δ > α+ 1
p in such a way that 1

q < γ := β − δ < 1. Consider the functions

f(t) := PT (t)(λ0 − A)−δx0, g(t) := PT (t)(λ0 − A)−βx0; t ≥ 0.
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By Theorem 1.2, f ∈ Lq(R+, Y ). For t ≥ 0 we have

g(t) = PT (t)(λ0 − A)−δ−γx0

= PT (t)(λ0 − A)−δ
(

sinπγ

π

∫ ∞

0

s−γR(λ0 + s, A)x0 ds

)

=
sinπγ

π
P (λ0 − A)−δ

∫ ∞

0

s−γ
∫ ∞

0

e−(λ0+s)rT (t+ r)x0 dr ds

=
sinπγ

π

∫ ∞

0

s−γ
∫ ∞

0

e−(λ0+s)rf(t+ r)x0 dr ds.

(1.9)

Now,

∥∥∥∥
∫ ∞

0

e−(λ0+s)rf(t+ r)x0 dr

∥∥∥∥ ≤
(∫ ∞

0

e−(λ0+s)rp dr

) 1
p

·
(∫ ∞

0

‖f(t+ r)‖q dr
) 1
q

=
1

(p(λ0 + s))
1
p

(∫ ∞

t

‖f(r)‖q dr
) 1
q

.

Combining this estimate with (1.9) yields

‖g(t)‖ ≤ sinπγ

πp
1
p

∫ ∞

0

s−γ(λ0 + s)−
1
p ds ·

(∫ ∞

t

‖f(r)‖q dr
) 1
q

.

Since 1
q
< γ < 1, the first integral in the above expression is absolutely convergent,

and the second tends to 0 as t→∞. This proves that limt→∞ ‖g(t)‖ = 0. ////

Theorem 0.3 is a special case of Theorem 1.4 by taking α = 0, Y = C , and

P = x∗. Of course, Theorem 0.3 can be proved without reference to B−convexity:

Take Y = X and P = x∗ in the proofs of Theorems 1.2 and 1.5 and use the Hausdorff-

Young theorem instead of the Fourier type. A similar remark applies to Corollary 2.3

below.

For α = 0, Theorem 1.4 fails for every 0 ≤ β < 1 (the case β = 1 remains open).

Indeed, consider the case that the resolvent R(λ,A) itself is uniformly bounded in

{Reλ > 0}. Then the assumptions of Theorem 1.4 are satisfied for α = 0, all x0 ∈ X,

and all functionals P = x∗ ∈ X∗. Hence if the theorem holds for some β ≥ 0, then

from the uniform boundedness principle we conclude

sup
t≥0
‖T (t)(λ0 −A)−β‖ <∞.

For 0 ≤ β < 1, this contradicts the example in [22] cited in the discussion after

Theorem 1.2.

We next turn to a version of Theorem 1.4 which holds for β > α+ 1
p rather than

β > α+ 1. The price for this is the a priori assumption that PT (·)x0 is bounded.
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Theorem 1.5. Let P be a bounded linear operator from a Banach space X into a

Banach space Y with Fourier type p ∈ (1, 2]. Let A be the generator of a C0−semigroup

T on X and let x0 ∈ X be such that the orbit t 7→ PT (t)x0 is bounded and λ 7→
PR(λ,A)x0 admits a holomorphic extension F (λ) to the open right half-plane. If

there exist ω0 > max{0, ω0(T)}, M > 0 and α ∈ [−1,∞) such that

‖F (λ)‖ ≤M(1 + |λ|)α, 0 < Reλ < ω0,

then for all λ0 > ω0(T) and β ≥ 1 with β > α+ 1
p

we have

lim
t→∞

‖PT (t)(λ0 − A)−βx0‖ = 0.

Proof: Without loss of generality we may assume that ω0(T) ≥ 0. Fix λ0 > ω0(T)

and β ≥ 1 with β > α+ 1
p
. For each δ ≥ 0 consider the function

fδ(t) := PT (t)(λ0 − A)−δx0, t ≥ 0.

We have to show that limt→∞ ‖fβ(t)‖ = 0. Theorem 1.2 shows that fβ ∈ Lq(R , Y ),
1
p

+ 1
q

= 1.

Let δ = n+ γ with n ∈ N and γ ∈ [0, 1). If γ ∈ (0, 1), then

‖PT (τ)(λ0 −A)−γx0‖ =
sinπγ

γ

∥∥∥∥
∫ ∞

0

r−γPT (τ)R(λ0 + r, A)x0 dr

∥∥∥∥

=
sinπγ

γ

∥∥∥∥
∫ ∞

0

r−γ
∫ ∞

0

e−(λ0+r)sPT (τ + s)x0 ds dr

∥∥∥∥

≤ sinπγ

γ

∫ ∞

0

Cr−γ(λ0 + r)−1 dr,

where C := supt≥0 ‖PT (t)x0‖. If γ = 0, then ‖PT (τ)x0‖ ≤ C. In either case, we see

that Cγ := supτ≥0 ‖PT (τ)(λ0 −A)−γx0‖ <∞. Using this, we obtain

‖fδ(t)‖ =

∥∥∥∥
∫ ∞

0

...

∫ ∞

0

e−λ0(s1+...+sn)PT (t+ s1 + ...+ sn)(λ0 − A)−γx0 dsn ... ds1

∥∥∥∥
≤ Cγλ−n0

for all t ≥ 0, so fδ is bounded. In particular, such an estimate holds for fβ . Also, fβ
is differentiable and

f ′β(t) = PT (t)A(λ0 − A)−βx0 = −fβ−1(t) + λ0fβ(t).

Therefore, also f ′β(·) is bounded (here we use that β ≥ 1) and hence the bounded

function fβ(·) is uniformly continuous. Then also ‖fβ(·)‖q = ‖PT (·)(λ0−A)−βx0‖q is

bounded and uniformly continuous, and it is an immediate consequence of Theorem

1.2 that ‖fβ(t)‖ → 0 as t→∞. ////
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Assuming boundedness and uniform continuity of PT (·)x0, we obtain a stronger

result. Let us say that a function F is polynomially bounded in the strip {0 < Reλ <

ω0} if there exist M > 0 and n ∈ N such that

‖F (λ)‖ ≤M(1 + |λ|)n, 0 < Reλ < ω0. (1.10)

Corollary 1.6. Let P be a bounded linear operator from X into a B−convex space

Y . Let A be the generator of a C0−semigroup T on X and let x0 ∈ X be such that the

orbit t 7→ PT (t)x0 is bounded and uniformly continuous. If the map λ 7→ PR(λ,A)x0

extends to a holomorphic function in the open right half-plane which is polynomially

bounded in {0 < Reλ < ω0} for some ω0 > max{0, ω0(T)}, then lim
t→∞

‖PT (t)x0‖ = 0.

Proof: Fix λ > ω0(T). Let S denote the left translation semigroup on the space Z :=

BUC(R+, Y ) defined by (S(t)f)(s) = f(t+s); s, t ≥ 0. The function f(t) := PT (t)x0

defines an element of Z. From the identity

PT (t)R(λ,A)n+1x0 =

∫ ∞

0

...

∫ ∞

0

e−λ(s1+...+sn+1)PT (s1 + ...+sn+1 +t)x0 dsn+1 ... ds1

it is easy to see that also fλ(t) := PT (t)R(λ,A)n+1x0 defines an element of Z; here

n ∈ N is chosen such that (1.10) holds.

By Theorem 1.5,

lim
t→∞

‖S(t)fλ‖Z = lim
t→∞

(
sup
s≥0
‖PT (t+ s)R(λ,A)n+1x0‖

)
= 0.

Therefore, fλ ∈ Z0 := {f ∈ Z : limt→∞ ‖S(t)f‖Z = 0}. For Reλ > ω0(T) and s ≥ 0

we have, denoting by B the generator of S,

(R(λ,B)n+1f)(s) =

∫ ∞

0

...

∫ ∞

0

e−λ(t1+...+tn+1)(S(t1 + ...+ tn+1)f)(s) dtn+1 ... dt1

=

∫ ∞

0

...

∫ ∞

0

e−λ(t1+...+tn+1)PT (t1 + ...+ tn+1 + s)x0 dtn+1 ... dt1

= PT (s)R(λ,A)n+1x0 = fλ(s).

Hence f = limλ→∞ λn+1R(λ,B)n+1f = limλ→∞ λn+1fλ ∈ Z0 by the closedness of Z0.

Hence limt→∞ ‖S(t)f‖ = 0, and thus limt→∞ ‖PT (t)x0‖ = limt→∞ ‖(S(t)f)(0)‖ =

0. ////

The technique of this proof goes back to Kantorovitz [10]; see [2] for another

application.

The following example shows that our results break down if no restrictions on the

Banach space X are imposed.
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Example 1.7. Let X = C0(R ) and consider the left translation group S on X.

Let B be its generator. Let f ∈ X be any non-zero function with support in [0, 1].

Then for all Reλ > 0 and s ∈ R we have

|(R(λ,B)f)(s)|=
∣∣∣∣
∫ ∞

0

e−λtf(s+ t) dt

∣∣∣∣ ≤ ‖f‖∞.

Consequently,

sup
Reλ>0

‖R(λ,B)f‖∞ ≤ ‖f‖∞,

but since S is isometric and (λ0 − B)−β is injective we see that

lim
t→∞

‖S(t)(λ0 − B)−βf‖∞ = ‖(λ0 − B)−βf‖∞ 6= 0; ∀β ≥ 0, λ0 > 0.

As an application of Corollary 1.6 we shall derive a Tauberian theorem for the

Laplace transform of functions in L∞(R+, Y ), where Y is a B−convex Banach space.

This serves merely as an illustration of what can be done with the above theory;

by considering bounded, uniformly continuous orbits much of the sharpness of the

preceding results is lost and it may well be that more direct methods will lead to a

sharper Tauberian theorem (cf. the remarks at the end of the paper).

Lemma 1.8. Let Y be a B−convex Banach space and assume that the Laplace

transform ĝ of a function g ∈ BUC(R +, Y ) is polynomially bounded in some strip

{0 < Re λ < ω0}. Then lim
t→∞

‖g(t)‖ = 0.

Proof: Consider the left translation semigroup S in BUC(R +, Y ) with generator B.

Let P be the bounded operator from BUC(R +, Y ) into Y defined by Ph = h(0).

Then PS(t)g = g(t)⊗ 1 and PR(λ,B)g = ĝ(λ)⊗ 1 for all t ≥ 0 and Reλ > 0. Since

Y is B−convex, we can apply Corollary 1.6 to S and deduce that limt→∞ ‖g(t)‖ =

limt→∞ ‖PS(t)g‖ = 0. ////

Theorem 1.9. Let Y be a B−convex Banach space and let f ∈ L∞(R+, Y ). If the

Laplace transform f̂ is polynomially bounded in some strip {0 < Reλ < ω0} and can

be holomorphically extended to a neighbourhood of 0, then

lim
t→∞

∥∥∥∥
∫ t

0

f(s) ds− f̂(0)

∥∥∥∥ = 0.

Proof: The proof is inspired by [2, Theorem 4.3].

Upon replacing f(t) by f(t)−e−tf̂(0) we may assume that f̂(0) = 0. By a special

case of Ingham’s Tauberian theorem the function g(t) :=
∫ t

0
f(s) ds is bounded (see

[11] for an elegant and elementary proof). Moreover, g is uniformly continuous and in
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view of f̂(0) = 0, 0 is a removable singularity of ĝ(λ) = λ−1f̂(λ). It follows that ĝ is

polynomially bounded in {0 < Re λ < ω0}. Therefore by Lemma 1.8,

lim
t→∞

∥∥∥∥
∫ t

0

f(s) ds

∥∥∥∥ = lim
t→∞

‖g(t)‖ = 0.

////

2. Stability and the analytic Radon-Nikodym property

In this section we will prove some analogues of the previous results for the case p = 1.

As it turns out, this is possible if one assumes Y has the analytic Radon-Nikodym

property.

We start by recalling some facts concerning vector-valued Hardy spaces over the

disc D = {z ∈ C : |z| < 1}.
For p ∈ [1,∞] we let Hp(D, Y ) denote the set of all holomorphic functions f :

D → Y for which

‖f‖p := sup
0<r<1

(∫ 2π

0

‖f(reiθ)‖p dθ
) 1
p

<∞.

In case p =∞ we interpret the above integral in terms of the supremum norm in the

obvious way. It is not difficult to see that Hp(D, Y ) is a Banach space with respect to

the norm ‖ · ‖p. We let Hp
0 (D, Y ) denote the closed subspace of Hp(D, Y ) consisting

of all functions f for which the radial limits f̃(eiθ) := limr↑1 f(reiθ) exist for almost

all θ. By Fatou’s lemma,

∫ 2π

0

‖f̃(eiθ)‖p dθ ≤ lim inf
r↑1

∫ 2π

0

‖f(reiθ)‖p dθ,

which shows that the boundary function f̃ , if it exists a.e., belongs to Lp(Γ), where

Γ = {z ∈ C : |z| = 1}. In this case, f can be recovered from f̃ by the Poisson integral

f(reiθ) =
1

2π

∫ 2π

0

f̃(eiη)
1− r2

1− 2r cos (θ − η) + r2
dη.

Defining fr(e
iθ) := f(reiθ), as in the scalar case it follows from this representation

that

lim
r↑1
‖f̃ − fr‖Lp(Γ) = 0.
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A Banach space Y is said to have the analytic Radon-Nikodym property if Hp
0 (D, Y ) =

Hp(D, Y ). Equivalently, Y has the analytic Radon-Nikodym property if for all f ∈
Hp(D, Y ) the radial limits f̃(eiθ) := limr↑1 f(reiθ) exist for almost all θ, and in this

case we actually have fr → f̃ in the Lp-norm.

The role of the exponent p needs some clarification: it can be shown that if

Hp
0 (D, Y ) = Hp(D, Y ) holds for some p ∈ [1,∞], then it holds for all p ∈ [1,∞].

The following facts are well-known:

(i) If Y has the Radon-Nikodym property, then Y has the analytic Radon-Nikodym

property;

(ii) If Y has the analytic Radon-Nikodym property, then Y contains no closed sub-

space isomorphic to c0;

(iii) A Banach lattice Y has the analytic Radon-Nikodym property if and only if Y

contains no closed subspace isomorphic to c0.

It follows from (i) that every reflexive Banach space and every separable dual Banach

space has the analytic Radon-Nikodym property. By (iii), the spaces L1(µ) have the

analytic Radon-Nikoym property. The proofs can be found in [5,6].

By mapping a rectangle conformally onto the unit disc it is not difficult to prove

the following result; cf. [7].

Proposition 2.1. Let ∆ and ∆r, 0 < r < 1, be the rectangles in C spanned by the

points ±a± ib and ±ra± irb, respectively. Let f be a holomorphic Y -valued function

in the interior of ∆. Assume that Y has the analytic Radon-Nikodym property and

that

sup
0<r<1

∫

∆r

‖f(z)‖ |dz| <∞.

Then, the strong limits limr↑1 f(rz) exist for almost all z ∈ ∆ and define a function

f̃ ∈ L1(∆). Moreover,

lim
r↑1

∫

∆

‖f̃(z)− f(rz)‖ |dz| = 0.

////

Theorem 2.2. Let P be a bounded operator from a Banach space X into a Banach

space Y with the analytic Radon-Nikodym property. Let A be the generator of a

C0-semigroup T on X. Assume that for some x0 ∈ X, the map λ 7→ PR(λ,A)x0

admits a holomorphic extension F (λ) to the open right half-plane. If there exist

ω0 > max{0, ω0(T)}, M > 0 and α ∈ [−1,∞) such that

‖F (λ)‖ ≤M(1 + |λ|)α, 0 < Reλ < ω0,
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then for all λ0 > max{0, ω0(T)} and β > α+ 1 we have

lim
t→∞

‖PT (t)(λ0 − A)−βx0‖ = 0.

Proof: Without loss of generality we may assume that ω0(T) ≥ 0. Fix λ0 > ω0(T).

By taking a smaller value of ω0 we may assume that ω0(T) < ω0 < λ0.

Fix γ ∈ (α+ 1, β) and let δ := β − γ.

Let g(λ) denote the holomorphic extension in the open right half-plane of the

function λ 7→ PR(λ,A)(λ0 − A)−γx0. Fix ω1 ∈ (ω0(T), ω0). On the strip {0 <

Reλ < ω1} we define h(λ) := (ω0 − λ)−δg(λ). By Lemma 1.1, for each ζ ∈ C with

0 < Re ζ < ω1 the function

s 7→ hζ(s) := h(ζ − is) = (ω0 − ζ + is)−δg(ζ − is)
belongs to L1(R , Y ), and the map ζ 7→ hζ is a bounded L1(R , Y )−valued holomorphic

function on {0 < Re ζ < ω1}.
Arguing as in the proof of the Claim following Theorem 1.2 we see that for

ω ∈ (ω0(T), ω1) the Fourier transform of hω is given by

1

2π
Fhω(t) = e−ωtPT (t)(ω0 − A)−δ(λ0 − A)−γx0. (2.1)

Hence by uniqueness of analytic continuation,

1

2π
Fhζ(t) = e−ζtPT (t)(ω0 −A)−δ(λ0 − A)−γx0, 0 < Re ζ < ω1,

and we conclude that (2.1) holds for all ω ∈ (0, ω1).

Since Y has the analytic Radon-Nikodym property, we may apply Proposition 2.1

and conclude that the boundary function h̃ of h exists a.e. on iR , defines an element

in L1
loc(iR , Y ), and that

lim
ω↓0

∫ r

−r
‖h̃(is)− h(ω + is)‖ ds = 0

for all r > 0. But then (1.3) and the definition of h easily implies that we actually

have h̃ ∈ L1(iR , Y ) and

lim
ω↓0

∫ ∞

−∞
‖h̃(is)− h(ω + is)‖ ds = 0.

Hence by passing to the limit ω ↓ 0 in (2.1), we obtain

PT (·)(ω0 − A)−δ(λ0 −A)−γx0 = lim
ω↓0

e−ωtPT (·)(ω0 −A)−δ(λ0 − A)−βx0

=
1

2π
lim
ω↓0
Fh(ω − i(·))(t) =

1

2π
F h̃(−i(·))(t).

Therefore, PT (·)(ω0 − A)−δ(λ0 − A)−γx0 ∈ C0(R+, Y ) by the Riemann-Lebesgue

lemma. Recalling that δ + γ = β, by standard arguments involving fractional powers

this will give the desired result. ////
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Theorem 0.2 is a special case of this.

Taking Y = C and P := x∗0 ∈ X∗, we obtain the following result, which contains

Theorem 0.3 as a special case.

Corollary 2.3. Let A be the generator of a C0-semigroup T on a Banach space

X. Assume that for some x0 ∈ X and x∗0 ∈ X∗, the map λ 7→ 〈x∗0, R(λ,A)x0〉
admits a holomorphic extension F (λ) to the open right half-plane. If there exist

ω0 > max{0, ω0(T)}, M > 0 and α ∈ [−1,∞) such that

|F (λ)| ≤M(1 + |λ|)α, 0 < Reλ < ω0,

then for all λ0 > max{0, ω0(T)} and β ≥ 0 with β > α+ 1 we have

lim
t→∞
〈x∗0, T (t)(λ0 − A)−βx0〉 = 0.

The case α = 0 of Theorem 2.2 can be used to show that Corollary 1.6, and

therefore also Theorem 1.9, remains valid if B−convexity is replaced by the analytic

Radon-Nikodym property. It is possible, however, to modify the proof of [11] to

prove in a more direct way the stronger result: if Y has the analytic Radon-Nikodym

property and f ∈ L∞(R+, Y ) is such that for all r > 0 we have

lim sup
ω↓0

∫ r

−r

∥∥∥∥∥
f̂(ω + is)− f̂(0)

ω + is

∥∥∥∥∥ ds <∞,

then lim
t→∞

∥∥∥∥
∫ t

0

f(s) ds− f̂(0)

∥∥∥∥ = 0. This was shown by Chill [7] and suggests that it

may be possible to prove a similar result assuming B−convexity. It is important in

this context to point out that B−convexity and the analytic Radon-Nikodym property

are unrelated concepts in the sense that none implies the other. In fact, L1[0, 1] has

the analytic Radon-Nikodym property (by observation (iii) at the beginning of this

section) but no non-trivial type, so it is not B−convex. The following example shows

that there exist B−convex spaces without the analytic Radon-Nikodym property:

Example 2.4. By the function space analogue of a result in [20] (the details are

given in [24]), the operator of integration I : L1[0, 1]→ C[0, 1],

I(f)(t) :=

∫ t

0

f(s) ds,

factors through a space with type 2. Denoting f0(t) := t and defining T : C[0, 1] →
C[0, 1] by T (f) := f − f(1)f0, also J := T ◦ I factors through a space with type
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2. Identifying [0, 1) with the unit circle Γ in the complex plane and letting en(θ) :=

exp(2πinθ), θ ∈ Γ, n ∈ Z , we can represent J as an operator from L1(Γ) into C(Γ)

by

J(en) = en/(2πin), n ∈ Z \{0}, J(e0) = 0.

Recalling that type passes to quotients, it follows that the quotient operator J0 :

L1(Γ)/H1
0 → C(Γ)/A0 induced by J factors through a space with type 2; here H1

0 and

A0 denote the closed linear span in L1(Γ) and C(Γ), respectively, of {θ 7→ exp(2πinθ) :

n = −1,−2, ...}. On the other hand, by a result of Pisier [8, Proposition V.5], J0

cannot be factored through a space with the analytic Radon-Nikodym property.

Acknowledgement - The authors thank Professor Gilles Pisier for pointing our to us

Example 2.4, Shangquan Bu for a helpful conversation, and Charles Batty and Ralph

Chill for pointing out a flaw in a previous version of this paper.

Note added in proof - Recently, V. Wrobel [23] has shown that the bound β > 1
p in

Theorem 0.1 is the best possible, in the sense that a counterexample can be constructed

for every β ∈ [0, 1
p ). Whether or not the theorem holds for β = 1

p remains an open

problem. In the same paper, an extension Theorem 0.1 into a different direction is

obtained.
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87), Publ. Math. Univ. Paris VII, 28, Univ. Paris VII, Paris, 1988, pp. 77–123.


