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Abstract. Let {T (t)}t≥0 be a C0-semigroup on a Banach space X with generator A, and let
H∞T be the space of all x ∈ X such that the local resolvent λ 7→ R(λ, A)x has a bounded holomorphic
extension to the right half-plane. For the class of integrable functions φ on [0,∞) whose Fourier
transforms are integrable, we construct a functional calculus φ 7→ Tφ, as operators on H∞T . We show
that each orbit T (·)Tφx is bounded and uniformly continuous, and T (t)Tφx → 0 weakly as t → ∞,
and we give a new proof that ‖T (t)R(µ, A)x‖ = O(t). We also show that ‖T (t)Tφx‖ → 0 when T is
sun-reflexive, and that ‖T (t)R(µ, A)x‖ = O(ln t) when T is a positive semigroup on a normal ordered
space X and x is a positive vector in H∞T .

1. Introduction and preliminaries

This paper is concerned with the asymptotic behaviour of orbits T (·)Sx, where
T = {T (t)}t≥0 is a C0-semigroup on a complex Banach space X with generator A,
x is a vector in X such that the local resolvent R(·, A)x has a bounded holomor-
phic extension to the right half-plane C+, and S is an operator in one of various
classes associated with T. In [Ne1], it was shown that there is a constant c such that
‖T (t)R(µ,A)x‖ ≤ c(1 + t), t ≥ 0, and this gave a proof that

inf

{
ω ∈ R : for all x ∈ D(A), ‖T (t)x‖ = O(eωt) as t→∞

}

≤ inf

{
ω ∈ R : R(λ,A) exists whenever Reλ > ω and sup

Reλ>ω
‖R(λ,A)‖ <∞

}
,

an inequality originally established in [WW]. It remains an open question whether
such orbits T (·)R(µ,A)x are bounded in general, but it has been shown in [HN] (see
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also [Ne3, Chapter 4]) that limt→∞ T (t)R(µ,A)x = 0 strongly (in norm) if X is B-
convex, and that, for α > 1, limt→∞ T (t)R(µ,A)αx = 0 weakly for arbitrary X , and
strongly if X has the analytic Radon-Nikodým property (ARNP), in particular, if X
is reflexive. When X has the ARNP, it was shown more generally in [Ch1] (see also
[Ch2]) that limt→∞ T (t)Tφx = 0 whenever

Tφx :=

∫ ∞

0

φ(t)T (t)x dt

is an absolutely convergent integral. This was deduced as a consequence of general
Tauberian theorems originating in work of Ingham [In].

Here, we extend these results in various directions. In Section 2, we show that it
is possible to define Tφx whenever φ ∈ L1(R+) and its Fourier transform Fφ ∈ L1(R)
(and x has bounded local resolvent on C+), thereby creating a functional calculus
on the space of such vectors. In Section 3 we give some general estimates for orbits
T (·)Tφx, thereby extending and sharpening results in [Ne1] and [HN]. In Section 4,
we show that limt→∞ T (t)Tφx = 0 strongly if T is sun-reflexive, and indeed that this
is also a case of a Tauberian theorem.

Throughout this paper, we shall let R+ = [0,∞) and C+ = {z ∈ C : Rez > 0}.
Given a locally integrable function φ : R+ → C, we shall let φ̂ be the Laplace transform
of φ:

φ̂(z) =

∫ ∞

0

e−tzφ(t) dt

whenever this integral is absolutely convergent.

When φ ∈ L1(R+), we shall let Fφ be the Fourier transform of φ (where φ is
regarded as vanishing on (−∞, 0)). For a ≥ 0, we denote by L1

a,F(R+) the space of

all φ ∈ L1(R+) such that ‖φ‖a,1 :=
∫∞

0
|φ(t)|eat dt < ∞ and Fφ ∈ L1(R). This is a

linear subspace of L1(R+), and a Banach space with respect to the norm

‖φ‖L1
a,F(R+) := ‖φ‖a,1 + ‖Fφ‖1.

It is even a commutative Banach algebra with respect to convolution. To see this,
note that

‖φ ∗ ψ‖L1
a,F(R+) = ‖φ ∗ ψ‖a,1 + ‖Fφ · Fψ‖1

≤ ‖φ‖a,1 ‖ψ‖a,1 + ‖Fφ‖1‖Fψ‖∞
≤ ‖φ‖a,1 ‖ψ‖a,1 + ‖Fφ‖1‖ψ‖1
≤ ‖φ‖L1

a,F(R+)‖ψ‖a,1
≤ ‖φ‖L1

a,F(R+)‖ψ‖L1
a,F(R+).

When a = 0, we shall write L1
F(R+) for L1

0,F(R+). By the Riemann-Lebesgue Lemma

(applied to Fφ), every function φ ∈ L1
F(R+) is continuous, vanishes at infinity, and

satisfies φ(0) = 0.

Throughout, X will be a complex Banach space, and we shall denote by H∞ =
H∞(C+;X) the Banach space of all bounded holomorphic X-valued functions on C+,
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with the norm

‖F‖H∞ = sup
z∈C+

‖F (z)‖.

By the Phragmén-Lindelöf Principle,

‖F‖H∞ = lim
α→0+

sup
s∈R
‖F (α+ is)‖.

We let T = {T (t)}t≥0 be a C0-semigroup with infinitesimal generator A on X .
We shall denote the resolvent set of A by %(A) and write R(µ,A) for the resolvent
(µI −A)−1, µ ∈ %(A). We shall frequently use the resolvent identity:

R(λ,A) = R(µ,A) + (µ− λ)R(µ,A)R(λ,A).

We shall denote the growth bound of T by ω0(T):

ω0(T) = lim
t→∞

ln ‖T (t)‖
t

= inf {ω ∈ R : there exists M such that ‖T (t)‖ ≤Meωt, t ≥ 0} .

We let H∞T be the linear subspace of X consisting of all x ∈ X whose local
resolvent λ 7→ R(λ,A)x has a holomorphic extension to an element Fx ∈ H∞. The
space H∞T is a Banach space with respect to the norm

‖x‖H∞
T

:= ‖x‖+ ‖Fx‖H∞ .

Indeed, suppose (xn) is a Cauchy sequence in H∞T . Then (xn) is Cauchy in X , with
limit x, say. Moreover, (Fxn) is Cauchy in H∞, say with limit G ∈ H∞. But for all
λ ∈ C+ with Reλ > ω0(T),

G(λ) = lim
n→∞

Fxn(λ) = lim
n→∞

R(λ,A)xn = R(λ,A)x

and therefore G is a bounded holomorphic extension of the local resolvent λ 7→
R(λ,A)x. It follows that G = Fx and completeness of H∞T is proved.

We will sometimes regard the mapping x 7→ Fx as an operator from H∞T into
H∞; as such it is linear and contractive.

2. The main estimate

For x ∈ X and φ ∈ Cc(R+), the space of continuous functions with compact
support in R+ = [0,∞), we define an element Tφx ∈ X by

Tφx :=

∫ ∞

0

φ(t)T (t)x dt.
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Proposition 2.1. For x ∈ H∞T and φ ∈ Cc(R+),

‖Tφx‖ ≤ lim inf
α→0+

lim inf
r→∞

1

2π

∥∥∥∥
∫ α+ir

α−ir
Fx(z)φ̂(α− z) dz

∥∥∥∥ ,

where the integral is along any path in C+ from α− ir to α+ ir.

Proof. By Cauchy’s Theorem, we may assume that the integral is along the line
segment from α− ir to α+ ir.

Take ω > max(ω0(T), 0). The Laplace transform φ̂(z) is defined for all z ∈ C, and

(Fφ)(s) = φ̂(is). Take 0 < α < ω and x∗ ∈ X∗. The functions t 7→ e−ωt〈T (t)x, x∗〉
and t 7→ e(ω−α)tφ(t) belong to L2(R+), and their respective Fourier transforms are

s 7→ 〈R(ω + is, A)x, x∗〉 and s 7→ φ̂(α− ω − is). By Plancherel’s Theorem,
∫ ∞

0

e−αt〈T (t)x, x∗〉φ(t) dt =

∫ ∞

0

e−ωt〈T (t)x, x∗〉e(ω−α)tφ(t) dt

=
1

2π

∫ ∞

−∞
〈R(ω + is, A)x, x∗〉φ̂(α− ω − is) ds.(2.1)

Now consider the contour integral
∫
〈Fx(z), x∗〉φ̂(α− z) dz

around the rectangle with vertices α± ir, ω± ir, where r > 0. The integral along the
bottom edge is

∫ ω

α

〈Fx(ξ − ir), x∗〉φ̂(α− ξ + ir) dξ.

For α < ξ < ω,

φ̂(α− ξ + ir) =

∫ ∞

0

e−(α−ξ)tφ(t)e−irt dt→ 0

as r →∞, by the Riemann-Lebesgue Lemma. Moreover,

∣∣∣φ̂(α− ξ + ir)
∣∣∣ ≤

∫ ∞

0

eωt|φ(t)| dt

|〈Fx(ξ − ir), x∗〉| ≤ ‖Fx‖H∞‖x∗‖,

whenever r > 0, α < ξ < ω. By Lebesgue’s Dominated Convergence Theorem,

lim
r→∞

∫ ω

α

〈Fx(ξ − ir), x∗〉φ̂(α− ξ + ir) dξ = 0.

A similar argument shows that the integral along the top edge of the rectangle tends
to 0 as r →∞. By Cauchy’s Theorem,

lim
r→∞

{∫ r

−r
〈Fx(ω + is), x∗〉φ̂(α− ω − is) ds−

∫ r

−r
〈Fx(α+ is), x∗〉φ̂(−is) ds

}
= 0.
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By (2.1),
∫ ∞

0

e−αt〈T (t)x, x∗〉φ(t) dt = lim
r→∞

1

2π

∫ r

−r
〈Fx(α + is), x∗〉(Fφ)(−s) ds,

so
∥∥∥∥
∫ ∞

0

e−αtφ(t)T (t)x dt

∥∥∥∥ ≤ lim inf
r→∞

1

2π

∥∥∥∥
∫ r

−r
Fx(α+ is)(Fφ)(−s) ds

∥∥∥∥ .

The result now follows by letting α→ 0+. 2

Corollary 2.2. For all x ∈ H∞T and φ ∈ Cc(R+) with Fφ ∈ L1(R) we have

‖Tφx‖ ≤
1

2π
‖Fx‖H∞‖Fφ‖1.

Lemma 2.3. Let a ≥ 0 and φ ∈ L1
a,F(R+). There is a sequence (φn) in

L1
a,F(R+)∩Cc(R+) such that |φn| ≤ |φ| for all n and limn→∞ ‖φn − φ‖L1

a,F (R+) = 0.

Proof. Let ψ ∈ C∞c (R) be an arbitrary function satisfying 0 ≤ ψ ≤ 1, ψ(0) = 1,
and

∫∞
−∞ ψ(t) dt = 1. Let ψn(t) := ψ(t/n), t ∈ R, n ≥ 1; φn := φ ·ψn|R+ , n ≥ 1. Then

φn ∈ Cc(R+) and |φn| ≤ |φ|.
Since each ψn belongs to the Schwartz space S(R), so does its Fourier transform

Fψn. In particular Fψn ∈ L1(R), so φn ∈ L1
a,F(R+). Moreover, limn→∞ ‖φn −

φ‖a,1 = 0, and

lim
n→∞

Fφn = (2π)−1 lim
n→∞

Fφ ∗ Fψn = (2π)−1 lim
n→∞

Fφ ∗ nFψ(n ·) = Fφ

in L1(R); cf. [Ka, Theorem VI.1.10]. Hence, limn→∞ ‖φn − φ‖L1
a,F (R+) = 0. 2

The following result now follows easily from Corollary 2.2, Lemma 2.3 and the
Dominated Convergence Theorem.

Proposition 2.4. For each x ∈ H∞T the linear operator Tx : φ 7→ Tφx from
L1
F(R+) ∩Cc(R+) to X has a unique extension to a bounded linear operator Tx from

L1
F(R+) into X. For each φ ∈ L1

F(R+) there exists a unique bounded linear operator
Tφ : H∞T → X given by Tφx = Txφ. Moreover

‖Tφx‖ ≤
1

2π
‖Fx‖H∞‖Fφ‖1

for all φ ∈ L1
F(R+). If

∫∞
0 |φ(t)| ‖T (t)x‖ dt <∞, then Tφx =

∫∞
0 φ(t)T (t)x dt.

In Corollary 3.4, we will give a general formula for Tφx.

We will now consider the question whether Tφ maps H∞T into H∞T . The main
result will be Proposition 2.7, but we first make a simple observation.
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If S is a bounded linear operator on X commuting with T, then S maps H∞T into
H∞T , with ‖Sx‖H∞

T
≤ ‖S‖L(X )‖x‖H∞T . In particular, this applies with S = Tφ, where∫∞

0
|φ(t)| ‖T (t)‖ dt <∞ and

Tφx =

∫ ∞

0

φ(t)T (t)x dt.

Note that this is consistent with the definition of Tφx for φ ∈ L1
F (R+), by Proposition

2.4. The following is an interesting example of this situation.

Example 2.5. Let α > 1 and µ > max(ω0(T), 0), and define φ(t) :=
Γ(α)−1tα−1e−µt, t ≥ 0. Then Fφ(s) = (µ + is)−α, s ∈ R; thus Fφ ∈ L1(R).
Moreover, Tφx = R(µ,A)αx, where R(µ,A)α is the negative fractional power of the
sectorial operator µI −A (see [Ne3, Appendix A1]).

Proposition 2.6. Let x ∈ H∞T and λ ∈ C+. Then

(1) Fx(λ) ∈ H∞T ;

(2) FFx(λ)(µ) =
Fx(λ)− Fx(µ)

µ− λ , µ ∈ C+, µ 6= λ;

(3)
∥∥FFx(λ)

∥∥
H∞
≤ 4‖Fx‖H∞

Reλ
;

(4) The H∞T -valued function λ 7→ Fx(λ) is holomorphic on C+.

Proof. We first show that, for each λ ∈ C+, the function µ 7→ Gx,λ(µ) :=
R(µ,A)Fx(λ) has a holomorphic extension to C+ and that this extension is bounded.

By the resolvent identity and analytic continuation, for all Reµ > max(0, ω0(T)),
µ 6= λ, we have

Gx,λ(µ) =
Fx(λ) −R(µ,A)x

µ− λ .

A holomorphic extension to C+ is given by

Gx,λ(µ) =
Fx(λ) − Fx(µ)

µ− λ , µ 6= λ,

Gx,λ(λ) = −F ′x(λ).

For fixed µ ∈ C+, the function λ 7→ Gx,λ(µ) = Gx,µ(λ) is holomorphic on C+, so
Cauchy’s Integral Formula gives

Gx,λ(µ) =
1

2πi

∫

γ

Fx(z)− Fx(µ)

(µ− z)(z − λ)
dz(2.2)
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for any contour γ in C+ around λ. Taking γ to be a circle with centre λ and radius r
where 0 < r < Reλ, we obtain

‖Gx,λ(µ)‖ ≤ 2‖Fx‖H∞
|r − |λ− µ|| .

Letting r → 0 if |λ− µ| ≥ Reλ/2 and r → Reλ otherwise,

‖Gx,λ(µ)‖ ≤ 4‖Fx‖H∞
Reλ

.

This establishes (1), (2) and (3).

If |λ′ − λ| < r < Reλ, then applying (2.2) for λ and λ′, we obtain

‖Gx,λ′(µ)−Gx,λ(µ)‖ =

∥∥∥∥∥
λ′ − λ

2πi

∫

|z−λ|=r

Fx(z)− Fx(µ)

(µ− z)(z − λ)(z − λ′) dz
∥∥∥∥∥

≤ 2|λ′ − λ|‖Fx‖H∞
|r − |λ− µ|| (r − |λ′ − λ|) .

Letting r = Reλ/3 if |λ− µ| ≥ Reλ/2 and r → Reλ otherwise, it follows that

‖Fx(λ′)− Fx(λ)‖H∞
T
≤ ‖Fx(λ′)− Fx(λ)‖+

72|λ′ − λ|‖Fx‖H∞
(Reλ)2

whenever |λ′ − λ| < Reλ/6. Thus Fx is continuous as an H∞T -valued function, and
holomorphic as an X-valued function. It follows from Cauchy’s Theorem and Morera’s
Theorem that Fx is holomorphic as an H∞T -valued function. 2

Proposition 2.7. Let φ ∈ L1
F(R+) and x ∈ H∞T .

(1) λ 7→ R(λ,A)Tφx has a holomorphic extension to C+ given by λ 7→ Tφ(Fx(λ)).

(2) If R(·, A)2x has a bounded holomorphic extension Gx to C+, then Tφx ∈ H∞T
and

‖Tφx‖H∞
T
≤ 1

2π
‖Fφ‖1 (‖Fx‖H∞ + ‖Gx‖H∞) .

(3) If φ ∈ L1
a,F(R+) for some 0 < a < 1, then Tφx ∈ H∞T and

‖Tφx‖H∞
T
≤ 1

2π
‖Fx‖H∞ (3‖Fφ‖1 + (4− 2 lna)‖φ‖a,1) .

Proof. (1). By Proposition 2.6, Fx is a holomorphic map of C+ into H∞T . By
Proposition 2.4, Tφ is a bounded linear map of H∞T into X . Hence Tφ(Fx(·)) : C+ → X
is holomorphic. For Reλ > max(0, ω0(T)), the formula

Tφ(Fx(λ)) = R(λ,A)Tφx

is valid for φ ∈ Cc(R+) ∩ L1
F(R+) by definition of Tφ, and hence for all φ ∈ L1

F(R+)
by density (Lemma 2.3) and continuity with respect to φ (Proposition 2.4).
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(2). Since the derivative of R(·, A)x is −R(·, A)2x, Gx = −F ′x. Propositions 2.4 and
2.6 show that

‖Tφ(Fx(λ))‖ ≤ 1

2π
‖Fφ‖1

∥∥FFx(λ)

∥∥
H∞
≤ 1

2π
‖Fφ‖1‖F ′x‖H∞ .

Hence Tφx ∈ H∞T and

‖Tφx‖H∞
T

= ‖Tφx‖+ sup
λ∈C+

‖Tφ(Fx(λ))‖ ≤ 1

2π
‖Fφ‖1 (‖Fx‖H∞ + ‖Gx‖H∞) .

(3). Suppose that 0 < Reλ < a/2. Consider first the case when φ ∈ Cc(R+)∩L1
F (R+).

By Proposition 2.6, and Proposition 2.1 with x replaced by Fx(λ),

‖Tφ(Fx(λ))‖ ≤ lim inf
α→0+

lim inf
r→∞

1

2π

∥∥∥∥∥

∫

γα,r

(
Fx(λ)− Fx(z)

z − λ

)
φ̂(α− z) dz

∥∥∥∥∥ ,

where, for 0 < α < a and r > |Imλ| + 1, we choose γα,r to be the path consisting
of five line segments: γ1 from α − ir to α + i(Imλ − 1); γ2 from α + i(Imλ − 1) to
a+ i(Imλ − 1); γ3 from a+ i(Imλ − 1) to a+ i(Imλ + 1); γ4 from a+ i(Imλ + 1) to
α+ i(Imλ+ 1); γ5 from α+ i(Imλ+ 1) to α+ ir. We use the following estimates

‖Fx(λ)− Fx(z)‖ ≤ 2‖Fx‖H∞ , z ∈ γα,r,

|φ̂(α− z)| ≤ ‖φ‖a,1, z ∈ γ2 ∪ γ3 ∪ γ4,

|z − λ| ≥ 1, z ∈ γ1 ∪ γ2 ∪ γ4 ∪ γ5,

|z − λ| ≥ a−Reλ, z = a+ i(Imλ+ s) ∈ γ3, |s| ≤ a−Reλ,

|z − λ| ≥ |s|, z = a+ i(Imλ+ s) ∈ γ3, a−Reλ < |s| ≤ 1.

These give

‖Tφ(Fx(λ))‖ ≤ ‖Fx‖H∞
π

{∫ ∞

−∞
|φ̂(−is)| ds+

(
2a+ 2 + 2

∫ 1

a−Reλ

ds

s

)
‖φ‖a,1

}

≤ ‖Fx‖H∞
π

{‖Fφ‖1 + (4− 2 ln(a−Reλ)) ‖φ‖a,1} .(2.3)

This estimate remains valid for φ ∈ L1
a,F(R+) by density (Lemma 2.3) and continuity

(Proposition 2.4).

For φ ∈ L1
a,F(R+), Propositions 2.4 and 2.6 give

‖Tφ(Fx(λ))‖ ≤ 1

2π
‖Fφ‖1

∥∥FFx(λ)

∥∥
H∞
≤ 4

πa
‖Fφ‖1‖Fx‖H∞ ,

for Reλ ≥ a/2. Now (2.3) shows that Tφx ∈ H∞T and

‖Tφx‖H∞
T

= ‖Tφx‖+ lim
α→0+

sup
s∈R
‖Tφ(Fx(α+ is))‖

≤ ‖Fx‖H∞
2π

(3‖Fφ‖1 + (4− 2 lna)‖φ‖a,1) .
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2

Theorem 2.8. For a > 0, φ 7→ Tφ is a continuous Banach algebra homomor-
phism from L1

a,F(R+) into L(H∞T ).

Proof. Proposition 2.7 shows that the map is a continuous linear map of L1
a,F(R+)

into L(H∞T ). It remains to prove that the map φ 7→ Tφ is an algebra homomor-
phism, i.e. that Tψ∗φx = (Tψ ◦ Tφ)x for all x ∈ H∞T . But this is almost trivial for
ψ, φ ∈ Cc(R+), and the general case follows by density and continuity via Lemma 2.3
and Proposition 2.4. 2

3. Applications to individual orbits

In this section, we apply the results of Section 2 to obtain information about
orbits T (·)Tφx. This is possible because T (t)Tφx = Tφtx, where

φt(s) =

{
φ(s− t), s > t,

0, 0 ≤ s < t.

For the proofs in this and the following section we want to recall some results
concerning vector-valued holomorphic functions. Let

H1
loc(C+;X) :=

{
F : C+ → X : F is holomorphic and for all R > 0

lim sup
α→0

∫ R

−R
‖F (α+ is)‖ ds <∞

}
.

Let Y ⊂ X∗ be a norming subspace in the sense that for each x ∈ X one has
‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ Y, ‖x∗‖ ≤ 1}. Note that if Y ⊂ X∗ is norming, then X can
be identified in a natural way with a closed subspace of Y ∗.

Let F ∈ H1
loc(C+;X). We say that a function F̃ : R→ Y ∗ is a boundary function

for F if for each x∗ ∈ Y

lim
α→0+

〈F (α+ is), x∗〉 = 〈x∗, F̃ (s)〉 a.e.(s).

If F ∈ H1
loc(C+;X) has a boundary function F̃ : R → Y ∗, then for each x∗ ∈ Y

the function 〈F̃ (·), x∗〉 is the limit in L1
loc(R) of the functions 〈F (α+i·), x∗〉 as α→ 0+

(cf. [Du, Sections 2.3, 11.3]).

In the vector-valued case, boundary functions have been studied by Bukhvalov
[Bu] (actually, he considered holomorphic functions on the disc, but the generalization
to the right half plane by conformal mappings is standard [Ch2, Section 3]). When X
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has the analytic Radon-Nikodým property (ARNP), every function F ∈ H1
loc(C+, X)

has a boundary function F̃ : R → X such that limα↓0 ‖F (α + is) − F̃ (s)‖ = 0 a.e.
For general X , the following proposition was proved in [Bu, Theorems 2.3, 2.4]. For
completeness, we give here a short direct proof in the case of bounded holomorphic
functions, which will suffice for our application in Theorem 4.1.

Proposition 3.1. Let Y be a norming subspace of X∗. Then for each F ∈
H1

loc(C+;X) there exists a boundary function F̃ : R→ Y ∗.

Proof. We consider the case when F ∈ H∞(C+;X) (see [Bu] for the general case).
By the boundedness of K = {F (λ) : λ ∈ C+} and the Banach-Alaoglu theorem, K

is relatively weak*-compact as a subset of Y ∗. For each s ∈ R let F̃ (s) ∈ Y ∗ be a
weak*-limit point of the net {F (α+ is) : α ↓ 0}.

Fix x∗ ∈ Y . By the theory of (scalar) Hardy spaces (cf. [Du, Section 11.3]), we
know that for almost all s ∈ R the scalar limit limα→0+〈F (α + is), x∗〉 exists. By

construction of F̃ we have

lim
α→0+

〈F (α+ is), x∗〉 = 〈x∗, F̃ (s)〉 a.e.(s).

Thus F̃ is a boundary function of F . 2

The following Tauberian theorem is originally due to Ingham [In, Theorem I] with
a somewhat stronger form of convergence to the boundary function. Actually, Ingham
considered only the scalar-valued case which is all that we shall need in this section,
but we will use the vector-valued case in Section 4. Our version of the theorem is
proved in [Ch2, Prop. 1.3, Rem 1.4]. Note that in this theorem the boundary function

of f̂ is assumed to be strongly (Bochner) measurable.

Theorem 3.2. Let f : R+ → X be uniformly continuous, and suppose

that the Laplace transform f̂ of f has a boundary function in L1
loc(R, X). Then

limt→∞ ‖f(t)‖ = 0.

Our next result is a generalisation of [HN, Theorem 0.3].

Theorem 3.3. Let x ∈ H∞T and φ ∈ L1
F(R+). Then the orbit T (·)Tφx is bounded

and uniformly continuous, and

lim
t→∞

T (t)Tφx = 0 weakly.

Proof. For t ≥ 0, let

φt(s) =

{
φ(s− t), s ≥ t,

0, 0 < s < t.
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Then (Fφt)(s) = eist(Fφ)(s) and Tφtx = T (t)Tφx. By Proposition 2.4,

‖T (t)Tφx‖ ≤
1

2π
‖Fx‖H∞‖Fφt‖1 =

1

2π
‖Fx‖H∞‖Fφ‖1,

and

‖T (t+ h)Tφx− T (t)Tφx‖ ≤ 1

2π
‖Fx‖H∞ ‖F (φt+h − φt)‖1

=
1

2π
‖Fx‖H∞

∫ ∞

−∞

∣∣(eish − 1
)

(Fφ)(s)
∣∣ ds

→ 0

as h→ 0, uniformly in t, by the Dominated Convergence Theorem.

For the final statement, we first consider ψ ∈ L1
F (R+) ∩ Cc(R+). Let x∗ ∈ X∗

and let f(t) = 〈T (t)Tψx, x
∗〉. Then f is bounded and uniformly continuous, and

f̂(λ) = 〈R(λ,A)Tψx, x
∗〉 for Reλ > max(0, ω0(T)). Since Tψx ∈ H∞T , it follows that f̂

is bounded on C+, and therefore has a boundary function in L∞(R) by Proposition
3.1. By Theorem 3.2, limt→∞ f(t) = 0, so limt→∞ T (t)Tψx = 0 weakly.

Since

‖T (t)Tφx− T (t)Tψx‖ ≤
1

2π
‖Fx‖H∞‖F(φt − ψt)‖1 =

1

2π
‖Fx‖H∞‖F(φ− ψ)‖1,

it follows from Lemma 2.3 that T (t)Tφx→ 0 weakly. 2

There is an alternative proof of Theorem 3.3 which uses [HN, Theorem 0.3] and
an argument similar to the proof of [HN, Corollary 1.6]. On the other hand, we show
now that Theorem 3.3 includes [HN, Theorem 0.3] as a special case, and this enables
us to give a general formula for Tφx.

Corollary 3.4. Let x ∈ H∞T , µ > max(ω0(T), 0), and α > 1. Then

(1) lim
t→∞

T (t)R(µ,A)αx = 0 weakly,

(2) sup
t≥0
‖T (t)R(µ,A)αx‖ ≤ cα,µ‖Fx‖H∞ , where

cα,µ =
1

2π

∫ ∞

−∞

ds

(µ2 + s2)α/2
=

Γ
(
α−1

2

)

2
√
πΓ
(
α
2

)
µα−1

.

(3) For φ ∈ L1
F(R+), Tφx = (µI −A)α

(∫ ∞

0

φ(t)T (t)R(µ,A)αx dt

)
.

Proof. Parts (1) and (2) follow from Example 2.5 and Theorem 3.3 (see also [HN,
Theorem 0.3]). The equality

R(µ,A)αTφx =

∫ ∞

0

φ(t)T (t)R(µ,A)αx dt



C.J.K. Batty, R. Chill and J. van Neerven, Asymptotic behaviour of C0-semigroups 11

holds for φ ∈ Cc(R+) ∩ L1
F(R+), and hence for φ ∈ L1

F(R+) by density (Lemma 2.3)
and continuity (using Proposition 2.4 and (2)). Now (3) follows. 2

While Theorem 3.3 shows that the orbit T (·)Tφx is bounded in X for any φ ∈
L1
F(R+), we can show that ‖T (t)Tφx‖H∞

T
grows at most logarithmically if we make a

slightly stronger assumption on φ.

Proposition 3.5. Let x ∈ H∞T and φ ∈ L1
F(R+).

(1) If φ ∈ L1
a,F(R+) for some 0 < a < 1, then

‖T (t)Tφx‖H∞
T
≤ 2(1 + ln t)‖Fx‖H∞‖φ‖L1

a,F(R+), t ≥ 1/a.

(2) If R(·, A)2x has a bounded holomorphic extension Gx to C+, then

‖T (t)Tφx‖H∞
T
≤ 1

2π
‖Fφ‖1 (‖Fx‖H∞ + ‖Gx‖H∞) , t ≥ 0.

Proof. Suppose that φ ∈ L1
a,F(R+). For 0 < α ≤ a, ‖φt‖α,1 ≤ eαt‖φ‖a,1. By

Proposition 2.7 (3),

‖T (t)Tφx‖H∞
T

= ‖Tφtx‖H∞T ≤
1

2π
‖Fx‖H∞

(
3‖Fφ‖1 + (4− 2 lnα)eαt‖φ‖a,1

)
.

For t ≥ 1/a, we may put α = 1/t, so

‖T (t)Tφx‖H∞
T
≤ 1

2π
‖Fx‖H∞ (3‖Fφ‖1 + (4 + 2 ln t)e‖φ‖a,1) .

This suffices to give (1).

The statement (2) is proved by applying Proposition 2.7 (2) with φ replaced by
φt. 2

Now we will consider orbits t 7→ T (t)R(µ,A)x for x ∈ H∞T . It was shown in [Ne1]
that ‖T (t)R(µ,A)x‖ grows at most linearly, and it is an open problem whether these
orbits are always bounded. The difficulty here is the fact that the Fourier transform of
the function φµ(t) = e−µt does not belong to L1(R), so Theorem 3.3 and Proposition
3.5 are not applicable. Nevertheless we will show that the result of [Ne1] can be derived
from the results of Section 2, and indeed strengthened to show that ‖T (t)R(µ,A)x‖H∞

T

grows at most linearly.

Theorem 3.6. Let µ ∈ %(A). There exists a constant cµ > 0 such that

‖T (t)R(µ,A)x‖H∞
T
≤ cµ(1 + t)‖x‖H∞

T
, x ∈ H∞T , t ≥ 0.

Proof. Let ω > max(1, ω0(T)), 0 < α < 1 < t, and

φ(s) =





0, 0 ≤ s ≤ t− α,

1 + s−t
α , t− α < s ≤ t,

e−ω(s−t), s ≥ t.
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Then

(Fφ)(s) = e−ist
(

1

ω + is
+
i

s
+

1− eiαs
αs2

)
,

so

‖Fφ‖1 ≤ 2‖φ‖1 +

∫

|s|≥1

∣∣∣∣
1

ω + is
+
i

s
+

1− eiαs
αs2

∣∣∣∣ ds

≤ 2

ω
+ α+

∫

1≤|s|≤α−1

(∣∣∣∣
1

ω + is

∣∣∣∣+

∣∣∣∣
i

s
+

1− eiαs
αs2

∣∣∣∣
)
ds

+

∫

|s|>α−1

(∣∣∣∣
1

ω + is
+
i

s

∣∣∣∣+
|1− eiαs|
αs2

)
ds

≤ 2

ω
+ α− 2 logα+

∫ 1

−1

∣∣∣∣
i

r
+

1− eir
r2

∣∣∣∣ dr + 2αω + 2

∫ ∞

1

|1− eir|
r2

dr

≤ 2

ω
+ (1 + 2ω)α− 2 logα+ 5.

For 0 < a < 1,

‖φ‖a,1 =

∫ t

t−α

(
1 +

s− t
α

)
eas ds+

∫ ∞

t

e−ω(s−t)eas ds ≤ eat
(
α+

1

ω − a

)
.

Let Mω = sups≥0 e
−ωs‖T (s)‖ <∞. By Proposition 2.7,

‖T (t)R(ω,A)x‖H∞
T

=

∥∥∥∥
∫ ∞

0

φ(s)T (s)x ds −
∫ t

t−α

(
1 +

s− t
α

)
T (s)x ds

∥∥∥∥
H∞

T

≤ 1

2π
‖Fx‖H∞(3‖Fφ‖1 + (4− 2 lna)‖φ‖a,1) +

∫ t

t−α
Mωe

ωs‖x‖H∞
T
ds

≤ κω(a, α, t)‖x‖H∞
T
,

where

κω(a, α, t) =

1

2π

(
6

ω
+ 3α+ 6αω − 6 logα+ 15 + (4− 2 ln a)eat

(
α+

1

ω − a

))
+ αMωe

ωt.

For t ≥ 1, we may take α = e−ωt and a = 1/t, and we obtain

‖T (t)R(ω,A)x‖H∞
T
≤ κ̃ω(t)‖x‖H∞

T
,

where

κ̃ω(t) =
1

2π

(
6

ω
+ (3 + 6ω)e−ωt + 6ωt+ 15 + (4 + 2 ln t)e

(
e−ωt +

t

ωt− 1

))
+Mω.

Since sup0≤t≤1 ‖T (t)R(ω,A)‖L(H∞
T

) ≤ sup0≤t≤1 ‖T (t)R(ω,A)‖L(X ) < ∞, the result
follows in the case when µ = ω.
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For an arbitrary µ ∈ %(A), the result now follows via the resolvent identity. 2

Alboth [Al] has used the result of [Ne1] to study rapidly decaying orbits of T. In
that context, it is important to know the asymptotic behaviour of the constant cω in
Theorem 3.6 for large ω. Both the estimates in [Ne1] and those given above show that
cω cannot grow faster than linearly.

Our next result improves the bound cµ(1 + t) for ‖T (t)R(µ,A)x‖ for positive
semigroups and positive x. Recall that an ordered Banach spaceX is said to be normal
if there is a constant κ such that ‖x‖ ≤ κmax(‖y1‖, ‖y2‖) whenever y1 ≤ x ≤ y2.

Theorem 3.7. Suppose T is a positive semigroup on a normal ordered Banach
space X. For all µ ∈ %(A) there exists a constant cµ > 0 such that

‖T (t)R(µ,A)x‖ ≤ cµ(1 + ln t)‖x‖H∞
T
,

whenever t ≥ 1 and 0 ≤ x ∈ H∞T .

Proof. By the resolvent identity, without loss of generality we may assume that
µ > ω0(T). Then 0 ≤ R(µ,A)x ∈ H∞T .

Fix t ≥ 1, and let

φ(s) =
(
χ(0,1) ∗ χ(0,t)

)
(s) =





s, 0 ≤ s ≤ 1,

1, 1 ≤ s ≤ t,

t+ 1− s, t ≤ s ≤ t+ 1,

0, t+ 1 ≤ s.

Then

(Fφ) (s) = −
(

1− e−is
s

)(
1− e−ist

s

)
.

Hence

‖Fφ‖1 ≤ 2

∫ ∞

2

4

s2
ds+

∫ 2

−2

∣∣∣∣
1− e−ist

s

∣∣∣∣ ds

≤ 4 + 4

∫ 2

0

| sin(st/2)|
s

ds

≤ 4 + 4

∫ t

0

| sin s|
s

ds ≤ 8 + 4 ln t.

For 0 ≤ y ∈ H∞T ,

0 ≤
∫ t

1

T (s)y ds ≤ Tφy,
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so
∥∥∥∥
∫ t

1

T (s)y ds

∥∥∥∥ ≤ κ‖Tφy‖ ≤
κ

2π
‖Fy‖H∞ ‖Fφ‖1 ≤

κ

π
‖Fy‖H∞(4 + 2 ln t).

Hence
∥∥∥∥
∫ t

0

T (s)y ds

∥∥∥∥ ≤ c(1 + ln t)‖y‖H∞
T
,

where c = 4κ/π +
∫ 1

0
‖T (s)‖ ds. Applying this to y = x and y = µR(µ,A)x and using

Proposition 2.6 and the identity AR(µ,A)x = µR(µ,A)x − x, it follows that there
exists a constant c′µ > 0 such that

∥∥∥∥
∫ t

0

T (s)AR(µ,A)x ds

∥∥∥∥ ≤ c′µ(1 + ln t)‖x‖H∞
T
, t ≥ 1,

whenever 0 ≤ x ∈ H∞T . Hence, the identity

T (t)R(µ,A)x = R(µ,A)x +

∫ t

0

T (s)AR(µ,A)x ds

implies

‖T (t)R(µ,A)x‖ ≤ ‖R(µ,A)x‖+ c′µ(1 + ln t)‖x‖H∞
T
, t ≥ 1.

2

In the proof above, we could choose φ to be any non-negative function in L1
F(R+)

such that φ ≥ 1 on [1, t]. We would conclude that ‖T (t)R(µ,A)x‖ grows no faster than
a constant multiple of

inf
{
‖Fφ‖1 : 0 ≤ φ ∈ L1

F(R+), φ ≥ 1 on [1, t]
}
.

We do not know whether this quantity grows logarithmically in t.

4. The �−reflexive case

For a given C0-semigroup T on a Banach space X let X� be the maximal T∗-
invariant subspace of X∗ such that the restriction T� of T∗ to X� is a C0-semigroup.
Then X� is the norm-closure of D(A∗) in X∗. Replacing the norm on X by an
equivalent norm, for example

‖x‖′ = sup
t≥0

e−ωt‖T (t)x‖

for some ω > ω0(T), we may assume that lim supt→0+ ‖T (t)‖ = 1. Then X� is a
norming subspace of X∗. Using the C0-semigroup T� on X�, one may form the space
X��, and identify X in a natural way with a closed subspace of X��. Recall that T
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is said to be �−reflexive if X�� = X . We refer the reader to [Ne2, Section 1.3] for
all these concepts and properties.

In this section we will present some individual stability results for �−reflexive
semigroups. More generally, we will assume that the quotient space X��/X is sepa-
rable. For arbitrary semigroups on spaces with the ARNP, similar results have been
obtained in [HN, Theorem 0.2] and [Ch2, Theorem 3.3].

Theorem 4.1. Let T be a C0-semigroup on X and assume that X��/X is
separable. Let x ∈ H∞T . If the orbit T (·)x is bounded and uniformly continuous, then

lim
t→∞

‖T (t)x‖ = 0.

Proof. If Y is a closed T-invariant subspace of X , then Y ��/Y is canonically
isomorphic to a closed subspace of X��/X [Ne2, Lemma 6.1.7]. By passing to the
closed linear span of the T-orbit of x, without loss of generality we may assume that
X is separable. The separability of X��/X then implies that also X�� is separable.

Since Fx ∈ H1
loc(C+;X), we may apply Proposition 3.1 with Y = X�, and we

find a boundary function F̃x : R→ X�∗ such that for all x� ∈ X�

lim
α→0
〈Fx(α+ is), x�〉 = 〈x�, F̃x(s)〉 a.e.(s).

Fix µ ∈ %(A). The resolvent identity and analytic continuation give

Fx(λ) = R(µ,A)x+ (µ− λ)R(µ,A)Fx(λ), λ ∈ C+,

so

〈x�, F̃x(s)〉 = lim
α→0+

〈Fx(α+ is), x�〉

= 〈R(µ,A)x, x�〉+ lim
α→0+

(µ− (α + is))〈Fx(α+ is), R(µ,A�)x�〉

= 〈R(µ,A)x, x�〉+ (µ− is)〈x�, R(µ,A�∗)F̃x(s)〉 a.e.(s).

Thus

F̃x(s) = R(µ,A)x+ (µ− is)R(µ,A�∗)F̃x(s) ∈ D(A�∗) ⊆ X�� a.e.

Thus F̃x is separably valued and weak*-measurable, hence strongly measurable by the
weak*-version of Pettis’s Theorem [DU, Corollary 4, p.42]. Therefore T (·)x is bounded
and uniformly continuous and its Laplace transform admits a bounded, strongly mea-
surable boundary function (we may regard these functions as having values in X��, or
alternatively we may deduce from [Bu, Theorem 2.5] that the values of the boundary
function lie in X). From Theorem 3.2, we obtain

lim
t→∞

‖T (t)x‖ = 0.
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2

There is an alternative proof of Theorem 4.1 using arguments adapted from [HN].
Given ω > max(0, ω0(T)), let

H(s) = (ω + is)−1R(µ,A)F̃x(−is).

Then H ∈ L1(R, X��), so FH ∈ C0(R, X) by the Riemann-Lebesgue Lemma. A
calculation similar to one following Theorem 1.2 in [HN] shows that, for t ≥ 0,

(FH)(t) = 2πT (t)R(ω,A)R(µ,A)x.

Thus, limt→∞ ‖T (t)R(ω,A)R(µ,A)x‖ = 0. The assumption that T (·)x is bounded
and uniformly continuous can now be used as in the proof of [HN, Corollary 1.6] to
obtain the result.

The separability assumption on X��/X cannot be omitted from Theorem 4.1, as
[HN, Example 1.7] shows. There, X = C0(R), T is the semigroup of left translations,
and X�� = BUC(R) [Ne2, Example 1.3.9]. However, the theorem is true without the
assumption if X has the ARNP. Then the bounded holomorphic function Fx has a
strongly measurable boundary function with values in X [Bu], and the result follows
directly from Theorem 3.2 (see also [HN, Theorem 2.2], [Ne3, Theorem 4.4.2]).

Corollary 4.2. Let X��/X be separable and let x ∈ H∞T . Then for all φ ∈
L1
F(R+) we have

lim
t→∞

‖T (t)Tφx‖ = 0.

Proof. Consider first ψ ∈ Cc(R+) ∩ L1
F(R+). Then Tψx ∈ H∞T , and it follows

from Theorem 3.3 and Theorem 4.1 that limt→∞ ‖T (t)Tψx‖ = 0. Now the result
follows by approximation, as in the proof of Theorem 3.3. 2

Combining this with Example 2.5 we obtain:

Corollary 4.3. Let X��/X be separable and let x ∈ H∞T . Then for all α > 1
and µ > ω0(T) we have

lim
t→∞

‖T (t)R(µ,A)αx‖ = 0.

Concluding this section we would like to remark that the �-reflexive case in
Theorem 4.1 actually follows from a much more general result in Tauberian theory.
If T is a �-reflexive semigroup, then R(µ,A) is weakly compact [Pa, Theorem 3.5],
[Ne2, Theorem 2.5.2]. For x ∈ H∞T , the resolvent identity

Fx(z) = R(µ,A)x + (µ− z)R(µ,A)Fx(z)

yields that {Fx(z) : z ∈ U}∩B(0, R) is relatively weakly compact in X for all bounded
sets U ⊂ C+ and all R > 0.
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Theorem 4.4. Let f ∈ BUC(R+;X) be such that f̂ ∈ H1
loc(C+;X). If the set

{f̂(z) : z ∈ U}∩B(0, R) is relatively weakly compact in X for all bounded sets U ⊂ C+

and all R > 0, then limt→∞ ‖f(t)‖ = 0.

Proof. Restricting to the closed linear span of {f(t) : t ∈ R+} we may assume
without loss of generality that the space X is separable. Let Y be a separable and
norming subspace of X∗ and let (x∗n)n∈N ⊂ Y be a dense sequence. By Proposition

3.1 we find a boundary function f̃ : R → Y ∗ for the Laplace transform f̂ and a set
N ⊂ R of Lebesgue measure 0 such that for all n ∈ N and all s ∈ R\N

lim
α→0
〈f̂(α+ is), x∗n〉 = 〈x∗n, f̃(s)〉.

This and the assumption of weak compactness yield that f̃(s) ∈ X for all s ∈ R\N .

Since X is separable, the function f̃ is strongly measurable with values in X by Pettis’s
Theorem.

The claim follows from Theorem 3.2. 2

5. Some extensions and questions

5.1. Extensions

The following three remarks describe some extensions of the results given above.

Remark 5.1. The functional calculus of Section 2 can be extended slightly. Let

L1
∗(R) =

{
ψ ∈ L1(R) : Fψ = 0 on R+

}
.

It is easy to see that L1
∗(R) is the closure in L1(R) of

{
Fφ : φ ∈ L1

F(R+)
}

. It follows
from Corollary 2.2 that there is a unique continuous bilinear map:

(ψ, x) ∈ L1
∗(R)×H∞T 7→ ψ(iA)x ∈ X

satisfying

(Fφ)(iA)x = Tφx, φ ∈ L1
F(R+),

‖ψ(iA)‖ ≤ 1

2π
‖Fx‖H∞‖ψ‖1, ψ ∈ L1

∗(R), x ∈ H∞T .

Since T (t)ψ(iA)x = ψt(iA)x, where ψt(s) = e−istψ(s), Theorem 3.3 and Corollary 4.2
remain valid when Tφx is replaced by ψ(iA)x.

Remark 5.2. Another extension of the functional calculus is the following. Let
H∞T,k be the space of all x ∈ X such that the local resolvent R(·, A)x has a holomorphic
extension Fx to C+ satisfying

sup
λ∈C+

‖Fx(λ)‖
|(1 + λ)k| =: ‖Fx‖∞,k <∞.
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Equipped with the norm ‖x‖H∞
T,k

:= ‖x‖+ ‖Fx‖∞,k, this space is a Banach space.

Next, define the space

L1
a,F ,k(R+) := {φ ∈ L1

a,F(R+) : Fφ ∈ L1(R; (1 + |t|)k dt)}.
Using the techniques developed in Section 2, it is not difficult to introduce a functional
calculus from L1

a,F ,k(R+) into H∞T,k. With this functional calculus it is possible to
prove similar results on individual stability as in Sections 3 and 4. For example, if
x ∈ H∞T,k and φ ∈ L1

a,F ,k(R+), then the orbit T (·)Tφx is bounded and uniformly
continuous, and weakly asymptotically stable (compare with Theorem 3.3).

Results of this type have been obtained in [HN], and we will not go into details.

Remark 5.3. For 1 < p <∞, let Hp
T be the space of all x ∈ X for which R(·, A)x

has a holomorphic extension Fx : C+ → X such that

‖Fx‖Hp := sup
α>0

(∫

R

‖Fx(α+ is)‖p ds
)1/p

<∞.

It follows from a variant of Proposition 2.1 and Hölder’s inequality that

‖Tφx‖ ≤
1

2π
‖Fx‖Hp‖Fφ‖p′

whenever x ∈ Hp
T, φ ∈ C∞c (R+) and Fφ ∈ Lp′(R) where 1

p + 1
p′ = 1. As in Section 2,

it is possible to define a functional calculus (φ, x) 7→ Tφx when x ∈ Hp
T, φ ∈ Lp(R+)

and Fφ ∈ Lp′(R) (the Hausdorff-Young inequality shows that Tφx is defined for all
φ ∈ Lp(R+) when 1 < p ≤ 2). As in Remark 1, one can extend this to a functional
calculus (ψ, x) 7→ ψ(iA)x when x ∈ Hp

T, ψ ∈ Lp′(R) and Fψ = 0 on R+ (the two
calculi coincide when 2 ≤ p < ∞). As in Theorem 3.3, the corresponding orbits of
T are bounded, uniformly continuous, and converge to 0 weakly (in norm if X��/X
is separable, as in Corollary 4.2). In particular, Example 2.5 provides the following
counterpart to Corollary 3.4, (1) and (2).

Proposition 5.4. Let x ∈ Hp
T, µ > max(ω0(T), 0) and α > 1/p′. Then

(1) lim
t→∞

T (t)R(µ,A)αx = 0 weakly,

(2) sup
t≥0
‖T (t)R(µ,A)αx‖ ≤ ‖Fx‖Hp

2π

(∫ ∞

−∞

ds

(µ2 + s2)αp′/2

)1/p′

.

This result can be compared with [HN, Theorem 0.1], where it is shown that
limt→∞ ‖T (t)R(µ,A)αx‖ = 0 if x ∈ H∞T and X has Fourier type p′.

If T is a holomorphic semigroup, then H∞T ⊂ Hp
T for all p > 1, and it follows that

T (·)R(µ,A)αx is bounded whenever x ∈ H∞T and α > 0. Mark Blake [Bl] has shown
that this is also true when α = 0 for some classes of semigroups, including holomorphic
semigroups.
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5.2. Open questions

The following questions remain open:

Problem 5.5. Let x ∈ H∞T and φ ∈ L1
F(R+). Is it always true that Tφx ∈ H∞T ?

See Proposition 2.7.

Problem 5.6. Let x ∈ H∞T . Is it always true that T (·)R(µ,A)x is bounded in X
(or better in H∞T )? See Theorem 3.6 and Remark 5.3 above. If not, is this true in the
context of positive semigroups, as in Theorem 3.7?
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