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ABSTRACT. In this paper we study space-time regularity of solutions of the
following linear stochastic evolution equation in S ′(Rd), the space of tempered
distributions on Rd:

du(t) = Au(t) dt+ dW (t), t > 0,

u(0) = 0.
(∗)

Here A is a pseudodifferential operator on S ′(Rd) whose symbol q : Rd → C
is symmetric and bounded above, and {W (t)}t>0 is a spatially homogeneous
Wiener process with spectral measure µ. We prove that for any p ∈ [1,∞)
and any nonnegative weight function % ∈ L1

loc(Rd), the following assertions are
equivalent:

(1) The problem (∗) admits a unique Lp(%)-valued solution;
(2) The weight % is integrable andZ

Rd

1

C −Re q(ξ)
dµ(ξ) <∞

for sufficiently large C.
Under stronger integrability assumptions we prove that the Lp(%)-valued solu-
tion has a continuous, resp. Hölder continuous version.
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1. INTRODUCTION

In this paper we study space-time regularity of weak solutions of linear sto-
chastic partial differential equations. Apart from their interest in their own right,
linear models (such as the Laplace equation or the Stokes equations) serve as a first
step towards understanding more complicated nonlinear models (such as nonlinear
elliptic equations or the Navier–Stokes equations).

In the theory of stochastic PDE’s there are two basic linear model equations:
the Langevin equation and the Zakai equation. In the present paper we will be
concerned with the former one, which can be written as

(1.1)
du(t) = Au(t) dt+ dW (t), t > 0,

u(0) = 0.

Here A is some linear operator acting in a vector space E and W = {W (t)}t>0

is some type of Wiener process. There is an extensive literature on equation (1.1),
see e.g. the monographs by Itô [13] and Da Prato and Zabczyk [5], [6].

In a recent paper [2] the authors have obtained necessary and sufficient con-
ditions for existence and uniqueness of weak solutions to equation (1.1) in the
situation where E is an arbitrary separable real Banach space, A is the generator of
a C0-semigroup of bounded linear operators on E, and W is a cylindrical Wiener
process with a given Cameron-Martin space H which is assumed to be continu-
ously embedded in E.

A different approach to equation (1.1) was introduced by Dawson and Salehi [9]
for modeling the growth of populations in a random environment; see also [19]. In
this approach W is interpreted as a homogeneous Wiener process on Rd, and the
equation admits a natural formulation in the space S ′ of tempered distributions on
Rd. In the context of S ′-valued solutions it is natural to ask for conditions under
which an S ′-valued solution actually takes values in some space of functions. For
the stochastic wave equation in dimension d = 2, this problem was investigated by
Dalang and Frangos [8], who obtained conditions for the existence of a function-
valued solution in terms of the spectral measure associated with W. These results
have been extended to higher dimensions and to a wider class of equations by many
authors [17], [6], [22], [23], [3], [7], [15], [16], [21].

Consider, as a concrete example, the stochastic heat equation

(1.2)
du(t) = ∆u(t) dt+ dW (t), t > 0,

u(0) = 0.

As is well-known, this equations has a unique weak solution in S ′, which is given
by the stochastic convolution integral

(1.3) u(t) =

∫ t

0
e(t−s)∆ dW (s).
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Let 0 6 % ∈ L1
loc(R

d) be given and let L2(%) denote the associated weighted
L2-space. Let µ denote the spectral measure of the homogeneous Wiener process
W and denote by Hµ the Hilbert space of all tempered distributions of the form
F−1(φµ) for some symmetric φ ∈ L2

C(µ) (see Section 3 for more details). It is
shown in [15] that the following assertions are equivalent:

(i) For all t > 0 we have
∫ t

0
‖S(s)‖2L2(Hµ,L2(%)) ds <∞;

(ii) The weight % is integrable and
∫

Rd
1

1 + |ξ|2 dµ(ξ) <∞.

In (i), ‖ · ‖L2(Hµ,L2(%)) denotes the Hilbert-Schmidt norm.
An extension of this result to a class of pseudodifferential operators A including,

e.g., the fractional Laplacians −(−∆)
α
2 , α ∈ (0, 2), was obtained subsequently in

[16]. Prior to [15], the integrability condition (ii) was discovered in [23] to imply
the existence of L2(%)-valued solutions for certain nonlinear stochastic problems
under more restrictive assumptions on the weight %.

The finiteness of the integral in (i) implies that for each t > 0 the stochastic
integral on the right hand side of (1.3) converges in L2(%). For this reason it makes
sense to view the resulting L2(%)-valued process an L2(%)-valued solution of (1.2).
This notion of solution is a formal one, because L2(%) does not always embed into
S ′:

Example 1.1. Let %(x) = exp(−‖x‖). Then the function exp( 1
4‖x‖) belongs to

L2(%), but this function does not define a tempered distribution.

In order to get around this problem, we think of both S ′ and L2(%) as being
embedded in D ′, the space of distributions on Rd. This motivates the following
definition. If E is a real Banach space, continuously embedded in D ′, then a pre-
dictable E-valued process {U(t)}t>0 will be called an E-valued solution of the
problem (7.3) if for all t > 0 we have U(t) = u(t) in D ′ a.s. For the stochastic
heat equation, our main result now reads as follows (cf. Theorem 9.1):

Theorem 1.2. Let 0 6 % ∈ L1
loc and 1 6 p < ∞ be arbitrary and fixed. The

following assertions are equivalent:

(1) The problem (1.2) admits a unique Lp(%)-valued solution;

(2) The weight % is integrable and
∫

Rd
1

1 + |ξ|2 dµ(ξ) <∞.

In fact, we prove a more general version of this result for a class of pseudo-
differential operators A generating a C0-semigroup in S ′. We also show that the
Lp(%)-valued solution has a continuous modification if condition (2) is slightly
strengthened.

The implication (1)⇒ (2) is an extension of the above implication (i)⇒ (ii). The
main difficulty is to show that (1) actually implies the integrability condition (i). In
the setting of an arbitrary separable Banach space E, this is achieved by proving
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that the existence of an E-valued solution implies a certain E-valued integral op-
erator to be γ-radonifying (Theorem 7.3), hence Hilbert-Schmidt if E is a Hilbert
space.

The implication (2)⇒ (1) extends the implication (ii)⇒ (i) above to arbitrary
values of p ∈ [1,∞). This extension is nontrivial and has three main ingredients:
a characterization of γ-radonifying operators taking values in weighted Lp-spaces
(Theorem 2.3), a factorization theorem (Theorem 4.9) and the theory of stochastic
integration in separable Banach spaces as developed in [2].

A particular feature of our approach that we would like to stress is that we do
not require the semigroup generated by A to act in Lp(%), even when discussing
the existence of a continuous modification of the solution.

After the completion of this paper, Professor Dalang kindly pointed out to us that
a result closely related to our Theorem 9.1 is proved in [7, Theorem 11]. In this
theorem, linear stochastic PDE’s with constant coefficients are considered under a
mild assumption on the Fourier transform of the Green’s function, and a necessary
and sufficient condition is obtained for existence of a locally square integrable
random field solution. This condition is essentially equivalent to the integrability
condition on the spectral measure µ in Theorem 9.1.

Finally, we modify our framework in order to be able to study the stochastic
Schrödinger equation. In this case, we have (Theorem 11.1):

Theorem 1.3. Let 1 6 p < ∞ and 0 6 % ∈ L1
loc be arbitrary and fixed. The

following assertions are equivalent:
(1) Problem (11.1) admits an Lp(%)-valued solution;
(2) µ is a finite measure and % is integrable;

2. γ-RADONIFYING OPERATORS

In this preliminary section we recall some facts about reproducing kernel Hilbert
spaces and γ-radonifying operators that will be needed later. For proofs and unex-
plained terminology we refer to [2], [5], [18], [24], [25].

Reproducing kernel Hilbert spaces. Let E be a real Banach space. We call a
bounded linear operator Q ∈ L (E∗, E) positive if

〈Qx∗, x∗〉 > 0, x∗ ∈ E∗,
and symmetric if

〈Qx∗, y∗〉 = 〈Qy∗, x∗〉, x∗, y∗ ∈ E∗.
If Q is positive and symmetric, then

(Qx∗, Qy∗) 7→ 〈Qx∗, y∗〉, x∗, y∗ ∈ E∗,
defines a real inner product on the range of Q. The completion HQ of rangeQ with
respect to this inner product is a real Hilbert space, the reproducing kernel Hilbert
space (RKHS) associated with Q. If E is separable, then so is HQ. The inclusion
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mapping from rangeQ into E extends to a continuous injection iQ from HQ into
E, and we have the operator identity

Q = iQ ◦ i∗Q.
Conversely, if i : H ↪→ E is a continuous embedding of a Hilbert space H into E,
then Q := i ◦ i∗ is positive and symmetric. As subsets of E we have H = HQ and
the map i∗x∗ 7→ i∗Qx

∗ defines an isometrical isomorphism of H onto HQ.

On various occasions we shall encounter the situation where we have an inclu-
sion operator i : H ↪→ E and an embedding k : E ↪→ F , where F is another real
Banach space. Defining Q := i ◦ i∗ and R := (k ◦ i) ◦ (k ◦ i)∗, we obtain two
positive symmetric operators, in L (E∗, E) and in L (F ∗, F ) respectively. One
may now ask in which way their RKHS’s HQ and HR are related. The answer is
given in the following proposition:

Proposition 2.1. Under the above assumptions, the identity map

HQ 3 i∗(k∗x∗) 7→ (k ◦ i)∗x∗ ∈ HR (x∗ ∈ F ∗),
extends uniquely to an unitary operator fromHQ ontoHR. In particular, as subsets
of F we have equality

(k ◦ i)(HQ) = k(HR).

Proof. This follows from

‖i∗(k∗x∗)‖2HQ = 〈Qk∗x∗, k∗x∗〉 = 〈Rx∗, x∗〉 = ‖(k∗ ◦ i∗)x∗‖2HR
and the fact that range i∗ and range (k ◦ i)∗ are dense in HQ and HR, respectively.

γ-Radonifying operators. The standard cylindrical Gaussian measure of a sep-
arable real Hilbert space H will be denoted by γH . This is the unique finitely
additive measure on the field of cylindrical subsets of H whose image with respect
to every orthogonal finite rank projection P is a standard Gaussian measure on the
finite dimensional range of P . The following well-known result links the concepts
of Gaussian measure, reproducing kernel Hilbert space, and standard cylindrical
measure.

Proposition 2.2. Let E be a separable real Banach space and let Q ∈ L (E∗, E)
be positive and symmetric. The following assertions are equivalent:

(1) Q is the covariance of a centred Gaussian measure νQ on E;
(2) The image cylindrical measure iQ(γHQ) extends to a centred Gaussian

measure ν on E.
In this situation, νQ = ν.

Let E be a separable real Banach space. A bounded operator T ∈ L (H,E)
is called γ-radonifying if T (γH) extends to a Gaussian measure on E. With
this terminology we can rephrase Proposition 2.2 as follows: a positive symmet-
ric operator Q is a covariance operator if and only if the associated embedding
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iQ : HQ ↪→ E is γ-radonifying. There is an extensive literature on γ-radonifying
operators; we refer to [24], [25] and [1] and the references given there.

We will need the following well-known facts:

• If T : H → E is γ-radonifying and S : E → F is bounded, then also
S ◦ T : H → F is γ-radonifying.
• If T : H1 → E is γ-radonifying and S : H0 → H1 is bounded, then
T ◦ S : H0 → E is γ-radonifying [1].
• If T1 : H1 → E is bounded and U : H0 → H1 is unitary, then T is
γ-radonifying if and only if T1 ◦ U : H0 → F is γ-radonifying.
• If H = H0⊕H1 and T1 : H1 → E is bounded, then T1 is γ-radonifying if

and only if T1 ◦ P1 : H → E is γ-radonifying, where P1 is the orthogonal
projection of H onto H1.
• If E is a Hilbert space, then T : H → E is γ-radonifying if and only if T

is Hilbert-Schmidt.

In Section 9 it will be important to know when certain operators taking values
in weighted Lp-spaces are γ-radonifying. In this direction we have the following
general result.

Theorem 2.3. Suppose H is a separable real Hilbert space and let 1 6 p <∞ be
fixed. Let (O,F , ν) be a σ-finite measure space. For a bounded linear operator
K : H → Lp(O) the following assertions are equivalent:

(1) K is γ-radonifying;
(2) There exists a ν-measurable function κ : O → H with

∫

O
‖κ(x)‖pH dν(x) <∞

such that for ν-almost all x ∈ O we have

(K(h))(x) = [κ(x), h]H , h ∈ H.

Proof. Let (ej)j>1 be an orthonormal basis for H and let (βj)j>1 be a sequence
of independent identically distributed real-valued standard Gaussian random vari-
ables. It is well known (cf. [25, Section V.5.4], [5, Theorem 2.12]) that K is
γ-radonifying if and only if the series

∑∞
j=1 βjKej converges in Lp(O) almost

surely.
(1)⇒ (2): By the almost sure convergence of

∑∞
j=1 βjKej and Fernique’s the-

orem,

E

∥∥∥∥∥∥

∞∑

j=1

βjKej

∥∥∥∥∥∥

p

Lp(O)

<∞.

The map

(ω, x) 7→
∞∑

j=1

βj(ω)(Kej)(x)
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is measurable from Ω × O to R, each term βj(ω)(Kej)(x) being measurable.
Hence by Fubini’s theorem,

E

∥∥∥∥∥∥

∞∑

j=1

βjKej

∥∥∥∥∥∥

p

Lp(O)

=

∫

O
E

∣∣∣∣∣∣

∞∑

j=1

βj(Kej)(x)

∣∣∣∣∣∣

p

dν(x)

= cp

∫

O



∞∑

j=1

|(Kej)(x)|2



p
2

dν(x)

with cp > 0 a constant depending on p only; cf. [25, Lemma V.5.2]. In particular,

∞∑

j=1

|(Kej)(x)|2 <∞

for ν-almost all x ∈ O. It follows that there exists a measurable Õ ⊂ O with
ν(O\Õ) = 0 such that for all x ∈ Õ the map κx : H → R,

κxh := (Kh)(x)

is Hilbert-Schmidt, hence bounded. By the Riesz representation theorem, we ob-
tain a function κ : Õ → H such that

κxh = [κ(x), h]H , h ∈ H, x ∈ Õ.

Noting that

[κ(·), ej ]H = Kej(·)
∣∣
Õ

we see that x 7→ [κ(x), ej ]H is measurable for each j, and therefore x 7→ κ(x)
is measurable by Pettis’s measurability theorem and the separability of H . By the
Parseval formula,

∞∑

j=1

|(Kej)(x)|2 =
∞∑

j=1

|[κ(x), ej ]H |2 = ‖κ(x)‖2H , x ∈ Õ.

We extend κ to a function on O by extending it identically zero on O\Õ . Combin-
ing everything, we find

cp

∫

O
‖κ(x)‖pH dν(x) = E

∥∥∥∥∥∥

∞∑

j=1

βjKej

∥∥∥∥∥∥

p

Lp(O)

<∞.

(2)⇒ (1): This is a special case of a result due to Kwapień; the following short
direct proof is a modification of [3, Proposition 2.1].
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Using the Kahane-Khinchine inequality, for some constant Cp and all 1 6M 6
N we have


E

∥∥∥∥∥∥

N∑

j=M

βjKej

∥∥∥∥∥∥

2

Lp(O)




p
2

6 Cpp E

∥∥∥∥∥∥

N∑

j=M

βjKej

∥∥∥∥∥∥

p

Lp(O)

= Cpp E
∫

O

∣∣∣∣∣∣

N∑

j=M

βj [κ(x), ej ]H

∣∣∣∣∣∣

p

dν(x)

= cp2C
p
p

∫

O




N∑

j=M

[κ(x), ej ]
2
H



p

dν(x).

Here cp is the constant from the first part of the proof. By assumption the right
hand side tends to 0 as M,N → ∞. Thus the series

∑∞
j=1 βjKej converges in

L2(Ω;Lp(O)) and, by the Itô-Nisio theorem, almost surely. This means that K is
γ-radonifying.

The following example will be relevant in later sections:

Example 2.4. Let µ be a nonnegative symmetric tempered measure on Rd. Let
0 6 % ∈ L1

loc(Rd) be a nonnegative locally integrable function. For p ∈ [1,∞) we
denote by Lp(%) the associated weighted Lp-space. Let H := L2

(
(0, T );L2

(s)(µ)
)

(see the beginning of section 3 for the definition of L2
(s)(µ)). Let q : Rd → C be

symmetric, i.e. q(−ξ) = q(ξ) for all ξ ∈ Rd, and assume that supξ∈Rd Re q(ξ) <

∞. Define κ : Rd → H by

(κ(x))(t) = e−i〈x, ·〉etq(− ·).

Then

(2.1)
‖κ(x)‖2H =

∫ T

0

∫

Rd

∣∣∣e−i〈x,ξ〉etq(−ξ)
∣∣∣
2
dµ(ξ) dt

=

∫ T

0

∫

Rd
e2tRe q(η) dµ(η) dt

is independent of x ∈ Rd. Therefore,
∫

Rd
‖κ(x)‖pH%(x) dx =

∫ T

0

∫

Rd
e2tRe q(η) dµ(η) dt

∫

Rd
%(x) dx

is finite if and only if both
∫ T

0

∫
Rd e

2tRe q(η) dµ(η) dt and
∫
Rd %(x) dx are finite. In

particular, the operator K : H → Lp(%) with an integral kernel κ is γ-radonifying
if and only if both of these conditions hold. Below (Proposition 4.3) we will give a
necessary and sufficient condition for the first integral to be finite.
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3. THE HILBERT SPACE Hµ ASSOCIATED WITH A SYMMETRIC MEASURE µ

Throughout the rest of this paper, d > 1 is a fixed integer. We denote by S =
S (Rd) and SC = S (Rd;C) the Schwartz spaces of real-valued and complex-
valued, rapidly decreasing functions on Rd, respectively. Their topological duals
S ′ and S ′

C are the spaces of real and complex tempered distributions on Rd. A
tempered measure is a Radon measure µ on Rd that is also a tempered distribution.
A nonnegative Radon measure µ is tempered whenever there exists N > 0 such
that ∫

Rd
1

1 + |ξ|N dµ(ξ) <∞.

If µ is a nonnegative tempered measure and f ∈ L2
C(µ) = L2(Rd, µ;C), then the

map

φ 7→
∫

Rd
φf dµ, φ ∈ SC,

defines a tempered distribution fµ ∈ S ′
C. Note that we do not take complex

conjugates in this identification; this convention should be kept in mind in the
definition of the Fourier transform of a tempered distribution below.

The Fourier transform of a function φ ∈ SC is defined by

(Fφ)(ξ) :=

∫

Rd
e−i〈x,ξ〉φ(x) dx, ξ ∈ Rd,

where dx represents the normalized Lebesgue measure on Rd. Thanks to this nor-
malization the inverse Fourier transform is given by

(F−1φ)(ξ) =

∫

Rd
ei〈x,ξ〉φ(x) dx, ξ ∈ Rd.

The Fourier transform on the space of tempered distributions is defined by duality,
i.e. for Φ ∈ S ′

C we take

〈φ,FΦ〉 := 〈Fφ,Φ〉, φ ∈ SC.

The inverse Fourier transform on S ′
C is then given by

〈φ,F−1Φ〉 = 〈F−1φ,Φ〉, φ ∈ SC.

For a function f : Rd → C we define f̌ : Rd → C by

f̌(x) = f(−x), x ∈ Rd.

If f̌ = f we say that f is symmetric. We define

L2
(s)(µ) =

{
f ∈ L2

C(µ) : f̌ = f
}
.

This is a closed linear subspace of L2
C(µ).
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Now let µ be a nonnegative symmetric tempered measure on Rd. Then for any
two f, g ∈ L2

(s)(µ) we have

[f, g]L2
(s)

(µ) =

∫

Rd
f(ξ)g(ξ) dµ(ξ) =

∫

Rd
f(−ξ)g(−ξ) dµ(ξ)

=

∫

Rd
f(η)g(η) dµ(η) = [f, g]L2

(s)
(µ),

and therefore the inner product on L2
(s)(µ) is real-valued. Thus, L2

(s)(µ) is a sepa-
rable real Hilbert space in a natural way.

It is easily checked that Fφ ∈ L2
(s)(µ) for all φ ∈ S . This observation moti-

vates the following definition:

Definition 3.1. Let µ be a nonnegative symmetric tempered measure on Rd. We
define Hµ to be the separable real Hilbert space obtained as the completion of S
with respect to the inner product

[φ, ψ]Hµ := [Fφ,Fψ]L2
(s)

(µ), φ, ψ ∈ S .

The space Hµ will be used below to describe the covariance structure of a spa-
tially homogeneous Wiener process in S ′ with spectral measure µ.

For all f ∈ L2
(s)(µ), the tempered distribution F−1(fµ) is real. Indeed, a

simple computation shows that 〈φ,F−1(fµ)〉 is real-valued for all φ ∈ S . This
motivates the following definition:

Definition 3.2. Let µ be a nonnegative symmetric tempered measure on Rd. We
define Hµ to be the linear subspace of all tempered distributions of the form
F−1(fµ) with f ∈ L2

(s)(µ). With respect to the inner product

(3.1) [F−1(fµ),F−1(gµ)]Hµ := [f, g]L2
(s)

(µ),

this is a separable real Hilbert space.

The space Hµ will turn out to be invariant under the action of semigroups in
S ′ generated by certain pseudodifferential operators in S ′ introduced in the next
section. This is the key fact in our analysis of E-valued solutions in Section 7
below.

The relation between the spaces Hµ andHµ is described in the following propo-
sition.

Proposition 3.3. The mapping

Uµφ := F−1
(
(Fφ)µ

)
, φ ∈ S ,

extends to a unitary operator from Hµ onto Hµ.

Proof. For all φ, ψ ∈ S we have

[U∗µUµφ, ψ]Hµ = [Uµφ,Uµψ]Hµ =
[
F−1

(
(Fφ)µ

)
,F−1

(
(Fψ)µ

)]
Hµ

= [Fφ,Fψ]L2
(s)

(µ) = [φ, ψ]Hµ .
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Hence U ∗µUµ = I .
Next, for all f ∈ L2

(s)(µ) ∩SC and φ ∈ S we have

[
U∗µ
(
F−1(fµ)

)
, φ
]
Hµ

=
[
F−1(fµ),F−1

(
(Fφ)µ

)]
Hµ

= [f,Fφ]L2
(s)

(µ) = [F−1f, φ]Hµ .

Hence

U∗µ
(
F−1(fµ)

)
= F−1f, f ∈ L2

(s)(µ) ∩SC.

It follows that for all f, g ∈ L2
(s)(µ) ∩SC we have

[
UµU

∗
µ

(
F−1(fµ)

)
,
(
F−1(gµ)

)]
Hµ

= [F−1f,F−1g]Hµ

= [f, g]L2
(s)

(µ) =
[
F−1(fµ),F−1(gµ)

]
Hµ
.

We claim that L2
(s)(µ)∩SC is dense in L2

(s)(µ). Once we know this, it follows that

{
F−1(fµ) : f ∈ L2

(s)(µ) ∩SC
}

is dense in Hµ and therefore UµU∗µ = I .
Given a function f ∈ L2

(s)(µ) we choose a sequence (gn) ∈ SC such that
gn → f in L2

C(µ) (we could even take complex-valued compactly supported
smooth functions). Define fn ∈ L2

(s)(µ) by

fn := 1
2 (gn + ǧn).

Then limn→∞ fn = 1
2 (f + f̌) = f as desired.

Let us denote by iS ,Hµ : S ↪→ Hµ and iHµ,S ′ : Hµ ↪→ S ′ the natural
inclusion mappings. We then have the following sequence of mappings:

S
iS ,Hµ
↪→ Hµ

Uµ−→ Hµ

iHµ,S ′
↪→ S ′.

The following proposition relates these three mappings:

Proposition 3.4. We have iS ,Hµ = (iHµ ,S ′ ◦ Uµ)∗ and iHµ,S ′ = (Uµ ◦ iS ,Hµ)∗.

Proof. In the proof we will make no identifications and write out all inclusion
mappings.

Let φ, ψ ∈ S be arbitrary and fixed. Then i∗Hµ,S ′ maps φ onto an element
i∗Hµ,S ′φ ∈ Hµ. By definition of Hµ there exists a function f ∈ L2

(s)(µ) such that
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i∗Hµ,S ′φ = F−1(fµ). Then,
〈
φ, iHµ ,S ′UµiS ,Hµψ

〉
=
[
F−1(fµ), UµiS ,Hµψ

]
Hµ

=
[
F−1(fµ),F−1

(
(Fψ)µ)

)]
Hµ

= [f,Fψ]L2
(s)

(µ) = [Fψ, f ]L2
(s)

(µ)

=

∫

Rd

∫

Rd
e−i〈x,ξ〉ψ(x) dx f(ξ) dµ(ξ)

=

∫

Rd

∫

Rd
ei〈x,η〉f(η) dµ(η)ψ(x) dx

=
〈
ψ, iHµ ,S ′F

−1(fµ)
〉

=
〈
ψ, iHµ ,S ′i

∗
Hµ,S ′φ

〉

=
〈
φ, iHµ,S ′i

∗
Hµ,S ′ψ

〉
.

This shows that
iHµ,S ′ ◦ Uµ ◦ iS ,Hµ = iHµ,S ′ ◦ i∗Hµ,S ′ .

Since iHµ,S ′ is injective, it follows that

(3.2) Uµ ◦ iS ,Hµ = i∗Hµ,S ′ .

Multiplying both sides in (3.2) from the left with U ∗µ gives the first identity; dual-
izing (3.2) gives the second identity.

4. A C0-SEMIGROUP ON Hµ ASSOCIATED WITH A SYMMETRIC SYMBOL q

Throughout the rest of this paper, it will be a standing assumption that q : Rd →
C is a measurable function satisfying

(4.1) q = q̌,

(4.2) q∗ := sup
ξ∈Rd

Re q(ξ) < ∞.

We fix a nonnegative symmetric tempered measure µ on Rd and let Hµ denote
the separable real Hilbert space from Definition 3.2. We define a semigroup of
bounded linear operators S = {S(t)}t>0 on Hµ by

S(t)
(
F−1(fµ)

)
= F−1

(
etq(·)f(·)µ

)
.

Since q is symmetric and Re q is bounded from above, the function etq(·)f(·) be-
longs to L2

(s)(µ), which shows that the operators S(t) are well-defined.

Example 4.1. We give some examples of functions q satisfying the conditions (4.1)
and (4.2).

(1) The function q(ξ) = iξ (ξ ∈ R). The semigroup S is the restriction to Hµ

of the left translation semigroup on S ′ in dimension d = 1.
(2) The symbol q of an elliptic operator with constant coefficients. For q(ξ) =
−|ξ|2, S is the restriction of Hµ of the heat semigroup.
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(3) The function q(ξ) = |ξ|2 − |ξ|4. It arises in connection with the beam
equation.

(4) The function q(ξ) = −|ξ|2γ with γ > 0. This example was considered
in [11]. For γ = 1

2 , S is the restriction of Hµ of the Poisson semigroup.

Notice that the function q(ξ) = i
2 |ξ|2, which corresponds to the Schrödinger

semigroup, satisfies (4.2), but not (4.1). In the final section of this paper we will
return to this example.

Proposition 4.2. The semigroup {S(t)}t>0 is strongly continuous on Hµ and sat-
isfies

(4.3) ‖S(t)‖Hµ 6 etq
∗
, t > 0.

Proof. The inequality |etq(ξ)| 6 etq∗ shows that S(t) satisfies the estimate (4.3). It
remains to prove strong continuity of {S(t)}t>0 in Hµ. By the dominated conver-
gence theorem, for Φ = F−1(fµ) and Ψ = F−1(gµ) we have

lim
t↓0

[S(t)Φ,Ψ]Hµ = lim
t↓0

∫

Rd
etq(ξ)f(ξ)g(ξ) dµ(ξ)

=

∫

Rd
f(ξ)g(ξ) dµ(ξ) = [Φ,Ψ]Hµ .

This proves that {S(t)}t>0 is weakly continuous as a semigroup in Hµ, and there-
fore strongly continuous by a standard result from semigroup theory [20].

Under an appropriate integrability condition, the semigroup {S(t)}t>0 mapsHµ

into BUC (here we identify both Hµ and BUC with linear subspaces of S ′). This
will be derived as a consequence of the following proposition.

Proposition 4.3. Fix T > 0 and C > q∗. Then

(4.4)
∫

Rd
1

C −Re q(ξ)
dµ(ξ) <∞

if and only if

(4.5)
∫ T

0

∫

Rd
e2tRe q(ξ) dµ(ξ) dt <∞.

Proof. Clearly,

I :=

∫ T

0

∫

Rd
e2tRe q(ξ) dµ(ξ) dt <∞

is finite if and only if I0 and I∞ are both finite, where

I0 :=

∫ T

0

∫

|Re q|6|C|
e2tRe q(ξ) dµ(ξ) dt

and

I∞ :=

∫ T

0

∫

Re q<−|C|
e2tRe q(ξ) dµ(ξ) dt.
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Since the function (t, ξ) 7→ e2tRe q(ξ) is bounded away from 0 on [0, T ]×{|Re q| 6
|C|}, it is clear that I0 <∞ if and only if

µ{|Re q| 6 |C|} <∞.
In view of

0 < C − q∗ 6 C −Re q(ξ) 6 2|C|,
the right most inequality being valid whenever |Re q(ξ)| 6 |C|, this happens if and
only if ∫

|Re q|6|C|

1

C −Re q(ξ)
dµ(ξ) <∞.

Concerning I∞ we note that

I∞ =

∫

Re q<−|C|

1

−2Re q(ξ)

(
1− e2T Re q(ξ)

)
dµ(ξ).

Hence we can estimate
(

1− e−2T |C|
)∫

Re q<−|C|

1

−2 Re q(ξ)
dµ(ξ)

6 I∞ 6
∫

Re q<−|C|

1

−2Re q(ξ)
dµ(ξ).

Hence I∞ <∞ if and only if

(4.6)
∫

Re q<−|C|

1

−Re q(ξ)
dµ(ξ) <∞.

If C > 0, then for all ξ ∈ Rd we have

−Re q(ξ) 6 C −Re q(ξ) 6 −2Re q(ξ).

If C < 0 we choose ε > 0 such that (1 − ε)q∗ 6 C . Then for all ξ ∈ Rd we have
(1− ε)Re q(ξ) 6 (1− ε)q∗ 6 C and therefore

−εRe q(ξ) 6 C −Re q(ξ) 6 −Re q(ξ).

In both cases it follows that (4.6) holds if and only if
∫

Re q<−|C|

1

C −Re q(ξ)
dµ(ξ) <∞.

Remark 4.4. If (4.4) holds, then in particular we have

(4.7)
∫

Rd
e2tRe q(ξ) dµ(ξ) <∞, t > 0.

This can be deduced from (4.5) or by simply observing that for every t > 0 there
exists a constant Mt > 0 such that e2ts 6Mt/(C − s) for all s 6 q∗.
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The following Hypothesis, expressing that the equivalent statements of Proposi-
tion 4.3 hold, will play an important rôle:

Hypothesis (H). There exists a constant C > q∗ such that∫

Rd
1

C −Re q(ξ)
dµ(ξ) <∞.

Let C0 and BUC denote the Banach spaces of continuous real-valued functions
on Rd vanishing at infinity, respectively which are bounded and uniformly contin-
uous. Both spaces are endowed with the supremum norm. In our next result we
identify C0 and BUC with a linear subspace S ′ in the natural way.

Proposition 4.5. Assume (H). For all t > 0, the operator S(t) mapsHµ intoBUC
and we have

(4.8) ‖S(t)‖L (Hµ,BUC) 6
(∫

Rd
e2tRe q(ξ) dµ(ξ)

) 1
2

.

If µ is absolutely continuous with respect to the Lebesgue measure, then S(t) maps
Hµ into C0.

Proof. Let f ∈ L2
(s)(µ) be fixed. By (4.7) we have etq ∈ L2

(s)(µ), so etqf ∈
L1

(s)(µ) by the Cauchy-Schwarz inequality. From the identity S(t)(F −1(fµ)) =

F−1(etqfµ) it follows that S(t)(F−1(fµ)) can be represented by the bounded
function

(4.9) x 7→ F−1(etqfµ)(x) =

∫

Rd
ei〈x,ξ〉etq(ξ)f(ξ) dµ(ξ).

This function is real-valued because etqf is symmetric. Moreover,

sup
x∈Rd

|S(t)F−1(fµ)(x)| 6 ‖etqf‖L1
(s)

(µ) 6 ‖etq‖L2
(s)

(µ)‖f‖L2
(s)

(µ)

=

(∫

Rd
e2tRe q(ξ) dµ(ξ)

) 1
2

‖F−1(fµ)‖Hµ .

The proof that the function representing S(t)(F−1(fµ)) is uniformly continuous
is standard, and is included just for the convenience of the reader. Given ε > 0, for
large enough R we have

∫
|ξ|>R |etq(ξ)f(ξ)| dµ(ξ) < ε and therefore

∣∣∣∣
∫

Rd
(ei〈x,ξ〉 − ei〈x′,ξ〉)etq(ξ)f(ξ) dµ(ξ)

∣∣∣∣

6 max
|ξ|6R

|ei〈x,ξ〉 − ei〈x′,ξ〉| ·
∫

|ξ|6R
|etq(ξ)f(ξ)| dµ(ξ) + 2ε

6 max
|ξ|6R

|1− ei〈x−x′,ξ〉| ·
∫

Rd
|etq(ξ)f(ξ)| dµ(ξ) + 2ε.

From this estimate we deduce that the function in (4.9) is uniformly continuous.
The previous estimate shows that S(t), as an operator from Hµ into BUC , is
bounded with norm given by (4.8).
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The final assertion is a consequence of the Riemann-Lebesgue lemma.

As an operator in L (Hµ, BUC), we denote S(t) by SBUC(t). We will study
the operators SBUC(t) in more detail next. In the results that follow, the rôle of
BUC may be replaced by C0 if µ is absolutely continuous with respect to the
Lebesgue measure.

Lemma 4.6. Assume (H). For all T > 0 and g ∈ L2((0, T );Hµ) the BUC-valued
function t 7→ SBUC(t)g(t) is Bochner integrable on (0, T ) and we have
∥∥∥∥
∫ T

0
SBUC(t)g(t) dt

∥∥∥∥
BUC

6
(∫ T

0

∫

Rd
e2tRe q(ξ) dµ(ξ) dt

) 1
2

‖g‖L2((0,T );Hµ).

Proof. For each fixed h ∈ Hµ, the BUC-valued function t 7→ SBUC(t)h is right
continuous on (0,∞). To see this, fix h ∈ Hµ and t0 > 0. Then, by the strong
continuity of {S(t)}t>0 in Hµ,

(4.10) lim
ε↓0

SBUC(t0 + ε)h = lim
ε↓0

SBUC(t0)(S(ε)h) = 0.

It follows that t 7→ SBUC(t)g(t) is strongly measurable on (0,∞) for all step func-
tions g ∈ L2((0, T );Hµ). Since the step functions are dense in L2((0, T );Hµ),
it follows that t 7→ SBUC(t)g(t) is strongly measurable on (0,∞) for all g ∈
L2((0, T );Hµ).

By (4.8),

‖SBUC(t)g(t)‖BUC 6
(∫

Rd
e2tRe q(ξ) dµ(ξ)

) 1
2

‖g(t)‖Hµ .

Hence by Hölder’s inequality,
∫ T

0
‖SBUC(t)g(t)‖BUC dt 6

(∫ T

0

∫

Rd
e2tRe q(ξ) dµ(ξ) dt

) 1
2

‖g‖L2((0,T );Hµ),

which is finite by Proposition 4.3. It follows that t 7→ SBUC(t)g(t) is Bochner
integrable in BUC and that the desired estimate holds.

Proposition 4.7. Assume (H). For all ϕ ∈ BUC∗ the Hµ-valued function t 7→
S∗BUC(t)ϕ is strongly measurable on (0,∞) and for all T > 0 we have

∫ T

0
‖S∗BUC(t)ϕ‖2Hµ dt 6

(∫ T

0

∫

Rd
e2tRe q(ξ) dµ(ξ) dt

)
‖ϕ‖2BUC∗ .

Proof. The Hµ-valued function t 7→ S∗BUC(t)ϕ is weakly measurable and separa-
bly valued, and therefore strongly measurable by the Pettis measurability theorem
[10]. For T > 0 let us define the bounded operator JT : L2((0, T );Hµ) → BUC
by

JT g :=

∫ T

0
SBUC(t)g(t) dt.
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For all g ∈ L2((0, T );Hµ) and ϕ ∈ BUC∗ we have

〈g, J∗Tϕ〉 =

〈∫ T

0
SBUC(t)g(t) dt, ϕ

〉
=

∫ T

0
[g(t), S∗BUC (t)ϕ]Hµ dt

= [g(·), S∗BUC (·)ϕ]L2((0,T );Hµ).

It follows that J∗Tϕ = S∗BUC(·)ϕ and consequently,
∫ T

0
‖S∗BUC(t)ϕ‖2Hµ dt = ‖J∗Tϕ‖2L2((0,T );Hµ) 6 ‖JT ‖2‖ϕ‖2BUC∗ .

Finally, by Lemma 4.6,

‖JT ‖ 6
(∫ T

0

∫

Rd
e2tRe q(ξ) dµ(ξ) dt

) 1
2

.

Before proceeding with the main line of development, we insert a related propo-
sition which will be needed in Section 8 when we study time regularity of weak
solutions.

Proposition 4.8. Assume (H). For all ϕ ∈ BUC∗ and all 0 6 s 6 t we have
∫ s

0
‖S∗BUC(t− s+ r)ϕ− S∗BUC(r)ϕ‖2Hµ dr

6
(∫ s

0

∫

Rd
|e(t−s+r)q(ξ) − erq(ξ)|2 dµ(ξ) dr

)
‖ϕ‖2BUC∗ .

Proof. For g ∈ L2((0, T ),Hµ) we define

Js,tg =

∫ s

0
SBUC(t− s+ r)g(r)− SBUC(r)g(r) dr.

We now write g(r) = F−1(f(r)µ) with f(r) ∈ L2
(s)(µ). Using (4.9) and estimat-

ing as above with Hölder’s inequality, we obtain

‖Js,t‖ 6
(∫ s

0

∫

Rd

∣∣∣e(t−s+r)q(ξ) − etq(ξ)
∣∣∣
2
dµ(ξ) dr

) 1
2

.

As in Proposition 4.7, our inequality now follows by considering the adjoint of
Js,t.

By Proposition 4.7, for every T > 0 we may define a bounded linear operator
QT ∈ L (BUC∗, BUC) by

(4.11) QTϕ :=

∫ T

0
SBUC(t)S∗BUC(t)ϕdt, ϕ ∈ BUC∗,

where the integral converges in BUC as a Bochner integral. For this operator we
have the following factorization result, which we obtain as an application of RKHS
techniques.



18 ZDZISLAW BRZEŹNIAK AND JAN VAN NEERVEN

Theorem 4.9. Assume (H). Define κ : Rd → L2
(
(0, T );L2

(s)(µ)
)

by

(κ(x))(t)(ξ) = e−i〈x,ξ〉etq(− ξ).

Then

(1) For all f ∈ L2
(
(0, T );L2

(s)(µ)
)

the function

x 7→ [f, κ(x)]L2((0,T );L2
(s)

(µ))

is bounded and uniformly continuous.
(2) The linear operator KT : L2

(
(0, T );L2

(s)(µ)
)
→ BUC defined by

KT f = [f, κ(·)]L2((0,T );L2
(s)

(µ))

is bounded and satisfies the operator identity

QT = KT ◦K∗T .

Proof. Let f ∈ L2
(
(0, T );L2

(s)(µ)
)

be arbitrary and fixed. For all x ∈ Rd we

have, recalling that q(−ξ) = q(ξ),
∣∣[f, κ(x)]L2((0,T );L2

(s)
(µ))

∣∣

=

∣∣∣∣
∫ T

0

∫

Rd
(f(t))(ξ)e−i〈x,ξ〉etq(−ξ) dµ(ξ) dt

∣∣∣∣

6
∫ T

0

∫

Rd

∣∣(f(t))(ξ)etq(ξ)
∣∣ dµ(ξ) dt

6 ‖f‖L2((0,T );L2
(s)

(µ))

(∫ T

0

∫

Rd
e2tRe q(ξ) dµ(ξ) dt

) 1
2

.

The double integral being finite, this shows that x 7→ [f, κ(x)]L2((0,T );L2
(s)

(µ)) is
bounded. The uniform continuity of this map is proved as in Proposition 4.5.
HenceKT is well-defined as a linear operator from L2((0, T );L2

(s)(µ)) into BUC ,
and the above estimate shows that KT is bounded.

For the proof of the identity QT = KT ◦ KT we will set up a commutative
diagram as follows:

L2((0, T );L2
(s)(µ)) −−−−→

VT
L2((0, T );Hµ) −−−−→

JT
BUC

yPT

yPT
xiT

Zµ,T −−−−→
Vµ,T

Zµ,T −−−−→
Iµ,T

HT

The meaning of the spaces and operators involved will be explained next. To start
with, HT denotes the RKHS associated with QT and iT : HT ↪→ BUC denotes
the inclusion mapping; cf. Section 2. Recall that QT = iT ◦ i∗T .
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As before, JT denotes the bounded operator from L2((0, T );Hµ) into BUC
defined by

JT g =

∫ T

0
SBUC(t)g(t) dt, g ∈ L2((0, T );Hµ).

Its adjoint is given by

J∗Tϕ = S∗BUC(·)ϕ, ϕ ∈ BUC∗.
Let Zµ,T denote the closure in L2((0, T );Hµ) of the linear subspace of all func-
tions of the form g = S∗BUC(·)ϕ with ϕ ∈ BUC∗. Then Zµ,T = range J∗T and
therefore ker JT = (range J∗T )⊥ = (Zµ,T )⊥. It follows that

(4.12) L2((0, T );Hµ) = Zµ,T ⊕ ker JT .

For all ϕ ∈ BUC∗ we have

(4.13) JT (S∗BUC(·)ϕ) = QTϕ.

Identifying HT and its image iT (HT ) in BUC , we have QTϕ ∈ HT and

‖QTϕ‖2HT = 〈QTϕ,ϕ〉 =

∫ T

0
〈SBUC(t)S∗BUC(t)ϕ,ϕ〉 dt

=

∫ T

0
‖S∗BUC(t)ϕ‖2Hµ dt = ‖S∗BUC(·)ϕ‖2L2((0,T );Hµ).

It follows from these equalities and (4.13) that JT maps L2((0, T );Hµ) onto HT

and that its restriction to Zµ,T is unitary. As an operator from L2((0, T );Hµ) onto
HT we denote JT by IT . The restriction of IT to Zµ,T will be denoted by Iµ,T ;
this is a unitary operator from Zµ,T onto HT .

Summarizing our discussion so far, we see that a function f ∈ BUC belongs to
HT if and only if there exists a function g ∈ Zµ,T such that

f =

∫ T

0
SBUC(t)g(t) dt = JT g;

moreover by (4.12),

‖f‖HT = inf
{
‖g‖L2((0,T );Hµ) : g ∈ L2((0, T );Hµ), JT g = f

}
.

Define Jµ,T := iT ◦ Iµ,T . Then QT = Jµ,T ◦ J∗µ,T . Next we define

Zµ,T = {ϕ ∈ L2
(
(0, T );L2

(s)(µ)
)

: F−1(ϕ(·)µ) ∈ Zµ,T }.

The operators VT : L2
(
(0, T );L2

(s)(µ)
)
→ L2

(
(0, T );Hµ

)
and Vµ,T : Zµ,T →

Zµ,T defined by
VTϕ := F−1(ϕ(·)µ)

and Vµ,T := VT |Zµ,T are unitary. Therefore,

QT = (Jµ,T ◦ Vµ,T ) ◦ (Jµ,T ◦ Vµ,T )∗.
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Finally let PT : L2
(
(0, T );Hµ

)
→ Zµ,T and PT : L2

(
(0, T );L2

(s)(µ)
)
→ Zµ,T

denote the orthogonal projections. Then PT ◦P∗
T = IZµ,T , the identity operator

on Zµ,T . Therefore,

QT = (Jµ,T ◦ Vµ,T ◦PT ) ◦ (Jµ,T ◦ Vµ,T ◦PT )∗.

But for all g ∈ L2
(
(0, T );L2

(s)(µ)
)

we have

(Jµ,T ◦ Vµ,T ◦PT )g = (JT ◦ VT )g =

∫ T

0
SBUC(t)(F−1(g(t)µ) dt.

We will prove next that the right hand side equals KT g. Once we know this it
follows that QT = KT ◦K∗T .

Identifying BUC with a linear subspace of S ′, for all φ ∈ S we have
〈
φ,

∫ T

0
SBUC(t)(F−1(g(t)µ) dt

〉
=

∫ T

0
〈F−1φ, etqg(t)µ〉 dt

=

∫ T

0

∫

Rd

(∫

Rd
ei〈x,ξ〉φ(x) dx

)
etq(ξ)(g(t))(ξ) dµ(ξ) dt

=

∫

Rd
φ(x)

(∫ T

0

∫

Rd
(g(t))(ξ) e−i〈x,ξ〉etq(−ξ) dµ(ξ) dt

)
dx

=

∫

Rd
φ(x)

(∫ T

0
[g(t), (κ(x))(t)]L2

(s)
(µ) dt

)
dx

=

∫

Rd
φ(x) [g, κ(x)]

L2
(

(0,T );L2
(s)

(µ)
) dx

= 〈φ,KT g〉.

Now let E be a real Banach space in which BUC is embedded by means of a
continuous embedding iBUC,E : BUC ↪→ E. Assuming (H), for t > 0 we denote
by SE(t) : Hµ → E the composition of SBUC(t) with the inclusion mapping
iBUC,E :

SE(t) = iBUC,E ◦ SBUC(t).

For every T > 0 we then define a bounded operator QT ∈ L (E∗, E) by

(4.14) QE
T x
∗ :=

∫ T

0
SE(t)S∗E(t)x∗ dt, x∗ ∈ E∗.

Note that QE
T = iBUC,E ◦ QT ◦ i∗BUC,E , where QT : BUC∗ → BUC is the

operator defined by (4.11).
Similarly we define

KE
T (t) = iBUC,E ◦KT .

For the sake of simplicity, we will omit the embedding iBUC,E from our nota-
tions whenever it is convenient.
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Proposition 4.10. Assume (H). Under the above assumptions, for every fixed T >
0 the following assertions are equivalent:

(1) The operator KE
T is γ-radonifying from L2

(
(0, T );L2

(s)(µ)
)

into E;
(2) The operator QE

T is the covariance of a centred Gaussian measure on E.

Proof. By Proposition 2.1 the RKHS’s ofQT andQET are canonically isometrically
isomorphic, and identical as subsets of E. For this reason we will not distinguish
these spaces from each other, and denote both by HT .

From Section 2 we recall that QE
T is a covariance if and only if the associated

embedding iT : HT ↪→ E is γ-radonifying. Clearly,

iT = JEµ,T ◦ I−1
µ,T ,

where JEµ,T := iBUC,E ◦ Jµ,T ; here Iµ,T and Jµ,T are the operators introduced in
the proof of Theorem 4.9. From this we see that iT : HT ↪→ E is γ-radonifying
if and only if JEµ,T : Zµ,T → E is γ-radonifying, and this is the case if and only
if JEµ,T ◦ Vµ,T : Zµ,T → E is γ-radonifying. Finally, since PT is an orthogonal
projection, for the standard Gaussian cylindrical measures γL2((0,T );L2

(s)
(µ)) and

γZµ,T of L2
(
(0, T );L2

(s)(µ)
)

and Zµ,T respectively we have

PT

(
γL2((0,T );L2

(s)
(µ))

)
= γZµ,T ,

and therefore JEµ,T ◦ Vµ,T : Zµ,T → E is γ-radonifying if and only if KE
T =

JEµ,T ◦ Vµ,T ◦PT : L2
(
(0, T );L2

(s)(µ)
)
→ E is γ-radonifying.

5. CYLINDRICAL WIENER PROCESSES

Let E be a separable real Banach space in which BUC is continuously embed-
ded by means on an embedding iBUC,E :

iBUC,E : BUC ↪→ E.

In this section we will use the estimates from the previous section to give a meaning
to the stochastic integral

∫ t

0
SE(t− s) dWHµ(s), t > 0,

where {WHµ(t)}t>0 is a cylindrical Wiener process with Cameron-Martin space
Hµ and

SE(t) := iBUC,E ◦ SBUC(t), t > 0.

Let us first state the definition of a cylindrical Wiener process:

Definition 5.1. Let (Ω,F , {Ft}t>0,P) be a complete filtered probability space,
and let H be a separable real Hilbert space. A cylindrical Wiener process
on (Ω,F , {Ft}t>0,P) with Cameron-Martin space H is a one-parameter family
WH = {WH(t)}t>0 of bounded linear operators from H into L2(P) with the
following properties:
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(1) For each h ∈ H , {WH(t)h}t>0 is an adapted real-valued Brownian mo-
tion;

(2) For all g, h ∈ H and t, s > 0 we have

E
(
WH(t)g ·WH(s)h

)
= (t ∧ s)[g, h]H .

In [2] a theory for stochastic convolution of certain operator-valued functions
with respect to a cylindrical Wiener process has been developed. We will briefly
recall its mean features. Let H be a separable real Hilbert space, E a separable real
Banach space, and let F : (0, T ) → L (H,E) be a function with the following
property: for each x∗ ∈ E∗, the function t 7→ F ∗(t)x∗ is strongly measurable and

(5.1)
∫ T

0
‖F ∗(t)x∗‖2H dt <∞, x∗ ∈ E∗.

Under this assumption, for all x∗ ∈ E∗ the function t 7→ F (t)F ∗(t)x∗ is Pettis
integrable [2, Proposition 2.2]. Thus we may define a bounded operator QT ∈
L (E∗, E) by

QTx
∗ =

∫ T

0
F (t)F ∗(t)x∗ dt.

The following result is a reformulation of [2, Theorem 3.3], where it is stated in
terms of convolutions. For Hilbert spaces E, the result is well-known. A detailed
treatment of the stochastic Itô integral in Hilbert spaces may be found in the book
[5].

Proposition 5.2. Let E be a separable real Banach space and let WH be a cylin-
drical Wiener process with Cameron-Martin space H . Then the following asser-
tions are equivalent:

(1) QT is the covariance of a centred Gaussian measure νT on E;
(2) There exists an FT -measurable E-valued random variable XT such that

〈XT , x
∗〉 =

∫ T

0
〈F (t) dWH (t), x∗〉, x∗ ∈ E∗.

In this situation, XT is centred Gaussian and νT is its distribution; in particular,

(5.2) E(〈XT , x
∗〉2) =

∫ T

0
‖F ∗(t)x∗‖2H dt, x∗ ∈ E∗.

The scalar stochastic integral in (2) is defined in the natural way: for a simple
function F : (0, T )→ L (H,E) of the form

F (t) = F (tk), t ∈ [tk, tk+1); k = 0, . . . ,m− 1,

with 0 < t0 < . . . < tm = T , we define
∫ T

0
〈F (t) dWH (t), x∗〉 :=

m−1∑

k=0

(
WH(tk+1)−WH(tk)

)
F ∗(tk)x

∗.

If the assumptions of the theorem are satisfied for t = T , then by tightness
they are satisfied for all t ∈ [0, T ]. Thus we obtain an adapted E-valued process
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{Xt}t∈[0,T ]. In what follows, we will use the notation
∫ t

0 F (s) dWH(s) to denote
the random variables Xt.

Let us now assume that (H) holds and that we have a continuous embedding
iBUC,E : BUC ↪→ E. We define, for t > 0, the bounded linear operators SE(t) :
Hµ → E by SE(t) := iBUC,E ◦ SBUC(t). Thanks to Proposition 4.8, for all
x∗ ∈ E∗ we have ∫ T

0
‖S∗E(t)x∗‖2 dt <∞.

By Proposition 4.10, the operator QE
T : E∗ → E defined by

QET x
∗ :=

∫ T

0
SE(t)S∗E(t)x∗ ds

is the covariance of a centred Gaussian measure on E if and only if the opera-
tor KE

T introduced in Theorem 4.9 is γ-radonifying from L2
(
(0, T );L2

(s)(µ)
)

into
E. If this is the case, we obtain an E-valued process {u(t)}t∈[0,T ] by stochastic
convolution with a cylindrical Wiener process WHµ :

(5.3) u(t) :=

∫ t

0
SE(t− s) dWHµ(s).

6. SPATIALLY HOMOGENEOUS WIENER PROCESSES

Our next aim is to show that it makes sense to regard the process {u(t)}t∈[0,T ]

defined by (5.3) as an E-valued ‘solution’ of the problem
du(t) = Au(t) dt+ dWµ(t), t > 0,

u(0) = 0.

where {Wµ(t)}t>0 is a spatially homogeneous Wiener process whose spectral
measure is µ, and A is defined formally by

AΦ = F−1
(
etqFΦ

)
, Φ ∈ S ′.

This aim will be achieved in the next section. In order to be able to state the precise
results, in this section we will study spatially homogeneous Wiener process and
their relationship with cylindrical Wiener processes.

Definition 6.1. Let (Ω,F , {Ft}t>0,P) be a complete filtered probability space.
A spatially homogeneous Wiener process on (Ω,F , {Ft}t>0,P) is a continuous,
adapted S ′-valued process W = {W (t)}t>0 with the following properties:

(1) For each φ ∈ S , {〈φ,W (t)〉}t>0 is an adapted real-valued Brownian
motion;

(2) For each t > 0 the distribution of W (t) is invariant with respect to all
translations τ ′h : S ′ → S ′, where τh : S → S is given by

τhφ(x) = φ(x+ h), x, h ∈ Rd, φ ∈ S .

We refer to [3, 15, 22, 23] for more infomation. By [12, Theorem 6, p. 169,
Theorem 1′, p. 264], for a process W satisfying condition (1), condition (2) is
equivalent to:



24 ZDZISLAW BRZEŹNIAK AND JAN VAN NEERVEN

(2′) There exists a nonnegative symmetric tempered measure µ on Rd such that
for all φ, ψ ∈ S and t, s > 0 we have

E
(
〈φ,W (t)〉 · 〈ψ,W (s)〉

)
= (t ∧ s)[φ, ψ]Hµ .

The measure µ occurring in condition (2′) is uniquely determined by W and is
called the spectral measure of the process W. We will sometimes use the notation
Wµ for a spatially homogeneous Wiener process with spectral measure µ.

It is possible to integrate certain operator-valued processes with respect to a
spatially homogeneous Wiener process Wµ. Let L (S ′) denote the space of all
continuous linear operators from S ′ into itself. A mapping F : (0, T ) × Ω →
L (S ′) is called simple if there exist 0 < t0 < t1 < . . . < tm = T and Ftk -
measurable random variables F (tk) : Ω → L (S ′) taking finitely many values
only, such that

F (t, ω) = F (tk, ω), t ∈ [tk, tk+1); k = 0, . . . ,m− 1.

For a simple F : (0, T ) × Ω → L (S ′) of this form we define the stochastic
integral with respect to W by

∫ T

0
F (t) dWµ(t) :=

m−1∑

k=0

F (tk)
(
Wµ(tk+1)−Wµ(tk)

)
.

An easy computation shows that

(6.1) E
∣∣∣∣
〈
φ,

∫ T

0
F (t) dWµ(t)

〉∣∣∣∣
2

= E
∫ T

0
‖F ′(t)φ‖2Hµ

dt, φ ∈ S .

Here F ′(t) : S → S is the adjoint of F (t) : S ′ → S ′ and Hµ is the Hilbert
space introduced in Definition 3.1. By a standard approximation argument, the sto-
chastic integral defined in this way extends to the space of all predictable functions
F : (0, T ) × Ω→ L (S ′) for which

E
∫ T

0
‖F ′(t)φ‖2Hµ

dt <∞, φ ∈ S .

Here, measurability of L (S ′)-valued functions is understood in the sense of [13,
14], where more details are given.

We will investigate next the relationship between the stochastic integral intro-
duced above and the one from the previous section. To this end we consider the
situation where a spatially homogeneous Wiener processWµ with spectral measure
µ is given.

There is a canonical way to associate a cylindrical Wiener process with a given
spatially homogeneous Wiener process, cf. [14, Proposition 2.5], [22]:

Proposition 6.2. Let Wµ be a spatially homogeneous Wiener process. For each
t > 0, the mapping

WHµ(t) : Uµφ 7→ 〈φ,Wµ(t)〉 φ ∈ S ,

extends uniquely to a bounded linear operator WHµ(t) : Hµ → L2(P), and WHµ

is a cylindrical Wiener process with Cameron-Martin space Hµ.
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Proof. Just note that

E
(
WHµ(t)Uµφ · WHµ(s)Uµψ

)
= E

(
〈φ,Wµ(t)〉 · 〈φ,Wµ(s)〉

)

= (t ∧ s) [φ, ψ]Hµ = (t ∧ s) [Uµφ,Uµψ]Hµ .

We denote by WHµ the associated cylindrical Wiener process with Cameron-
Martin space Hµ from Proposition 6.2.

Proposition 6.3. Let E be a separable real Banach space, continuously embedded
in D ′. Let F : (0, T )→ L (S ′) be a function for which the stochastic integral

∫ T

0
F (t) dWµ(t)

is well-defined in the sense described above.
Let FE : (0, T )→ L (Hµ, E) be a function for which the stochastic integral

∫ T

0
FE(t) dWHµ(t)

is well-defined in the sense described above.
If for all h ∈ Hµ and t ∈ (0, T ) we have

F (t)h = FE(t)h,

the equality being understood in the space D ′, then in D ′ we have

(6.2)
∫ T

0
F (t) dWµ(t) =

∫ T

0
FE(t) dWHµ(t) almost surely.

Proof. We shall denote the inclusion mappings E ↪→ D ′ and S ′ ↪→ D ′ by iE,D ′
and iS ′,D ′ , respectively. The compatibility assumption on F (t) and FE(t) then
reads

iS ′,D ′F (t)iHµ ,S ′h = iE,D ′FE(t)h, h ∈ Hµ.

In order to prove the proposition it suffices to consider two step functions of the
form 1(a,b) ⊗ F and 1(a,b) ⊗ FE where F ∈ L (S ′) and FE ∈ L (Hµ, E) are
related by

iS ′,D ′ ◦ F ◦ iHµ,S ′ = iE,D ′ ◦ FE .

Noting that i∗S′,D ′ = iD ,S , this can be rewritten as

F ∗E ◦ i∗E,D ′ = i∗Hµ,S ′ ◦ F ′ ◦ iD ,S .



26 ZDZISLAW BRZEŹNIAK AND JAN VAN NEERVEN

To prove (6.2), note that for all ψ ∈ D we have
〈
ψ, iE,D ′

∫ T

0
1(a,b) ⊗ FE dWHµ(t)

〉
=

∫ T

0
〈1(a,b) ⊗ FE dWHµ(t), i∗E,D ′ψ〉

=
(
WHµ(b)−WHµ(a)

)
F ∗Ei

∗
E,D ′ψ

=
(
WHµ(b)−WHµ(a)

)
UµU

∗
µF
∗
Ei
∗
E,D ′ψ

=
(
WHµ(b)−WHµ(a)

)
UµU

∗
µi
∗
Hµ,S ′F

′iD ,Sψ

=
(
WHµ(b)−WHµ(a)

)
UµF

′iD ,Sψ

= 〈F ′iD ,Sψ,Wµ(b)−Wµ(a)〉
= 〈iD ,S ψ, F

(
Wµ(b)−Wµ(a)

)
〉

=

〈
ψ, iS ′,D ′

∫ T

0
〈1(a,b) ⊗ F dWµ(t)

〉
.

where we used Proposition 3.4 and suppressed the inclusion mapping iS ,Hµ from
our notations in the same way as we did in Proposition 6.2.

7. E-VALUED WEAK SOLUTIONS

Up to this point, it has been a standing assumption that the function q satisfies
the conditions (4.1) and (4.2). In the remaining sections we will always assume the
additional condition:

(7.1) q is smooth and all of its derivatives have at most polynomial growth.

Then for all t > 0 the function etq(·) is a multiplier in S ′. More precisely, by
(4.2) and (7.1) for each t > 0 we may define a continuous linear operator SC(t) ∈
L (S ′

C) by

(7.2) SC(t)Φ := F−1
(
etq(·)FΦ

)
, Φ ∈ S ′

C, t > 0.

Condition (4.1) ensures that SC(t) maps S ′ into itself. Denoting the restriction of
the operator SC(t) to S ′ by S(t), the family {S(t)}t>0 is a C0-semigroup on S ′

in the sense of [26]. Its infinitesimal generator is the pseudodifferential operator A
with symbol q:

AΦ = F−1
(
q(·)FΦ

)
, Φ ∈ D(A),

where the domain D(A) consists of all Φ ∈ S ′ such that q(·)FΦ ∈ S ′. If µ is
a positive symmetric tempered measure, then the operator S(t) map Hµ into itself
and the restricted semigroup is precisely the semigroup studied in section 4. It
follows that we may apply Proposition 6.3 and conclude that

∫ t

0
SE(t− s) dWHµ(t) =

∫ t

0
S(t− s) dWµ(t)

whenever both integrals are defined.
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In S ′ we now consider the following linear stochastic Cauchy problem:

(7.3)
du(t) = Au(t) dt+ dWµ(t), t > 0,

u(0) = 0.

Here {Wµ(t)}t>0 is a given spatially homogeneous Wiener process with spectral
measure µ. A weak solution of (7.3) is a predictable S ′-valued process {u(t)}t>0

such that for all φ ∈ D(A) we have s 7→ 〈Aφ, u(s)〉 ∈ L1
loc[0,∞) a.s. and

〈φ, u(t)〉 =

∫ t

0
〈Aφ, u(s)〉 ds + 〈φ,Wµ(t)〉 a.s., t > 0.

With the use of the stochastic integral in S ′ discussed in Section 6, it is possible
to show that

(7.4) u(t) :=

∫ t

0
S(t− s) dWµ(s)

is a weak solution of (7.3) and that up to modification this solution is unique.
Let us think for the moment of u(·) as taking values in D ′ rather than in S ′.

We will be interested in finding conditions ensuring that u(t) actually takes values
in some smaller Banach space E that is continuously embedded in D ′. In order to
make this idea precise, we introduce the following terminology.

Definition 7.1. Let E be a real Banach space, continuously embedded in D ′. A
predictable E-valued process {U(t)}t>0 will be called an E-valued weak solution
of the problem (7.3) if for all t > 0 we have U(t) = u(t) in D ′ almost surely.

Clearly, an E-valued weak solution, if it exists, is unique up to modification.

Proposition 7.2. Let E be a real Banach space that is continuously embedded in
D ′, and let {U(t)}t>0 be anE-valued weak solution of (7.3). Then as anE-valued
process, {U(t)}t>0 is Gaussian.

The covariance operator RET of the distribution of the random variable U(T )
satisfies

iE,D ′ ◦ RET ◦ i∗E,D ′ = iHµ,D ′ ◦ RµT ◦ i∗Hµ,D ′ ,
where RµT ∈ L (Hµ) is defined by

RµTh :=

∫ T

0
S(t)S∗(t)h dt, h ∈ Hµ.

Proof. Each random variable U(t), being strongly measurable, takes its values
in a separable closed subspace Et of E almost surely. The joint distribution of
(U(t1), . . . , U(tm)) is a Radon probability measure µt1,...,tm supported in Et1 ⊕
· · · ⊕Etm . We claim that this measure is Gaussian. Once we know this, it follows
that µt1,...,tm is Gaussian as a measure on Em and the proposition is proved.

Let it1 ,...,tm : Et1 ⊕ · · · ⊕Etm ↪→ D ′ ⊕ · · · ⊕D ′ denote the inclusion mapping.
Then it1 ,...,tm(µt1,...,tm) = νt1,...,tm , the distribution of the D ′-valued random vari-
able (u(t1), . . . , u(tm)) defined by (7.4). Hence for all φ1, . . . , φm ∈ D we have

〈µt1,...,tm , i∗t1 ,...,tm(φ1, . . . , φm)〉 = 〈νt1,...,tm , (φ1, . . . , φm)〉,
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where we use brackets to denote image measures along linear functionals. The
process {u(t)}t>0 being Gaussian in D ′, it follows that the image measures

〈µt1,...,tm , i∗t1 ,...,tm(φ1, . . . , φm)〉
are Gaussian on Rm. Since i∗t1,...,tm has weak∗-dense range in (Et ⊕ · · · ⊕ Etm)∗,
[2, Corollary 1.3] implies that the measure µt1,...,tm is Gaussian on Et⊕· · ·⊕Etm .

Let µET denote the distribution of U(T ). Using Proposition 3.4, for all φ ∈ D
we have:

〈RET i∗E,D ′φ, i∗E,D ′φ〉 = E〈(U(T ), i∗E,D ′φ〉2 = E〈i∗S ′,D ′φ, u(t)〉2

=

∫ T

0
‖iS ,HµS

′(t)i∗S ′,D ′φ‖2Hµ
dt

=

∫ T

0
‖U∗µi∗Hµ,S ′S′(t)i∗S ′,D ′φ‖2Hµ

dt

=

∫ T

0
‖i∗Hµ ,S ′S′(t)i∗S ′,D ′φ‖2Hµ dt

=

∫ T

0
‖S∗(t)i∗Hµ ,S ′i∗S ′,D ′φ‖2Hµ dt

=

∫ T

0
‖S∗(t)i∗Hµ ,D ′φ‖2Hµ dt

=

∫ T

0
[S(t)S∗(t)i∗Hµ ,D ′φ, i

∗
Hµ,D ′φ]Hµ dt

= [RµT i
∗
Hµ,D ′φ, i

∗
Hµ ,D ′φ]Hµ .

The following result gives a necessary condition for the existence of anE-valued
weak solution. It will play an important rôle in our discussion of weighted Lp-
solutions below.

Theorem 7.3. Let E be a separable real Banach space and let E ↪→ D ′ be a
continuous embedding. If the problem (7.3) admits a weak E-valued solution, then
the operators KE

T : L2((0, T );L2
(s)(µ))→ E are well-defined and γ-radonifying.

Proof. Let {U(t)}t>0 be an E-valued weak solution of the problem (7.3). Let
T > 0 be fixed. The RKHS’s of the operators RE

T and RµT will be denoted by
(iET ,H

E
T ) and (iµT ,H

µ
T ), respectively. In view of the previous result, for all φ ∈ D ′

we have

‖(iET )∗i∗E,D ′φ‖2HE
T

= 〈RET i∗E,D ′φ, i∗E,D ′φ〉
= 〈RµT i∗Hµ,D ′φ, i∗Hµ,D ′φ〉 = ‖(iµT )∗i∗Hµ,D ′φ‖2Hµ

T
.

Since (iµT )∗ ◦ i∗Hµ,D ′ has dense range in Hµ, this shows that the operator

U : (iµT )∗(i∗Hµ,D ′φ) 7→ (iET )∗(i∗E,D ′φ), φ ∈ D ,
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uniquely extends to an isometry from Hµ
T into HE

T . Since (iET )∗ ◦ i∗E,D ′ has dense
range in E∗, this isometry is actually a unitary operator. Noting that by definition
we have

U ◦ (iµT )∗ ◦ i∗Hµ,D ′ = (iET )∗ ◦ i∗E,D ′ ,
by dualizing we obtain

iHµ,D ′ ◦ iµT ◦ U∗ = iE,D ′ ◦ iET .
Multiply both sides from the right with U . Since U is unitary, this gives

(7.5) iHµ,D ′ ◦ iµT = iE,D ′ ◦ iET ◦ U.
Define JµT : L2((0, T );Hµ)→ Hµ by

JµT f :=

∫ T

0
S(t)f(t) dt.

By general results on RKHS’s, JµT takes values in Hµ
T . The resulting operator from

L2((0, T );Hµ) into Hµ
T will be denoted by jµT . Thus, JµT = iµT ◦ j

µ
T and from (7.5)

we obtain

iHµ,D ′ ◦ JµT = iHµ,D ′ ◦ iµT ◦ j
µ
T = iE,D ′ ◦ iET ◦ U ◦ jµT .

Let VT : L2((0, T );L2
(s)(µ)) → L2((0, T );Hµ) be defined by VT g = F−1(gµ).

If g is a step function taking values in L2
(s)(µ) ∩ Cc(Rd;C), then

(
iE,D ′ ◦ (iET ◦ U ◦ jµT ◦ VT )

)
g = iHµ,D ′

(
(JµT ◦ VT )g

)

= iHµ,D ′

∫ T

0
S(t)F−1(g(t)µ) dt

= iHµ,D ′

∫ T

0
F−1(etqg(t)µ) dt

= iHµ,D ′

∫ T

0

∫

Rd

ei〈·,ξ〉etq(·)(g(t))(·) dµ(ξ) dt

= (iE,D ′ ◦ iBUC,E)KT g

= iE,D ′K
E
T g.

Hence for such g we obtain

(iET ◦ U ◦ jµT ◦ VT )g = KE
T g.

The subspace of all such g being dense, we have shown that KE
T extends to a

bounded linear operator from L2((0, T );L2
(s)(µ)) into E.

Since RET = iET ◦ (iET )∗ is a covariance operator, iET is γ-radonifying. It follows
that the operator KE

T = iET ◦ (U ◦ jµT ◦ VT ) is γ-radonifying as an operator from
L2((0, T );L2

(s)(µ)) into E.
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We do not know whether the existence of an E-valued solution implies Hypoth-
esis (H). Below, we will give an affirmative answer to this question when E is a
weighted Lp-space.

If we assume that Hypothesis (H) holds and that BUC embeds into E, then we
can represent E-valued solutions as stochastic convolutions in E:

Theorem 7.4. Assume that (H) holds. Let E be a separable real Banach space
for which we have continuous embeddings BUC ↪→ E ↪→ D ′. If (7.3) admits an
E-valued weak solution {U(t)}t>0, then for all t > 0 we have

(7.6) U(t) =

∫ t

0
SE(t− s) dWHµ(s)

in D ′ almost surely, where {WHµ(t)}t>0 is the cylindrical Wiener process associ-
ated with µ.

Proof. The assumptions imply that the operators SE(t) are well-defined. Fix T >
0 and define as before the operator QE

T : E∗ → E by

QET x
∗ :=

∫ T

0
SE(t)S∗E(t)x∗ dt, x∗ ∈ E∗.

For all x∗ ∈ E∗ and ψ ∈ D we have, using Proposition 3.4 and the definition of an
E-valued weak solution,

〈QET i∗E,D ′φ, i∗E,D ′ψ〉 =

∫ T

0
‖S∗E(t)(i∗E,D ′ψ)‖2Hµ dt

=

∫ T

0
‖U∗µS∗E(t)(i∗E,D ′ψ)‖2Hµ

dt

=

∫ T

0
‖U∗µi∗Hµ,S ′S′(t)i∗S ′,D ′ψ‖2Hµ

dt

=

∫ T

0
‖i∗S ,Hµ

S′(t)i∗S ′,D ′ψ‖2Hµ
dt

= E 〈u(T ), i∗S ′,D ′ψ〉2

= E 〈U(T ), i∗E,D ′ψ〉2

= 〈RET i∗E,D ′φ, i∗E,D ′ψ〉
By a density argument, it follows that QE

T = RET . In particular, QE
T is a covari-

ance operator, and therefore the stochastic convolution in (7.6) is well-defined. By
Proposition 6.3, in D ′ we have

U(T ) = u(T ) =

∫ T

0
S(T − t) dWµ(t) =

∫ T

0
SE(T − t) dWHµ(t)

almost surely.

We conclude with a result that gives sufficient conditions for the existence of an
E-valued solution:
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Theorem 7.5. Let Hypothesis (H) hold. Let E be a separable real Banach space
for which we have continuous embeddings BUC ↪→ E ↪→ D ′. If for all T > 0 the
operator KE

T is γ-radonifying from L2((0, T );L2
(s)(µ)) into E, then the problem

(7.3) admits a unique E-valued weak solution {U(t)}t>0, and this solution is given
by

U(t) =

∫ t

0
SE(t− s) dWHµ(s).

Proof. By Proposition 4.7 and Proposition 4.10, we may apply Proposition 5.2 to
define, for every t > 0, an E-valued random variable U(t) by

U(t) :=

∫ t

0
SE(t− s) dWHµ(s).

By Proposition 6.3, for all t > 0 we have

U(t) = u(t) :=

∫ t

0
S(t− s) dWµ(s)

in D ′ almost surely. This shows that {U(t)}t>0 is an E-valued weak solution of
(7.3). Uniqueness has already been shown.

8. EXISTENCE OF A CONTINUOUS VERSION

In this section we will show that an E-valued solution, if it exists, has a contin-
uous E-valued modification if the following integrability condition is satisfied:

Hypothesis (Hα). There exists a constant C > q∗ such that
∫

Rd
1 + |q(x)|α
C −Re q(x)

dµ(x) <∞.

Note that this hypothesis stronger than (H). Hence in particular, Hypothesis
(Hα) implies that the operators SE(t) are well-defined.

Lemma 8.1. Assume that (Hα) holds for some α > 0 and let T > 0 be fixed.
Then:

(1) There exists a constant c > 0 such that for all x∗ ∈ E∗ and t ∈ [0, T ] we
have ∫ t

0
‖S∗E(s)x∗‖2Hµ ds 6 ctα‖x∗‖2;

(2) There exists a constant c > 0 such that for all x∗ ∈ E∗ and s, t ∈ [0, T ]
with s < t we have∫ s

0
‖S∗E(t− s+ u)x∗ − S∗E(u)x∗‖2Hµ du 6 c(t− s)α‖x∗‖2.

Proof. Without loss of generality we assume that α ∈ (0, 1]. For the constant C in
Hypothesis (Hα) we assume without loss of generality that C > max{0, q∗}.
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We start with the proof of (1). Fix 0 < t 6 T . By Proposition 4.7, for all
x∗ ∈ E∗ we have

(8.1)
∫ t

0
‖S∗E(s)x∗‖2Hµ ds 6

∫ t

0

∫

Rd
e2sRe q(ξ)dµ(ξ) ds · ‖x∗‖2.

We will estimate the double integral on the right hand side by splitting the inner
integral into two parts corresponding to the sets where |Re q| 6 C and where
Re q < −C . We have

(8.2)

∫ t

0

∫

|Re q|6C
e2sRe q(ξ) dµ(ξ) ds 6 te2TCµ{|Re q| 6 C}

6 tαT 1−αe2TCµ{|Re q| 6 C}.

Note that µ{|Re q| 6 C} < ∞. Indeed, for all ξ ∈ Rd with |Re q(ξ)| 6 C we
have C −Re q(ξ) 6 2C , and therefore

µ{|Re q| 6 C} 6 2C

∫

|Re q|6C

1

C −Re q(ξ)
dµ(ξ) <∞.

Next, by Fubini’s theorem,
∫ t

0

∫

Re q<−C
e2sRe q(ξ) dµ(ξ) ds =

∫

Re q<−C

1− e2tRe q(ξ)

−2Re q(ξ)
dµ(ξ).

Using the inequality 0 6 1 − e−2tβ 6 min{1, 2tβ} (β > 0) and recalling that
0 < α 6 1, we now estimate:

(8.3)

∫

Re q<−C

1− e2tRe q(ξ)

−2Re q(ξ)
dµ(ξ) 6

∫

Re q<−C

(1− e2tRe q(ξ))α

−2Re q(ξ)
dµ(ξ)

6 (2t)α
∫

Re q<−C

(−Re q(ξ))α

−2Re q(ξ)
dµ(ξ)

6 (2t)α
∫

Rd
|q(ξ)|α

C −Re q(ξ)
dµ(ξ).

The right hand side integral is finite by assumption. Combining the estimates (8.2)
and (8.3) with (8.1) we see that (1) is proved.

For the proof of (2) we fix 0 6 s 6 t 6 T . By Proposition 4.8, for all x∗ ∈ E∗
we have
(8.4)∫ s

0
‖S∗E(t− s+ u)x∗ − S∗E(u)x∗‖2Hµ du

6
∫ s

0

∫

Rd
|e(t−s+u)q(ξ) − euq(ξ)|2 dµ(ξ) du · ‖x∗‖2.

We are going to estimate the double integral on the right hand side. First,

∣∣e(t−s)q(ξ) − 1
∣∣ =

∣∣∣∣q(ξ)
∫ t−s

0
euq(ξ) du

∣∣∣∣ 6 (t− s)|q(ξ)| eTC .
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Recalling that 0 < α 6 1, we choose M > 0 such that r2 6 Mrα for all r ∈
[0, 2eTC ]. Then,

(8.5)

∫ s

0

∫

Rd

∣∣e(t−s+u)q(ξ) − euq(ξ)
∣∣2 dµ(ξ) du

6M
∫ s

0

∫

Rd

∣∣e(t−s+u)q(ξ) − euq(ξ)
∣∣α dµ(ξ) du

6M
∫ s

0

∫

Rd
eαuRe q(ξ)

∣∣e(t−s)q(ξ) − 1
∣∣α dµ(ξ) du

6M(t− s)αeαTC
∫ s

0

∫

Rd
eαu(Re q(ξ)|q(ξ)|αdµ(ξ) du

6M(t− s)αe2αTC

∫ s

0

∫

Rd
e−αu(C−Re q(ξ))|q(ξ)|αdµ(ξ) du

= α−1M(t− s)αe2αTC

∫

Rd
1− e−αs(C−Re q(ξ))

C −Re q(ξ)
|q(ξ)|αdµ(ξ)

6 α−1M(t− s)αe2αTC

∫

Rd
1

C −Re q(ξ)
|q(ξ)|αdµ(ξ).

The integral in the right hand side is finite by assumption and the proof is com-
pleted.

Theorem 8.2. Suppose there exist C > q∗ and α > 0 such that
∫

Rd
1 + |q(x)|α
C −Re q(x)

dµ(x) <∞.

LetE be a separable real Banach space for which we have continuous embeddings
BUC ↪→ E ↪→ D ′. If (7.3) admits an E-valued weak solution, then this solution
has a continuous E-valued modification.

Proof. Thanks to the estimates in Lemma 8.1 we can apply [2, Proposition 4.3] to
the operator-valued function SE(·) on each interval (0, T ] and obtain a continuous
modification (depending on T ) of {u(t)}t∈[0,T ]. By applying this to a sequence
Tn →∞ we obtain a continuous version of {u(t)}t>0.

It seems reasonable to expect that if (Hα) holds, the E-valued solution has a
Hölder continuous modification. Under the additional assumption that {S(t)}t>0

restricts to a C0-semigroup on E, in the next section we prove that this is indeed
the case if E is a weighted Lp-space.

9. WEIGHTED Lp-SOLUTIONS

In this section we are going to apply our results to weighted Lp-spaces and prove
our main result, which was stated in the Introduction for A = ∆. We will always
assume (4.1), (4.2), and (7.1).
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Let 0 6 % ∈ L1
loc be a nonnegative locally integrable function. For 1 6 p <∞

we denote by Lp(%) the Banach space of all real functions on Rd for which

‖f‖pLp(%) :=

∫

Rd
|f(x)|p %(x) dx <∞.

As usual we identify functions that are equal %(x) dx-almost everywhere. Clearly
we have a continuous inclusion Lp(%) ↪→ D ′, and if % is integrable we also have a
continuous inclusion BUC ↪→ Lp(%).

Theorem 9.1. Let 1 6 p < ∞ and 0 6 % ∈ L1
loc be arbitrary and fixed. The

following assertions are equivalent:
(1) Problem (7.3) admits an Lp(%)-valued solution;
(2) Hypothesis (H) holds and % is integrable.

Proof. If we have an Lp(%)-valued solution, then the operator KLp(%)
T is well-

defined from L2((0, T );L2
(s)(µ)) into Lp(%), and γ-radonifying by Theorem 7.3.

We now apply Theorem 2.3 to the function κ(x) = e−i〈x,·〉etq(− ·). In combination
with (2.1) we find that

(∫ T

0

∫

Rd
e2tRe q(ξ) dµ(ξ) dt

) p
2

·
∫

Rd
%(x) dx <∞.

By Proposition 4.3, the finiteness of the first double integral is equivalent to Hy-
pothesis (H).

For the converse we first note that the conditions in (2) imply that BUC embeds
into Lp(%) and that the operators SLp(%)(t) are well-defined. Hence the operator

K
Lp(%)
T is well-defined. By Theorem 2.3, applied in the converse direction, KLp(%)

T

is γ-radonifying. Hence by Proposition 4.10, QLp(%)
T is the covariance of a Gauss-

ian measure on Lp(%). It follows that we may apply Proposition 6.3 to obtain that

U(t) :=

∫ t

0
SLp(%)(t− s) dWHµ(s) =

∫ t

0
S(t− s) dWµ(s)

a.s. in D ′ for all t > 0. This shows that {U(t)}t>0 is an Lp(%)-valued weak
solution of the problem (7.3).

From Theorem 8.2 we obtain:

Theorem 9.2. Let 1 6 p < ∞ and 0 6 % ∈ L1 be arbitrary and fixed. If there
exist C > q∗ and α > 0 such that∫

Rd
1 + |q(x)|α
C −Re q(x)

dµ(x) <∞,

then problem (7.3) admits a continuous Lp(%)-valued weak solution.

Remark 9.3. The implication (2)⇒ (1) in Theorem 9.1 does not really depend upon
the fact that SLp(%)(t) : Hµ → Lp(%) factors through BUC . In order to derive
Theorem 9.1 as quickly as possible, we could prove directly that S(t) maps Hµ

into Lp(%) and give all subsequent estimates in the Lp(%)-norm.
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10. HÖLDER CONTINUITY OF THE Lp(%)-VALUED SOLUTION

It turns out that under an invariance condition, the Lp(%)-valued solution has a
Hölder continuous version. Throughout this section we assume that (4.1), (4.2),
and (7.1) hold.

We begin with a simple observation.

Lemma 10.1. Let α ∈ (0, 1) and C > q∗ be given. For all t > 0 there exists a
constant M > 0 such that

∫ t

0

∫

Rd
s−αe2sRe q(ξ) dµ(ξ) ds 6M

∫

Rd
1

(C −Re q(ξ))1−α dµ(ξ).

Proof. By elementary calculations, for all t > 0 and −∞ < η < ζ <∞ we have

(10.1)
∫ t

0
s−αe2sη ds 6 (ζ − η)α−1e2tζ

∫ ∞

0
s−αe−2s ds.

By taking η = Re q(ξ), ζ = C and integrating, we obtain

(10.2)

∫

Rd

∫ t

0
s−αe2sRe q(ξ) ds dµ(ξ)

6 e2tC

(∫ ∞

0
s−αe−2s ds

)(∫

Rd
1

(C −Re q(ξ))1−α dµ(ξ)

)
.

This gives the desired estimate, with M = e2tC
∫∞

0 s−αe−2s ds.

Motivated by this observation we introduce the following hypothesis.

Hypothesis (Hα). There exists a constant C > q∗ such that
∫

Rd
1

(C −Re q(ξ))1−α dµ(ξ) <∞.

Note that (Hα) trivially implies (Hα).

We have the following analogue of Lemma 4.6.

Lemma 10.2. Assume (Hα) holds for some α ∈ (0, 1). Then for all t > 0 and
g ∈ L2((0, T );Hµ), the BUC-valued function r 7→ (t− r)−α2 SBUC(t− r)g(r) is
Bochner integrable on (0, t) and we have

∥∥∥∥
∫ t

0
(t− r)−α2 SBUC(t− r)g(r) dr

∥∥∥∥
BUC

6
(∫ t

0

∫

Rd
s−αe2sRe q(ξ) dµ(ξ) ds

) 1
2

· ‖g‖L2((0,T );Hµ).

Proof. For step functions g, the strong measurability of r 7→ (t− r)−α2 SBUC(t−
r)g(r) follows from Lemma 4.6; the general case follows by approximation.
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By (4.8) and the Cauchy-Schwarz inequality,
∫ t

0
(t− r)−α2 ‖SBUC(t− r)g(r)‖BUC dr

6
(∫ t

0

∫

Rd
(t− r)−αe2(t−r)Re q(ξ) dµ(ξ) dr

) 1
2

· ‖g‖L2((0,t);Hµ)

=

(∫ t

0

∫

Rd
s−αe2sRe q(ξ) dµ(ξ) ds

) 1
2

· ‖g‖L2((0,t);Hµ).

The repeated integral in the right hand side is finite by Lemma 10.1.

Arguing as at the end of the proof of Theorem 4.9 we deduce the following
representation for the above integral:

Lemma 10.3. Assume (Hα) holds for some α ∈ (0, 1). For t > 0 define κ
1−α

2
t :

Rd → L2((0, T );Hµ) by

κ
1−α

2
t (x)(r) = (t− r)−α2 F

(
ei〈x,·〉e(t−r)q(−·)µ

)
1(0,t)(r).

Then for all g ∈ L2((0, T );Hµ) and t > 0 we have

(10.3)
∫ t

0
(t− r)−α2 S(t− r)g(r) dr = [κ

1−α
2

t ( · ), g]L2((0,T );Hµ).

By a direct computation we obtain the following identity: for all x ∈ Rd,

(10.4) ‖κ1−α
2

t (x)‖L2((0,T );Hµ) =

(∫ t

0

∫

Rd
s−αe2sRe q(ξ) dµ(ξ) ds

) 1
2

.

In particular, the norm is independent of x ∈ Rd.

From this point on, we assume that (Hα) holds for some fixed α ∈ (0, 1). We fix
1 6 p < ∞ and a weight function 0 6 % ∈ L1. Since BUC embeds into Lp(%),

for t > 0 we may define (Λ
1−α

2
T f)(t) ∈ Lp(%) by

(Λ
1−α

2
T f)(t) :=

1

Γ(1− α
2 )

∫ t

0
(t− r)−α2 SLp(%)(t− r)f(r) dr.

Then,

(Λ
1−α

2
T f)(t) =

1

Γ(1− α
2 )

[κ
1−α

2
t ( · ), f ]L2((0,T );Hµ).

From the above estimates we find

‖(Λ1−α
2

T f)(t)‖Lp(%)

6 1

Γ(1− α
2 )
‖%‖

1
p

L1

(
sup
x∈Rd

‖κ1−α
2

t (x)‖L2((0,T );Hµ)

)
‖f‖L2((0,T );Hµ)

6 1

Γ(1− α
2 )
‖%‖

1
p

L1

(∫ t

0

∫

Rd
s−αe2sRe q(x) dµ(x) ds

) 1
2

‖f‖L2((0,T );Hµ).
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In particular, for each f ∈ L2((0, T );Hµ), the function t 7→ (Λ
1−α

2
T f)(t) defines

an element of L∞((0, T );Lp(%)), and hence of Lp((0, T );Lp(%)). In this way we

obtain bounded operators Λ
1−α

2
T : L2((0, T );Hµ) → Lp((0, T );Lp(%)). Arguing

as in Example 2.4 we obtain:

Proposition 10.4. Assume (Hα) holds for some α ∈ (0, 1) and let 1 6 p < ∞.

Then Λ
1−α

2
T is γ-radonifying from L2((0, T );Hµ) into Lp((0, T );Lp(%)).

In what follows, given a separable real Banach space X and a real number β ∈
(0, 1), the little Hölder space cβ0 ([0, T ];X) is the (separable) Banach space of all
real-valued continuous functions f : [0, T ]→ X such that f(0) = 0 and

(10.5)

‖f‖ := sup
t∈[0,T ]

|f(t)|+ sup
06s<t6T

|f(t)− f(s)|
(t− s)β <∞,

lim
δ↓0

sup
0<t−s6δ

|f(t)− f(s)|
(t− s)β = 0.

Proposition 10.5. Assume (Hα) holds for some α ∈ (0, 1). Let 2
α < r < ∞ and

β ∈ (0, α2− 1
r ) be given and assume that the semigroup {S(t)}t>0 restricts to aC0-

semigroup on Lr(%). Then the operator ΛT : L2((0, T );Hµ)→ Lr((0, T );Lr(%))
defined by

(ΛT f)(t) :=

∫ t

0
SLr(%)(t− τ)f(τ) dτ

takes values in the space cβ0 ([0, T ];Lr(%)). As an operator from L2((0, T );Hµ)

into cβ0 ([0, T ];Lr(%)), ΛT is γ-radonifying.

Proof. By a result of Da Prato, Kwapień and Zabczyk [4], the invariance of Lr(%)
implies that

Λ
α
2
T f :=

1

Γ(α2 )

∫ t

0
(t− r)−1+α

2 S(t− r)f(r) dr

defines a bounded operator from Lr((0, T );Lr(%)) into cβ0 [0, T ];Lr(%)). By stan-
dard arguments we have the factorization

ΛT = Λ
α
2
T Λ

1−α
2

T .

The result now follows from Proposition 10.4 and the left ideal property of γ-
radonifying operators mentioned in section 2.

After these preparations we can state and prove the main result of this section:

Theorem 10.6. Assume that there exist 0 < α < 1 and a constant C > q∗ such
that

(10.6)
∫

Rd
1

(C −Re q(x))1−α dµ(x) <∞.



38 ZDZISLAW BRZEŹNIAK AND JAN VAN NEERVEN

Let 1 6 p < ∞ and 0 6 % ∈ L1 be fixed. If the semigroup {S(t)}t>0 restricts
to a C0-semigroup on Lr(%) for all sufficiently large r, then for all β ∈ (0, α2 ) the
Lp(%)-valued solution of Theorem 9.1 has a β-Hölder continuous version.

Proof. Choose δ > 0 such that β+δ ∈ (0, α2 ). Choose r > max{ 2
α , p} sufficiently

large, and subject to the additional conditions that 1
r < δ and β + δ < α

2 − 1
r .

Consider the probability space (Ω̃, F̃ , P̃), where Ω̃ = cβ+δ
0 ([0, T ];Lr(%)), F

is the Borel σ-algebra of Ω̃, and P̃ := ΛT (γ
Hµ,T

) is the image measure whose
σ-additivity is guaranteed by Proposition 10.5. We define an Lr(%)-valued process
{ξt}t∈[0,T ] on this probability space by

ξ(t, ω̃) := ω̃(t), t ∈ [0, T ], ω̃ ∈ Ω̃.

It is routine to check that the joint distributions of this process are given by

L (ξ(s), ξ(t)) = L (u(s), u(t)), 0 6 s, t 6 T,
where, for the moment, we think of {u(t)}t∈[0,T ] as an Lr(%)-valued process
(which is justified by Theorem 9.1 applied to Lr(%)). Hence for any fixed 0 6
s 6= t 6 T ,

E

(
‖u(t)− u(s)‖rLr(%)

|t− s|(β+δ)r

)
= Ẽ

(
‖ξ(t) − ξ(s)‖rLr(%)

|t− s|(β+δ)r

)
6 Ẽ‖ξ‖r

cβ+δ
0 ([0,T ];Lr(%))

.

By Fernique’s theorem,

Ẽ‖ξ‖r
cβ+δ
0 ([0,T ];Lr(%))

<∞.

It follows that there exists a finite constant K such that

Ẽ‖u(t) − u(s)‖rLr(%) 6 K|t− s|(β+δ)r , 0 6 s 6= t 6 T.
By the Kolmogorov continuity theorem, the process {u(t)}t∈[0,T ] has a η-Hölder
continuous version for each

η <
(β + δ)r − 1

r
= β + δ − 1

r
.

Since by assumption we have 1
r < δ, the existence of a β-Hölder continuous ver-

sion of {u(t)}t∈[0,T ], as an Lr(%)-valued process, is proved.
Since by assumption we have r > p, the integrability of % implies that Lr(%) is

continuously embedded in Lp(%). Hence as an Lp(%)-valued process, {u(t)}t∈[0,T ]

has a β-Hölder continuous version as well.

Example 10.7. Suppose q satisfies a uniformly ellipticity condition of order 2m.
Then the invariance condition is automatically satisfied for the weight functions

%(x) = e−b|x| (b > 0)

and
%(x) = (1 + |x|2)−b (b > 0).

This is the content of [3, Lemma 3.1].
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We return to the functions q from Example 4.1.
(1) q(x) = −ix, x ∈ R (d = 1). Then (10.6) reduces to the condition that µ

is a finite measure.
(2) q(x) = −|x|2, x ∈ Rd. Then (10.6) reduces to

∫

Rd
1

(1 + |x|2)1−α dµ(x) <∞.

We see that in the case (1), if the condition (10.6) is satisfied for α = 0 then it
is also satisfied for any α ∈ (0, 1). The following example will show that this in
the case (2) the situation is quite different. In fact, we will provide an example of
a measure µ for which the condition (10.6) is true with α = 0 but not with any
α > 0.

Example 10.8. In dimension d = 1, consider the following tempered measure

dµ(x) =
|x|

(1 + (ln |x|)2)
dx.

For this measure we have ∫

R

1

1 + |x|2 dµ(x) <∞,

but for all ε > 0, ∫

R

1

(1 + |x|2)1−ε dµ(x) =∞.

11. THE STOCHASTIC SCHRÖDINGER EQUATION

The stochastic Schrödinger equation requires some modifications to the assump-
tions that have been made up to this point. Let us list the changes:

(1) The function q : Rd → C is of class C∞ and satisfies (4.2) and (7.1), but not
necessarily (4.1).

(2) The measure µ is assumed to be nonnegative and tempered but not necessarily
symmetric.

(3) All spaces are replaced by their complex counterparts. In particular, this applies
to the spaces S , S ′, D , D ′, Lp(%) and L2(µ). For notational convenience, we
will not explicitly express this in our notations. For example, in this section L2(µ)
will always denote the space of complex-valued square µ-integrable functions.

(4) The rôle of L2
(s)(µ) is replaced by L2(µ).

(5) All operators are complex. This applies in particular to the semigroup {S(t)}t>0

whose symbol is q.

In Definition 6.1, condition (1) is replaced by

(1c) For each φ ∈ S , the process {〈φ,W (t)〉}t>0 is an adapted complex-valued
Brownian motion.

As in section 6, by [12, Theorem 6, p. 169, Theorem 1′, p. 264] for a process
W satisfying conditions (1c) and (2) is equivalent to:
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(2c′) There exists a nonnegative tempered measure µ on Rd such that for all φ, ψ ∈
S and t, s > 0 we have

E
(
〈φ,W (t)〉 〈ψ,W (s)〉

)
= (t ∧ s)[φ, ψ]Hµ .

Similarly, in Definition 5.1 the conditions (1) and (2) are replaced by:
(1c) For each h ∈ H , {WH(t)h}t>0 is an adapted complex-valued Brownian

motion;
(2c) For all g, h ∈ H and t, s > 0 we have

E
(
WH(t)gWH(s)h

)
= (t ∧ s)[g, h]H .

In this new setting all our results remain true if care is taken with regard to
their proper interpretation. For example, Theorem 4.9 holds true, but with κ taking
values in L2

(
(0, T );L2(µ)

)
.

Let us now consider the Schrödinger equation

(11.1)
du(t) = − i

2 ∆u(t) dt+ dWµ(t), t > 0,

u(0) = 0.

The symbol of A = − i
2 ∆ is given by

q(ξ) = i
2 |ξ|2, ξ ∈ Rd.

For this symbol the assumption (H) holds if and only if µ is a finite measure.
This leads to the following result:

Theorem 11.1. Let 1 6 p < ∞ and 0 6 % ∈ L1
loc be arbitrary and fixed. The

following assertions are equivalent:
(1) Problem (11.1) admits an Lp(%)-valued solution;
(2) The measure µ is finite and the weight % is integrable.
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