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Abstract. Let {T'(t)};>0 be a Cp-semigroup on a Banach space X with generator A, and let
H be the space of all x € X such that the local resolvent A — R(\, A)z has a bounded holomorphic
extension to the right half-plane. For the class of integrable functions ¢ on [0,00) whose Fourier
transforms are integrable, we construct a functional calculus ¢ +— T}, as operators on Hy’. We show
that each orbit T'(-)Tyz is bounded and uniformly continuous, and T'(t)Tyx — 0 weakly as t — oo,
and we give a new proof that ||T'(t)R(u, A)z|| = O(t). We also show that ||T'(t)Tyx| — 0 when T is
sun-reflexive, and that || T(¢t)R(u, A)z|| = O(Int) when T is a positive semigroup on a normal ordered
space X and z is a positive vector in H{.

1. Introduction and preliminaries

This paper is concerned with the asymptotic behaviour of orbits T'(-)Sxz, where
T = {T'(t)}+>0 is a Cp-semigroup on a complex Banach space X with generator A,
x is a vector in X such that the local resolvent R(-, A)z has a bounded holomor-
phic extension to the right half-plane C,, and S is an operator in one of various
classes associated with T. In [Nel], it was shown that there is a constant ¢ such that
IT()R(u, A)zx|| < (1 +t), t > 0, and this gave a proof that

inf{w e R :forallz € D(A), |T#)z|| = O(e*?) as t — o }
ReA>w

< inf{w € R: R(\, A) exists whenever Red > w and sup |[R(A, A4)| < oo},

an inequality originally established in [WW]. It remains an open question whether
such orbits T'(-)R(u, A)x are bounded in general, but it has been shown in [HN] (see
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also [Ne3, Chapter 4]) that lim; o, T(¢)R(u, A)z = 0 strongly (in norm) if X is B-
convex, and that, for a > 1, limy_,o T(¢)R(p, A)*z = 0 weakly for arbitrary X, and
strongly if X has the analytic Radon-Nikodym property (ARNP), in particular, if X
is reflexive. When X has the ARNP, it was shown more generally in [Chl] (see also
[Ch2]) that lim;—. T'(t)Tyz = 0 whenever

Tox = /000 ()T (t)z dt

is an absolutely convergent integral. This was deduced as a consequence of general
Tauberian theorems originating in work of Ingham [In].

Here, we extend these results in various directions. In Section 2, we show that it
is possible to define T,z whenever ¢ € L*(R.) and its Fourier transform F¢ € L'(R)
(and x has bounded local resolvent on C. ), thereby creating a functional calculus
on the space of such vectors. In Section 3 we give some general estimates for orbits
T(-)Tyx, thereby extending and sharpening results in [Nel] and [HN]. In Section 4,
we show that lims o T'(t)Tpx = 0 strongly if T is sun-reflexive, and indeed that this
is also a case of a Tauberian theorem.

Throughout this paper, we shall let Ry = [0,00) and C; = {z € C: Rez > 0}.
Given a locally integrable function ¢ : Ry — C, we shall let ¢ be the Laplace transform

of ¢:
3(z) = / T ety dt

whenever this integral is absolutely convergent.
When ¢ € L'(R,), we shall let F¢ be the Fourier transform of ¢ (where ¢ is
regarded as vanishing on (—o0,0)). For a > 0, we denote by L (R ) the space of

all ¢ € L*(Ry) such that [|¢lq,1 := [, |¢(t)le* dt < oo and F¢ € L*(R). This is a
linear subspace of L!(R ), and a Banach space with respect to the norm

Ilz: ey = I6llas + 161

It is even a commutative Banach algebra with respect to convolution. To see this,
note that

¢ % llag + [ F¢ - Feblla
lla,1 1]ax + 1FS) L I1FY] s
lla1 1¥lla1 + 1FSl1 ¥
16llz: ) llPllan

Il oo -

16+l ®y)

VASVANIVANIVAN

When a = 0, we shall write L}-(R) for Lj »(Ry). By the Riemann-Lebesgue Lemma,
(applied to F¢), every function ¢ € L%-(R.) is continuous, vanishes at infinity, and
satisfies ¢(0) = 0.

Throughout, X will be a complex Banach space, and we shall denote by H>® =
H*>(C,; X) the Banach space of all bounded holomorphic X-valued functions on C .,
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with the norm

[Fll e = sup [[F(2)].
z€Cy

By the Phragmén-Lindel6f Principle,

|F|| g = lim sup ||F(«+ is)]|.
a—0+ seR

We let T = {T'(t)}:>0 be a Cp-semigroup with infinitesimal generator A on X.
We shall denote the resolvent set of A by o(A4) and write R(u, A) for the resolvent
(uI — A)~L, p € o(A). We shall frequently use the resolvent identity:

We shall denote the growth bound of T by wo(T):

() — t DIT]

t—o0

inf {w € R : there exists M such that | T(¢)|] < Me*!, t > 0}.

We let HY® be the linear subspace of X consisting of all + € X whose local
resolvent A — R(A, A)z has a holomorphic extension to an element F, € H*. The
space HY is a Banach space with respect to the norm

lzllmge = =] + | Follre .

Indeed, suppose (z,) is a Cauchy sequence in H$®. Then (z,) is Cauchy in X, with
limit x, say. Moreover, (F,, ) is Cauchy in H*°, say with limit G € H*. But for all
A € Cy with Rel > wo(T),

G(A\) = lim F, (A) = lim R\, A)z, = R\, A)x

n—oo n—oo

and therefore G is a bounded holomorphic extension of the local resolvent A +—
R(\, A)z. It follows that G = F,, and completeness of H$ is proved.

We will sometimes regard the mapping « — F, as an operator from HJ into
H*®°; as such it is linear and contractive.
2. The main estimate

For x € X and ¢ € C.(Ry), the space of continuous functions with compact
support in R4 = [0, 00), we define an element Tyx € X by

Tex == /000 o()T (t)x dt.
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Proposition 2.1. For x € HY and ¢ € C.(R4),

)

/ " (@) 2 d

—ir

il
[Tl < m i tmiyt o

where the integral is along any path in CL from o —ir to a + ir.

Proof. By Cauchy’s Theorem, we may assume that the integral is along the line
segment from « — ir to « + ir.

Take w > max(wo(T),0). The Laplace transform ;;5\(2) is defined for all z € C, and
(Fo)(s) = ¢(is). Take 0 < a < w and 2* € X*. The functions ¢ — e~ (T'(t)x,z*)
and t — e(“~p(t) belong to L*(R4), and their respective Fourier transforms are

s+ (R(w+is, A)z,z*) and s — (E(oc — w —1is). By Plancherel’s Theorem,

/m e T (t)z,z*)p(t)dt = /oo e T (t)a, x")el ™V g(t) dt
0 0
1 o0

(2.1) = 5 (R(w +is, A)z, 2*)d(a — w — is) ds.

— 00

Now consider the contour integral

/ (Fu(2), 5%V (a — 2) dz

around the rectangle with vertices o & ir, w & ir, where » > 0. The integral along the
bottom edge is

[ (e ina)dla -+ inyde

[e3%

For a < ¢ < w,
Ba—g+in= [T Ogweta—o
0

as r — 00, by the Riemann-Lebesgue Lemma. Moreover,

Ba—crin| < [~ etowa

0
(Fe(€ —ir),z)] < |[Fe|me=[l2";

whenever r > 0, a < £ < w. By Lebesgue’s Dominated Convergence Theorem,

N

w

lim | (F,(&—ir),z")d(a — & +ir)dE = 0.

T—00

A similar argument shows that the integral along the top edge of the rectangle tends
to 0 as r — oco. By Cauchy’s Theorem,

im { [ (Fo(w +is), 25V — w — is) ds —
U/ /

T —00
-r -

T

(Fo(a+is), z*)¢(—is) ds} =
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By (2.1),
/000 e UT (), z*)p(t) dt = rlggo % /:<F$(a +is),x*)(F¢p)(—s) ds,
s0
/000 e ()T (t)x dtH < liTrLliorolf % /Tr Frla+is)(Fo)(—s)ds
The result now follows by letting o — 04. a

Corollary 2.2. For all x € HY and ¢ € C.(Ry) with F¢ € L' (R) we have

1
ITozll < ol Fall el 791

Lemma 2.3. Let a > 0 and ¢ € L} z(Ry). There is a sequence (¢,) in
L}L}-(RJr) NC.(Ry) such that |¢n| < |¢| for all n and lim,— o ||¢n — &|| 11 LR’y =0

Proof. Let ¢y € C>°(R) be an arbitrary function satisfying 0 < ¢ < 1, ¢(0) =1,
and [ 1(t)dt = 1. Let ¢ (t) :==1(t/n), t € R, n > 1; ¢y := ¢-ty|r,, n > 1. Then
én € Ce(Ry) and [¢y,] < |4].

Since each v, belongs to the Schwartz space S(R), so does its Fourier transform
Fipp. In particular Fip, € LY(R), so ¢, € L}L}-(RJF). Moreover, lim,,— ||¢n —
¢||a,1 = O7 and

lim Fp, = (2r)7" lim Fo* Fp, = (2m)~ lim Fo *nFih(n-) = Fo

n—oo n—oo n—oo

in L!(R); cf. [Ka, Theorem VI.1.10]. Hence, lim, o ||¢n — ¢||Li,f(R+) =0. O

The following result now follows easily from Corollary 2.2, Lemma 2.3 and the
Dominated Convergence Theorem.

Proposition 2.4. For each x € HY the linear operator T : ¢ — Tyx from
LE-(R4)NC.(R4) to X has a unique extension to a bounded linear operator T, from
L-(Ry) into X. For each ¢ € L'=(Ry) there exists a unique bounded linear operator
Ty : HY — X given by Tyx = Tp¢. Moreover

1
ITsall < ol Fall eI F ¢l
for all ¢ € LE(Ry.). If [;° [¢)| |T()z| dt < oo, then Tyx = [;° ¢(t)T(t)z dt.

In Corollary 3.4, we will give a general formula for Tyz.

We will now consider the question whether Tjy maps H$ into H3°. The main
result will be Proposition 2.7, but we first make a simple observation.
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If S is a bounded linear operator on X commuting with T, then S maps H{® into

Hg®, with [|Sz|[ e < [1S]2(x)llzll e In particular, this applies with S = Ty, where
S leOIIT @) dt < oo and

Tex = /000 o(t)T(t)z dt.

Note that this is consistent with the definition of Ty for ¢ € Li(R), by Proposition
2.4. The following is an interesting example of this situation.

Example 2.5. Let o« > 1 and p > max(wo(T),0), and define ¢(t) =
()~ tto te=# t > 0. Then Fo(s) = (u+is)™%, s € R; thus F¢ € L'(R).
Moreover, Tyx = R(p, A)*z, where R(p, A)* is the negative fractional power of the
sectorial operator ul — A (see [Ne3, Appendix Al]).

Proposition 2.6. Let v € HY and A € C,. Then

(1) F.()) € HF;

@) Frow=—""—"" #eCLu#\
4| Fall o=
F < AR
(3) || Fz(A)HHOO = Rex '

(4) The H -valued function A\ — Fy(X\) is holomorphic on Cy.

Proof. We first show that, for each A € C,, the function p — Gy a(u) =
R(u, A)F,(\) has a holomorphic extension to C and that this extension is bounded.

By the resolvent identity and analytic continuation, for all Rey > max (0, wo(T)),
1 # A, we have

G ) = LRI

A holomorphic extension to C; is given by

Ganlp) = T,

Gon(N) = —FL\).

For fixed p € Cy, the function A — Gy (1) = Gz . () is holomorphic on Cy, so
Cauchy’s Integral Formula gives

(22) Ganlr) = g [ AL g,
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for any contour v in C; around A. Taking = to be a circle with centre A and radius r
where 0 < r < Re), we obtain

2| Pyl
GoaWl < /7 —-
ICerl € i

Letting » — 0 if |A — u| > ReA/2 and r — Re otherwise,

G r()) < el
This establishes (1), (2) and (3).

If |\ — Al < r < Re), then applying (2.2) for A and \’, we obtain
u/ Fy(2) — Fa(p) dz
2w Jipnj=r (L= 2)(z = A)(z = X)

21N = Al Fell =
[r = [A=pll(r =[N = A
Letting 7 = ReA/3 if |\ — u| > ReA/2 and r — Re) otherwise, it follows that

721N = A L
(ReA)?
whenever |\ — A| < ReA/6. Thus F, is continuous as an H$-valued function, and

holomorphic as an X-valued function. It follows from Cauchy’s Theorem and Morera’s
Theorem that F, is holomorphic as an H-valued function. o

[Gox (1) = Gl =

HFﬂc()‘l) - Fw(/\)HH;G < ||Fw(/\/) - Fw()‘)H +

Proposition 2.7. Let ¢ € LL-(R) and z € HS.

(1) A= R(\, A)Tyx has a holomorphic extension to Cy given by A — Ty(FL(N)).

(2) If R(-, A)*z has a bounded holomorphic extension G, to C,, then Tyx € HF
and

1
1 Tozllrz < s IF Ol (1Fsll = + | Galla=) -
(3) Ifpe Ltll,]_-(RJr) for some 0 < a <1, then Tyx € HYF and

1
IToallaz < o Fellm= B1F]1 + (4~ 2Ina)llgllas).

Proof. (1). By Proposition 2.6, F, is a holomorphic map of C; into H¥. By
Proposition 2.4, Ty is a bounded linear map of H into X. Hence Ty (F,(-)) : C+ — X
is holomorphic. For ReA > max(0, wo(T)), the formula

Ty(Fe(N) = R(A, A) Ty

is valid for ¢ € C.(R4) N L%(R4) by definition of T}, and hence for all ¢ € L1-(R)
by density (Lemma 2.3) and continuity with respect to ¢ (Proposition 2.4).
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2). Since the derivative of R(-, A)x is —R(-, A)?z, G, = —F/. Propositions 2.4 and
2.6 show that

1 1
1o (Fe DI < - IF I (| Fre o [l e < S IF Sl Eol b=

Hence Tyx € HY and

1
[Tl age = Tl + sup [|To(Fx(M) < o= IIF Ml (1 Fellz + 1Gallme) -
AeC, 2T

(3). Suppose that 0 < ReA < a/2. Consider first the case when ¢ € C.(Ry)NL:(Ry).
By Proposition 2.6, and Proposition 2.1 with x replaced by F,()),

/va,r (W) Pla—z)dz

where, for 0 < a < a and r > |[ImA| + 1, we choose 74, to be the path consisting
of five line segments: ~y; from « — ir to o + ¢(ImA — 1); 2 from a + i(ImA — 1) to
a+ i(ImX\ — 1); 73 from a + ¢(ImA — 1) to a + ¢(ImA + 1); 4 from a + ¢(ImA + 1) to
a+ i(ImA + 1); v5 from a 4 i(ImA 4+ 1) to o + ir. We use the following estimates

1
|Ty(Fz (V)] < liminfliminf —

0+ r—oo m ’

[Fe(A) = Fo(2)| < 2[Fellme, Z € Yar,
Bla=2) < [llar, z€72 Uy U,
lz=A = 1, z€m Uy Uy Us,
lz— Al > a—Re), z=a+i(Im\+s) € v3,|s| < a—ReA,
lz—=A > |s], z=a+i(Im\+s) € y3,a —ReA < |s| < 1.

These give

1T (Fa (M)l

IN

Fllum ( (% ~ Ly
W [ ioas+ (w22 [ 2 o)
T PN a—ReX S

Flla
AP o

——— UFéll + (4 = 2In(a — Red)) [|¢|
This estimate remains valid for ¢ € L} z(R.) by density (Lemma 2.3) and continuity
(Proposition 2.4).

(2.3)

IN

For ¢ € L, »(R), Propositions 2.4 and 2.6 give

1 4
To(Fx ()| € —||F 0|1 || F < ZNF | Fll e
ITo(FeDI < 516 [P e < 1 F N1 el

for ReA > a/2. Now (2.3) shows that Tyz € H and

[T g [ Tszll + lim sup [|Ty(Fo(a +is))|
a—UT seR

| Fo [l e
2

IN

BlIF¢l + (4 —2ma)llfla,)-
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O

Theorem 2.8. For a > 0, ¢ — Ty is a continuous Banach algebra homomor-
phism from L} x(Ry ) into L(HF).

Proof. Proposition 2.7 shows that the map is a continuous linear map of L, »(R)
into £L(HY). It remains to prove that the map ¢ — Ty is an algebra homomor-
phism, i.e. that Ty.gx = (Tyy o Ty)x for all x € HF. But this is almost trivial for
¥, ¢ € C.(R4), and the general case follows by density and continuity via Lemma 2.3
and Proposition 2.4. O

3. Applications to individual orbits

In this section, we apply the results of Section 2 to obtain information about
orbits T'(-)Tpx. This is possible because T'(t)Tpx = Ty, x, where

{ o(s—1), s>t

0, 0<s<t.

Pi(s) =

For the proofs in this and the following section we want to recall some results
concerning vector-valued holomorphic functions. Let

HL .(Cy;X) = {F : C4 — X : F is holomorphic and for all R > 0

R
limsup/ |1 F(a+is)|| ds < oo}.
R

a—0 _

Let Y C X* be a norming subspace in the sense that for each x € X one has
|z]| = sup{|[{z,2*)| : 2* € Y, ||z*|| < 1}. Note that if ¥ C X* is norming, then X can
be identified in a natural way with a closed subspace of Y*.

Let F € HL (Cy; X). We say that a function F : R — Y* is a boundary function
for F if for each z* € Y

lim (F(a+is),2*) = (z*, F(s)) a.e.(s).

a—0t

If F e HL (Cy;X) has a boundary function F : R — Y*, then for each z* € Y

the function (F(-),2*) is the limit in L\, (R) of the functions (F(a+i-),z*) as @ — 0%
(cf. [Du, Sections 2.3, 11.3]).
In the vector-valued case, boundary functions have been studied by Bukhvalov

[Bu] (actually, he considered holomorphic functions on the disc, but the generalization
to the right half plane by conformal mappings is standard [Ch2, Section 3]). When X
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has the analytic Radon-Nikodym property (ARNP), every function F € H{ (C;, X)
has a boundary function F' : R — X such that limy o | Fa + is) — F(s)| = 0 ae.
For general X, the following proposition was proved in [Bu, Theorems 2.3, 2.4]. For
completeness, we give here a short direct proof in the case of bounded holomorphic
functions, which will suffice for our application in Theorem 4.1.

Proposition 3.1. Let Y be a norming subspace of X*. Then for each F €
H} .(C4; X) there exists a boundary function F: R — Y™,

Proof. We consider the case when F' € H>(C_; X) (see [Bu] for the general case).
By the boundedness of K = {F(\) : A € C.} and the Banach-Alaoglu theorem, K

is relatively weak*-compact as a subset of Y*. For each s € R let F(s) € Y* be a
weak*-limit point of the net {F (o +1is): a | 0}.

Fix z* € Y. By the theory of (scalar) Hardy spaces (cf. [Du, Section 11.3]), we
know that for almost all s € R the scalar limit lim,_ o+ (F (o + is),z*) exists. By
construction of F' we have

lim (F(a+is),2*) = (z*, F(s)) a.e.(s).

a—0+
Thus F is a boundary function of F'. O

The following Tauberian theorem is originally due to Ingham [In, Theorem I] with
a somewhat stronger form of convergence to the boundary function. Actually, Ingham
considered only the scalar-valued case which is all that we shall need in this section,
but we will use the vector-valued case in Section 4. Our version of the theorem is
proved in [Ch2, Prop. 1.3, Rem 1.4]. Note that in this theorem the boundary function
of fis assumed to be strongly (Bochner) measurable.

Theorem 3.2. Let f : Ry — X be uniformly continuous, and suppose
that the Laplace transform f of f has a boundary function in Ll _(R,X). Then
limg oo [ f()[] = 0.

Our next result is a generalisation of [HN, Theorem 0.3].

Theorem 3.3. Letx € HY and ¢ € L-(Ry). Then the orbit T(-)Tyx is bounded
and uniformly continuous, and

tlim T(t)Tyr =0 weakly.

Proof. For t > 0, let
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Then (Fer)(s) = e**'(F¢)(s) and Ty, = T(t)Tpx. By Proposition 2.4,

1 1
T )Tzl < %IIFxI\Hoollf@IIl = gHFwIIHwHJ;qSIIl,
and

1
1T+ )Tz = TOTpzll < ol Fallme= |F (Geen — @)l

= o lBl [ -1 (Fos)] ds

— 0o

— 0
as h — 0, uniformly in ¢, by the Dominated Convergence Theorem.

For the final statement, we first consider ¢ € LL-(R4) N C.(R4). Let 2* € X*
and let f(t) = (T'(t)Tyx,x*). Then f is bounded and uniformly continuous, and
f()\) = (R(\, A)Tyx, z*) for ReX > max(0,wo(T)). Since Tyx € HP, it follows that f
is bounded on C,, and therefore has a boundary function in L°°(R) by Proposition
3.1. By Theorem 3.2, lim;_, f(t) = 0, so limy_,oo T'(¢)Tyx = 0 weakly.

Since
1 1
1T(H)Tpx — T'(t)Tp|| < gHFwIIHme(@ =)l = gllelleH}'@ =),

it follows from Lemma 2.3 that T'(t)Tyx — 0 weakly. a

There is an alternative proof of Theorem 3.3 which uses [HN, Theorem 0.3] and
an argument similar to the proof of [HN, Corollary 1.6]. On the other hand, we show
now that Theorem 3.3 includes [HN, Theorem 0.3] as a special case, and this enables
us to give a general formula for Tyx.

Corollary 3.4. Let x € HY, p > max(wo(T),0), and a > 1. Then

(1) lim T(t)R(u, A)%x = 0 weakly,

t—o0

(2) sup 1T (@) R (i, A)* || < ol | Fell oo, where
t>

[ V)

1 /OO ds o T(%)

Cap = 52 oo (U2 82)02 T 2 /7T (S) pot
(3) For ¢ € LL(Ry), Tyx = (ul — A)* (/000 )T ()R(p, A)*x dt>,

Proof. Parts (1) and (2) follow from Example 2.5 and Theorem 3.3 (see also [HN,
Theorem 0.3]). The equality

R )Ty = [ 0T (OR(u A e
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holds for ¢ € C.(R4+) N L%-(R4), and hence for ¢ € L1-(R4) by density (Lemma 2.3)
and continuity (using Proposition 2.4 and (2)). Now (3) follows. O

While Theorem 3.3 shows that the orbit T'(-)T¢z is bounded in X for any ¢ €
Lx(Ry), we can show that || T'(t)Tz|| mge grows at most logarithmically if we make a
slightly stronger assumption on ¢.

Proposition 3.5. Let x € HY and ¢ € LL-(R).
(1) Ifpe Ltll,]_-(RJr) for some 0 < a < 1, then
1T Tpzllmg <200 +nt)|[|Fellm=l¢lr:  wy), t=1/a
(2) If R(-, A)?z has a bounded holomorphic extension G, to Cy, then

1
1T Tsrlng < o I1FSlL (1 Fallm= + |Gallg=), t=0.

Proof. Suppose that ¢ € L} z(Ry). For 0 < a < a, ||¢¢]lay < e||@[la,1- By
Proposition 2.7 (3),

1 «
1T o)y = To2llmy < 51 Falla= BIFel + (4 —2Ina)e*|[¢lla1) -
For t > 1/a, we may put « = 1/¢, so
1
ITOTsrllnzy < o l1Follz= BIFol1 + (44 2Int)e[|Flla.)-

This suffices to give (1).

The statement (2) is proved by applying Proposition 2.7 (2) with ¢ replaced by
¢t~ O

Now we will consider orbits ¢ — T'(¢t)R(u, A)z for € H. It was shown in [Nel]
that || T(t)R(u, A)z|| grows at most linearly, and it is an open problem whether these
orbits are always bounded. The difficulty here is the fact that the Fourier transform of
the function ¢, (t) = e does not belong to L'(R), so Theorem 3.3 and Proposition
3.5 are not applicable. Nevertheless we will show that the result of [Nel] can be derived
from the results of Section 2, and indeed strengthened to show that ||T'(t) R(u, A)z|| mge
grows at most linearly.

Theorem 3.6. Let j1 € p(A). There exists a constant ¢, > 0 such that
TR, Azlage < cu(l+)||2llag, o€ Hp,t=0.
Proof. Let w > max(1,wp(T)), 0 < a < 1 < ¢, and
0, 0<s<t—aq,
p(s) =4 1+ t—a<s<t,

e W=t g >4
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Then
. 1 i 1—efes
]_- — —st - - ,
(F9)(s) = e (w—l—is s as? >
S0
1 i 1—efs
F < 2 - d
I I e
2 1 i 1—efes
< —4a+ - -+ ds
w 1<|s|<a-1 \|w +is s as?
1 il |1 — et
Kl I i ) O
+/S|>a_1 Qw—kis 5 * as? > °
2 Ly 1_ 1 _ et
< —+a—210ga+/ E—i— e’ dr+2aw—|—2/ | 26
w —1 T 1 T
2
< —4 (14 2w)a—2loga+ 5.
w
For 0 <a <1,
t o]
—t 1
[ :/ ( s )eas d8+/ oot gas g < gt (a+ )
t—a t w—a

Let M, = supy>qe™“*||T(s)|| < oo. By Proposition 2.7,

IIT)(

Az mg

t
s)xds —/ (
t—a

1
o 1 Fall e Bl F ¢l + (4 = 2l a)|[da,1) +

s—t

)Ts)eds

t

t—«

Hy

Mye®* ||| Hge ds

< rwla, ont)||zmg,
where
ko(a,a,t) =
1 6 1 wt
+3a+6aw 6loga+ 15+ (4 —2Ina)e” o+ —— | | + aMe
2 w—a

wt

For t > 1, we may take a = e7" and a = 1/t, and we obtain

1T (t) R(w,

Azl g < Ro(®)l|2ll g,

1

Rult) = o

Since supg<i<q HT(t)R(WaA)Hﬁ(H%O) < SUPp<icy 1T(t)R(w,
follows in the case when p = w.

<6 (3+6w)e " + 6wt + 15+ (4 + 2Int)e (e“t—i—

Allex

wt—1

)

) < 0o, the result
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For an arbitrary pu € p(A), the result now follows via the resolvent identity. O

Alboth [Al] has used the result of [Nel] to study rapidly decaying orbits of T. In
that context, it is important to know the asymptotic behaviour of the constant ¢, in
Theorem 3.6 for large w. Both the estimates in [Nel] and those given above show that
¢, cannot grow faster than linearly.

Our next result improves the bound ¢, (1 + t) for |T(¢)R(y, A)x|| for positive
semigroups and positive z. Recall that an ordered Banach space X is said to be normal
if there is a constant s such that ||z| < xmax(||y1]|,||y2||) whenever y; < x < ys.

Theorem 3.7. Suppose T is a positive semigroup on a normal ordered Banach
space X. For all 1 € o(A) there exists a constant ¢, > 0 such that

IT@)R(u, A)z|| < cu(1+ Int)||x]| mg
whenevert > 1 and 0 < x € HY.
Proof. By the resolvent identity, without loss of generality we may assume that
p > wo(T). Then 0 < R(p, A)x € HY.
Fix t > 1, and let

o(s) = (X(0,1) * X(0,0)) (8) =

0, t+1<s
Then
1_67is 1_67ist
F = —
Fo e =- () ()
Hence
4 21— st
o < 2 [ hae [T
2 S _92 S
2 .
< 4+4/ |sm(st/2)\ds
0 S
" |sin s
< 4—|—4/ " ds <84 4Int.
0

For 0 <yec HY,

t
0< / T(s)yds < Tyy,
1
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/ D(s)yds

SO

K K
< Tyl < ool Byl 10l < 2B s (4 -+ 21nt)

/OtT(S)yds

where ¢ = 4k /7 + fol IT(s)|| ds. Applying this to y = z and y = pR(u, A)z and using
Proposition 2.6 and the identity AR(u, A)x = pR(p, A)x — x, it follows that there
exists a constant ¢}, > 0 such that

whenever 0 < z € HY. Hence, the identity

Hence

<c(l+Int)|yllug,

/Ot T(s)AR(u, A)x ds

< ¢, (1 +Int)||z| e, t>1,

t
T(0)R(n, A)e = Rp, Ao+ [ T()AR(r Az ds
0
implies
1Tt R(p, A)z|| < [|R(p, A)zl| + ¢,(1+Int)|lz)ge,  t>1
O
In the proof above, we could choose ¢ to be any non-negative function in L%_—(RJF)

such that ¢ > 1 on [1,¢]. We would conclude that || T'(¢)R(u, A)z| grows no faster than
a constant multiple of

inf {||Foll :0< ¢ € Lr(Ry), ¢ > 1L on [1,t]}.

We do not know whether this quantity grows logarithmically in ¢.

4. The O —reflexive case

For a given Cy-semigroup T on a Banach space X let X© be the maximal T*-
invariant subspace of X* such that the restriction T® of T* to X© is a Cyp-semigroup.
Then X© is the norm-closure of D(A*) in X*. Replacing the norm on X by an
equivalent norm, for example

l2]|" = sup e T'(¢t)x||
>0
for some w > wy(T), we may assume that limsup, o, [|T(¢)|| = 1. Then X® is a

norming subspace of X*. Using the Cy-semigroup T® on X©, one may form the space
X 99 and identify X in a natural way with a closed subspace of X©®. Recall that T
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is said to be @—reflezive if X®© = X. We refer the reader to [Ne2, Section 1.3] for
all these concepts and properties.

In this section we will present some individual stability results for ®—reflexive
semigroups. More generally, we will assume that the quotient space X®® /X is sepa-
rable. For arbitrary semigroups on spaces with the ARNP, similar results have been
obtained in [HN, Theorem 0.2] and [Ch2, Theorem 3.3].

Theorem 4.1. Let T be a Co-semigroup on X and assume that X©®/X s
separable. Let x € HY. If the orbit T'(-)z is bounded and uniformly continuous, then

tlim IT(t)x| = 0.

Proof. If Y is a closed T-invariant subspace of X, then Y®®/Y is canonically
isomorphic to a closed subspace of X®®/X [Ne2, Lemma 6.1.7]. By passing to the
closed linear span of the T-orbit of x, without loss of generality we may assume that
X is separable. The separability of X©® /X then implies that also X ©© is separable.

Since F, € HL . (C4;X), we may apply Proposition 3.1 with ¥ = X©, and we
find a boundary function F, : R — X ©* such that for all z© € X©

lirrb<F$(a +is),2%) = (2, F,(s)) a.e.(s).
Fix u € 9(A). The resolvent identity and analytic continuation give

Fz(/\) = R(Uv A)x + (:u - )‘)R(:ua A)Fz (A)v A€ C+7

s0
(@€ Fole)) = Jim, (Foloctis),a°)
= (R(u, A)z,2%) + lim (= (o + i) (Fo(a + is), R(u, A®)z)
= (R(u, Az, 2%) + (1 — is) (2%, R(p, A% Fo(s))  ace.(s).
Thus

Fy(s) = R(p, Az + (u — is)R(p, A®*)F,(s) € D(A®*) C X©©  ace.

Thus E is separably valued and weak*-measurable, hence strongly measurable by the
weak*-version of Pettis’s Theorem [DU, Corollary 4, p.42]. Therefore T'(-)x is bounded
and uniformly continuous and its Laplace transform admits a bounded, strongly mea-
surable boundary function (we may regard these functions as having values in X ©® | or
alternatively we may deduce from [Bu, Theorem 2.5] that the values of the boundary
function lie in X'). From Theorem 3.2, we obtain

tlim IT(t)x| = 0.
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O

There is an alternative proof of Theorem 4.1 using arguments adapted from [HN].
Given w > max(0,wo(T)), let

H(s) = (w+is) "' R(u, A)Fy(—is).

Then H € LY(R, X®9®), so FH € Cy(R,X) by the Riemann-Lebesgue Lemma. A
calculation similar to one following Theorem 1.2 in [HN] shows that, for ¢ > 0,

(FH)(t) = 2nT(t)R(w, A)R(, A)a.

Thus, lim;—, [|T(t)R(w, A)R(p, A)x|| = 0. The assumption that T'(-)x is bounded
and uniformly continuous can now be used as in the proof of [HN, Corollary 1.6] to
obtain the result.

The separability assumption on X ©®/X cannot be omitted from Theorem 4.1, as
[HN, Example 1.7] shows. There, X = Cy(R), T is the semigroup of left translations,
and X®® = BUC(R) [Ne2, Example 1.3.9]. However, the theorem is true without the
assumption if X has the ARNP. Then the bounded holomorphic function F, has a
strongly measurable boundary function with values in X [Bu], and the result follows
directly from Theorem 3.2 (see also [HN, Theorem 2.2], [Ne3, Theorem 4.4.2]).

Corollary 4.2. Let X®®/X be separable and let x € HY. Then for all ¢ €
L-(Ry) we have

lim || T(5)Tya]| = 0.

Proof. Consider first ¢ € C.(R4) N LL(R4). Then Tyzx € H, and it follows
from Theorem 3.3 and Theorem 4.1 that lim;_o [|T(t)Tyx|| = 0. Now the result
follows by approximation, as in the proof of Theorem 3.3. ]

Combining this with Example 2.5 we obtain:

Corollary 4.3. Let X©©/X be separable and let x € H3. Then for all a > 1
and > wo(T) we have

Tim [[T(t)R(p, A)*z] = 0.

Concluding this section we would like to remark that the ®-reflexive case in
Theorem 4.1 actually follows from a much more general result in Tauberian theory.
If T is a O-reflexive semigroup, then R(u, A) is weakly compact [Pa, Theorem 3.5],
[Ne2, Theorem 2.5.2]. For x € H, the resolvent identity

Fo(2) = R A)x + (1 — 2)R(, A)Fi(2)

yields that {F(2) : z € U}NB(0, R) is relatively weakly compact in X for all bounded
sets U C C4 and all R > 0.
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Theorem 4.4. Let f € BUC(R4;X) be such that fe HL (Cy; X). If the set

{f(2) : z € U}NDB(0, R) is relatively weakly compact in X for all bounded sets U C C
and all R > 0, then lim;_, || f(¢)]] = 0.

Proof. Restricting to the closed linear span of {f(t) : ¢ € Ry} we may assume
without loss of generality that the space X is separable. Let Y be a separable and
norming subspace of X* and let (2)n,en C Y be a dense sequence. By Proposition

3.1 we find a boundary function f : R — Y™* for the Laplace transform annd a set
N C R of Lebesgue measure 0 such that for all n € N and all s € R\N

lim (f(a+ is), 23) = (2}, f(s)).

This and the assumption of weak compactness yield that f(s) € X for all s € R\N.
Since X is separable, the function f is strongly measurable with values in X by Pettis’s
Theorem.

The claim follows from Theorem 3.2. O

5. Some extensions and questions

5.1. Extensions

The following three remarks describe some extensions of the results given above.

Remark 5.1. The functional calculus of Section 2 can be extended slightly. Let
LIR)={yeL'(R): Fp=00on R, }.
It is easy to see that L1(R) is the closure in L'(R) of {F¢ : ¢ € L% (R )}. It follows
from Corollary 2.2 that there is a unique continuous bilinear map:
(1, z) € Li(R) x HY — p(iA)z € X
satisfying
(Fo)(id)z = Ty, ¢ € Lr(Ry),
IGAN < o1l b€ L{R),z € HF.

Since T'(t)y(iA)x = ! (iA)x, where ¥ (s) = e~ *!9)(s), Theorem 3.3 and Corollary 4.2
remain valid when Ty is replaced by ¢ (iA)z.

Remark 5.2. Another extension of the functional calculus is the following. Let
HE, be the space of all z € X such that the local resolvent R(-, A)x has a holomorphic
extension Fy to C satisfying

wp LEQ

IERAN || Pl oo < 0.
W AT
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Equipped with the norm |||l gge, := ||z]| + [ Fi||oo,k, this space is a Banach space.
Next, define the space
Ly rir(Ry)i={¢p e L] z(Ry): Fo e L'(R; (1 +t])" dit)}.

Using the techniques developed in Section 2, it is not difficult to introduce a functional
calculus from L] r,(Ry) into Hg,. With this functional calculus it is possible to
prove similar results on individual stability as in Sections 3 and 4. For example, if
€ Hy) and ¢ € L r,(Ry), then the orbit T(-)Tyz is bounded and uniformly
continuous, and weakly asymptotically stable (compare with Theorem 3.3).

Results of this type have been obtained in [HN], and we will not go into details.

Remark 5.3. For 1 < p < 0o, let H%. be the space of all z € X for which R(-, A)z
has a holomorphic extension F}, : C; — X such that

1/p
| E|| e == sup (/ | E (o + is)||pds> < 0.
a>0 R

It follows from a variant of Proposition 2.1 and Hoélder’s inequality that
1
Tl < 5| Eullas |76l

whenever x € HY., ¢ € C°(Ry) and F¢ € L¥ (R) where % + ﬁ = 1. As in Section 2,
it is possible to define a functional calculus (¢, z) — Ty when z € HY., ¢ € LP(R})
and F¢ € L (R) (the Hausdorff-Young inequality shows that Tz is defined for all
¢ € LP(R4) when 1 < p < 2). As in Remark 1, one can extend this to a functional
caleulus (¢, x) +— (iA)z when x € HE, 1 € LP (R) and F¢) = 0 on Ry (the two
calculi coincide when 2 < p < 00). As in Theorem 3.3, the corresponding orbits of
T are bounded, uniformly continuous, and converge to 0 weakly (in norm if X®®/X
is separable, as in Corollary 4.2). In particular, Example 2.5 provides the following
counterpart to Corollary 3.4, (1) and (2).

Proposition 5.4. Let z € HY., > max(wo(T),0) and a > 1/p’. Then

(1) lim T(t)R(u, A)%x = 0 weakly,

t—o0

HFzHHP /w ds 1/p
9 3 T A < .
(2) 212113” () R(p, A) x| < —— (TR

This result can be compared with [HN, Theorem 0.1], where it is shown that
limy oo |T(t)R(ps, A)*z|| = 0 if z € HYF and X has Fourier type p'.

If T is a holomorphic semigroup, then H3® C H. for all p > 1, and it follows that
T(-)R(p, A)*z is bounded whenever z € HF and a > 0. Mark Blake [Bl] has shown
that this is also true when a = 0 for some classes of semigroups, including holomorphic
semigroups.
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5.2. Open questions

The following questions remain open:

Problem 5.5. Let z € H® and ¢ € L=(R). Is it always true that Tyx € HF ?
See Proposition 2.7.

Problem 5.6. Let x € HY. Is it always true that T'(-)R(u, A)x is bounded in X
(or better in HY )? See Theorem 3.6 and Remark 5.3 above. If not, is this true in the
context of positive semigroups, as in Theorem 3.77
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