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1_1
Itis shown that a Banach spagehas typep if and only for some (all)l > 1 the Besov spacB,(,}; 2 )d(Rd; E)

embeds into the spaeg L (R?), F) of y-radonifying operatord,?(R%) — E. A similar result characterizing
cotypeq is obtained. These results may be viewedzagalued extensions of the classical Sobolev embedding
theorems.
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1 Introduction

Let E be a real or complex Banach space and denote”iR?; F) the Schwartz space of smooth, rapidly
decreasing functiong : R? — E. For a functionf € .7 (R¢; E') we consider the linear mappirg : L?(R?) —
E defined by

Iy = [ J@)gle)da.
Rd
The aim of this paper is to prove the following character@abf Banach spaceg with typep in terms of the
embeddability of certai’-valued Besov spaces into spaces-atdonifying operators with values ifi and vice
. i 1_1yg
versa. The precise definitions of the spaBéSp 2) (R%; E) and~(L?(R%), E) are recalled below.
Theorem 1.1 Let F be a Banach space and let< p < 2 < ¢ < .
The second and third named authors are supported by the &ibgidie’ 639.032.201 of the Netherlands OrganizatiorSi@entific

Research (NWO) and by the Research Training Network HPRN@IR-00281. The fourth named author was supported bygfaorh the
Volkswagenstiftung (1/78593) and the Deutsche Forschgageinschaft (We 2847/1-1).
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2 Nigel Kalton, Jan van Neerven, Mark Veraar, and Lutz Weetor-valued Besov spaces apdladonifying operators

1. E has typep if and only if for some (all}l > 1 the mappind : f — I, extends to a continuous embedding

1 1
By " (RY E) < (L2 (RY), B);
2. E has cotypey if and only if for some (alld > 1 the mapping/~! : I; — f extends to a continuous
embedding o
WIARY), B) < By (R ).
A version of this result for bounded open domain&ihis obtained as well.
As is well known B, 19], see alsol7], E has type if and only if the mapping’ — I extends to a continuous
embedding ?(R?; E) — ~v(L?(R?), E), andE has cotype if and only if v(L?(R9), E) — L?(R%; E). Thus
in some sense, Theorehil may be viewed as an extension of these results for genetassalp andg.
If dim F' = 1, theny(L?(R%); E) = L?(R%) and the embeddings of Theoreini reduce to the well-known
Sobolev embeddings
glr =2 pd 2 mod (5—2)d
PP (RY) = L*(R) — Bgj RY), 1<p<2<g<oo
Vector-valued Besov spaces have attracted recent atteintithe theory of parabolic evolution equations
in Banach spaces as a tool for establishing optimal redulegsults; see for instancé,[4]. In [7], Fourier
multiplier theorems with optimal exponents are establistoe operator-valued multipliers on Besov spaces of
functions taking values in Banach spaces with Fourier gype
On the other hand, the space&l?(R?), E') have recently played an important role in the theoryr -
functional calculus for sectorial operato6s 10, 11] and the theory of wavelet decompositio®% [Furthermore,
the spaces/(L?(R%), E) have been characterized in terms of stochastic integrals nespect to (cylindrical)
Brownian motions 15, 16, 19). Therefore, our results allow to compare various squanetians and they also
give conditions for the stochastic integrability 8fvalued functions. These applications, which motivated ou
results, will be detailed in a forthcoming paper.

Throughout this papef is a Hilbert space andl is a Banach space, which may be taken both real or both
complex. Furthermoréy,,),,>1 denotes a Rademacher sequence(andl,~; a Gaussian sequence.

1.1 Type and cotype

Letp € [1,2] andg € [2, 00]. A Banach spacé is said to havéypep if there exists a constadt > 0 such that
for all finite subsetgx, ...,z x} of E we have

N PN N 1
: : 2 : :
n=1 n=1

The least possible constafitis called thetypep constaniof E and is denoted b, (E). A Banach spac is
said to haveotypey if there exists a constant > 0 such that for all finite subsets, ..., 2y} of E we have

N , 1 N N
(S ll)™ < (B X ran)"

with the obvious modification in the cage= co. The least possible constaftis called thecotypeg constant
of E and is denoted by, (E). As is well known, in both definitions the role of the Radeimercvariables may
be replaced by Gaussian variables without altering thes@éspaces under consideration. The least constants
arising from these equivalent definitions are called @wussian type constantand theGaussian cotype
constanbf E respectively, notatioff)) (£) andC} (E).

Every Banach space has typand cotypex. The LP-spaces have typain{p, 2} and cotypenax{p, 2} for
1 < p < oo. Every Hilbert space has both typeand cotype2, and a famous result of Kwapieh asserts that up to
isomorphism this property characterizes the class of IHikgaces.

For more information we refer to Maurey'’s survey articd@|[and the references given therein.
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1.2 Besov spaces

Next we recall the definition of Besov spaces using the skeddlittlewood-Paley decomposition. We follow
the approach of Peetre; seéxl] Section 2.3.2] (where the scalar-valued case is congljlare fL, 7, 20]. The
Fourier transform of a functiofi € L (R%; E) will be normalized as

N 1 —ix-
(€)= @) Rdf(ff)e Sdx, €eRY

Let ¢ € .(R9) be a fixed Schwartz function whose Fourier transf(zzrris nonnegative and has support in
{¢ e R?: 1 <[¢| < 2} and which satisfies

do2he) =1 forg e R4\ {0}

kEZ

Define the sequendey)x>o in .7 (R%) by

P =o27¢) for k=1,2,... andZ(€) =1- (&), £eR™

k>1

Forl < p,q < o ands € R theBesov spacé?;yq(Rd; E) is defined as the space of &tvalued tempered
distributionsf € .7/ (R¢; E) for which

/]

s = 2
B J(REGE) * H Sﬁk*f) 0ll1a (Lo (R B))

is finite. Endowed with this norrTB;,q(Rd; E) is a Banach space, and up to an equivalent norm this space is
independent of the choice of the initial functign The sequencépy, * f)r>o is called theLittlewood-Paley
decompositionf f associated with the function

The following continuous inclusions hold:

B, (R4 E) < By (R E), Byl (RY E) — By (RY E)

p,q1 p,q2
forall s,s1,s2 € R, p,q,q1,¢2 € [1,00] with ¢1 < g2, s2 < s1. Also note that
BY (R%: E) — LP(RG E) — B) (R E).

If 1< p,q<oo,thenB, (Rd; E) contains the Schwartz spacé(R¢; E) as a dense subspace.
In Section3 we shaII need the following lemma. Far> 0 let fy(z) := f(\z).

Lemma 1.2 Letp,q € [1,00] ands € R, s #£ 0.

1. If s > 0, there exists a constant > 0 such that for all\ =27, n > 1, andf € B;_’q(IR{d; E) we have
1fxllBs  (®e;m) < CA°T ”f”B;,q(]Rd;E)-
2. If s < 0, there exists a constant > 0 such that for all\ = 2", n < —1,andf € B (Rd E) we have
1f3lls; , @) < CXT5 || f| ;. eotimy-
Proof. We only prove (1), the proof of (2) being similar. Theafs are patterned afteR2, Proposition
3.4.1].

Let¢p andyg, k = 0,1,2,..., be as in Subsectioh.2 Define, form € Z, the functions/,, byq//;:n(g) =
d(27™&). Theny,, = ¢, form =1,2,... and(Y,)r = Ym—n form € Z and) = 2", n € Z. Fors > 0 we

Copyright line will be provided by the publisher



4 Nigel Kalton, Jan van Neerven, Mark Veraar, and Lutz Weetor-valued Besov spaces apdladonifying operators

have

1

. R 1
(Z 2759 oy, fA||qu(Rd;E)) T=ATh ( Z 259||.77H(@r)a )”qLP(Rd:E)) '

k>0 k>0

o R
<A |F 1((900)/\ )HLP(Rd;E)

n

AT (22 F T G L )

k=1

Q=

LA (Z2lSQ||y—1(z@f)l\%p<Rd;E>) '
>1
=: (I) + (II) + (III).

Since; = 1 0on(0,1] and (o)A has supportirf0,2-"] C (0, 3], by Young's inequality we have

1.7 (@A) Lrespy) = 1F ~H(@0)a0 /)| Le®es) < lvollLrraylleo * fll o ga;p)-

Hence,
_d s—d
@D <A77 llgollr®all fllBs, ®a;my < X ?llwollLrwey | fll s, (2 5)-
To estimate (II) we note thatfédr=1,...,n — 1 the functiona/)/k:l have supportini0, 1]. Therefore,

~

Hﬂfl(d)kfnf)HLP(Rd;E) < Hwk—n”Ll(Rd)H(po * f”LP(Rd;E)
= H(b”Ll(]Rd)H‘PO * f”LT’(Rd;E)-

Similarly, fork = n,
ijl((?%))\ )HLP(JRd;E) < H¢||L1(Rd) (H<P0 * f||LP(Rd;E) + [lp1 * f||LP(Rd;E))-
Summing these terms and using that 0 we obtain
s—d
(I) K Cs g7 HSDHLl(]Rd)”f”Bqu(]Rd;E)
with a constant’, ; depending only off ands. Obviously,

(ITT) < A° 77| £

B ,(REE)-
By putting these estimates together the desired inequalltyws. O

1.3 ~-Radonifying operators
For a finite rank operatak : H — F of the form

N
Rh="Y "[h,hys zn 1)
n=1

with hq, ..., hy orthonormal inH, we define

2

N
VRIZ a1y = E|| 3 v Fhn
n=1

Note that||R[|,(z,z) does not depend on the particular representatioR @ in (). The completion of the
space of finite rank operators with respect to the nprii.,x z) defines a two-sided operator idedlH, £) in
Z(H,FE). If Hisseparable, an operatBre £ (H, F) belongstoy(H, E) if and only if for some (equivalently,
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for every) orthonormal basig, ),>1 of H the Gaussian surﬁ:7121 ~nRh,, converges inL?(Q; E), in which

case we have )

IR 1,5) = ]EH Z%Rhn
n>1

We refer to b, Chapter 12] for more information.

The following elementary convergence result, cI5,[Proposition 2.4], will be useful. If th&,Ts,... €
Z(H)andT € Z(H) satisfysup,,»; ||T,.|| < oo andlim,, .., T*h = T,;h for all h € H, then for all
R € v(H, E) we have

lim |[Ro Ty, — Ro Tz = 0. @)

If H; and H- are Hilbert spaces, then every bounded operatorH,; — H> induces a bounded operator

T : v(Hy, E) — ~(Ha, E) by the formula
TR :=RoT*
and we have

T || 2 vk )y (o, )y < T oy 1) - ©))

This extension procedure is introduced Ii]Jand will be useful below.

If (S,%,u) is ac-finite measure space, we denotef)f; F) the vector space of all stronglymeasurable
functionsf : S — E for which (f, z*) belongs toL?(S) for all z* € E* and the associated Pettis operator
Iy : L*(S)— E,

Irg = / fgdu
S

belongs toy(L2(S), E). We identify functions defining the same operator. An eagyr@dimation argument
shows that the simple functions4i{S; E) form a dense subspaceofL?(S), E). We shall write

I fllvesizy = s llvz2cs),E)-

2 Embedding results forR¢

The proof of Theorem.lis based on two lemmas.
Lemma 2.1

1. LetE have type € [1,2]. If f € .7 (R%; E) satisfiessuppf C [—, 7%, thenf € v(R?; E) and
1l e zy < T (B fll e @e; )
whereT)) (E) denotes the Gaussian type&onstant offs.
2. LetE have cotypg € [2,00]. If f € .7(R%; E) satisfiessuppf C [—, 7]%, then
||f||v(]Rd;E) 2 C;(E)ileHLq(Rd;E)a
whereC7 (£) denotes the Gaussian cotypeonstant of.
Proof. LetQ := [—,7]¢ We consider the function’s,(z) = (27)~%/2e"* with n € Z¢, z € Q, which
define an orthonormal basis féa# (Q).

(1) Define the bounded operatdis: L*(R?) — E andl;: L*(R?) — E by

~

Irg = / J@a@)d, Tg= [ @)
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6 Nigel Kalton, Jan van Neerven, Mark Veraar, and Lutz Weetor-valued Besov spaces apdladonifying operators

In caseF is a real Banach space we consider its complexification irséitend definition. By the assumption
on the support off we may identifyIfA with a bounded operator frorh?(Q) to E of the same norm. Since

Ish, = f(n), for any finite subsef” C Z¢ we have

Bl i) = CI S o) <o S

It follows that € +(L*(Q), E). By the identification made above it follows that € v(L*(R), E) and

R A A A O L

nezd

From (3) it follows that

1
11l ceessy = 1l ey 2y = IRl o, < T YD IF@IP)”

nezd

Fort € R:=[0,1]% put fi(s) = f(s+t). Then supg; C Q and

~
=

1 ey = Ifellaeemy < TE)( D AP

nezd

By raising both sides to the powgrand integrating oveR we obtain

11wy < (/ant )" =13 [ 1reeds)”

(2) This is proved similarly. Note that by part (1) (with= 1) we havef € v(R%; E). O

Let (5,3, 1) be a measure space. For a bounded operatorZ.?(S) — E and a setS, € X we define
Rls, : L*(S) — E by
R|Sog = R(]-Sog)
Note that if R € v(L?(S), E), thenR|s, € v(L*(S), E) and
1 Rlsolly(z2(s),2) < 1Ry (z2(5),E)

by the operator ideal property of L2(S), E).
In the following lemma we use the well known fact thatfifhas typep (cotypeq), then the same is true for
the spacd.?(Q; £) and we have

Tp(LQ(Q;E)) =Tp(E), Cq(LQ(Q;E)) = Cy(E).
Lemma 2.2 Let (S, X, ) be a measure space and [&t;),;>1 C X be a partition ofS.

1. LetE have type € [1,2]. Then for allR € v(L?(S), E) we have

||R||7(L2(S).,E) < Tp(E)(Z ||R|Ssz(L2(s)7E))

Jjz1

=

2. Let E have cotype € [2, 00]. Then for allR € v(L?(S), E) we have

Q=

1Rl L2(9),) = (Z 1Rl 12 s), E))

=1
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Proof. (1) We may assume thatS;) > 0 for all j. Fixing R, we may also assume thatis countably
generated. As a resul,?(S) is separable and we may choose an orthonormal Basig, ,>1 for L?(S) in
such a way that for eachthe sequencgh; )1 is an orthonormal basis fdr*(S;). Let (vjx); k=1 and(r;) j>1
be a doubly-indexed Gaussian sequence and a Rademachensequn probability spacés), P) and (', ),
respectively. By a standard randomization argument,

2}
IRy L2(s),B) = (E‘ > vinRhjg ‘ )
g, k>1
2\ %
= (5 22 et )
jk>=1
2 £y
-l s )
( Z”J > vikRls, hi o)
j=1  k>1
RN
< Tp(LZ(Q?E))(Z H Z’ijR|thjk L2 )
gzl k21 (E)
1
:Tp(E)(ZHR|SJH'P;(L2(S)7E))F’
Jj=z1
(2) This is proved similarly. O

We are now prepared for the proof of Theorér. Recall that the Schwartz functiosgsandpy, k£ > 1, are
defined in Subsectioh.2

Proof of Theoreni.1 (1) First we prove the ‘only if’ part and assume ttiahas typep. Let f € .7 (R%; E)
and letfy, := ¢y * f. Puttinggs,(z) := fx(27%z) we haveg, € .7(R%; E) and

suppgi € {¢€ € R+ [¢] < 2} € [-m, 7"
Hence from Lemma&.1we obtainf;. € v(R%; E) and

||ka'y(Rd;E) -

_ kd _ kd
<2727V E) gkl o rasey = 277 72 T (B)|| frll Lo (re: )-

2ikd/2 Hgk H'y(Rd;E)

Using the Lemm&.2, applied to the decompositiori§ay ) ez and(Sar11)rez of RY \ {0}, we obtain, for all
n>m =0,

n

2n )
2jd _ 2jd >
[DIRC NS AEIO D s Iy
k=2m ’ :

j=m

—

n— 1

(2j+1)d _ (25+1)d P

+ T ETE) (D 255 oyl )
Jj=m

Estimating sums of the ford. ;"5 , 37", .1, and>_ "5 | in a similar way, it follows thaif € (R% E)
and

£l ra:r) < 2TPZY(E)TP(E)|‘f|‘B;i7%)d(Rd;E).

1_1

Since.7(R%; F) is dense inB,(,f;, 2
1_1

I from B,S.f”p 2
to the reader.

(R4 E) it follows that the mapping’ — I, extends to a bounded operator
(R%; E) intoy(R%; E) of norm||I|| < 2T,)(E)T,(E). The simple proof that is injective is left

Copyright line will be provided by the publisher



8 Nigel Kalton, Jan van Neerven, Mark Veraar, and Lutz Weetor-valued Besov spaces apdladonifying operators

Next we prove the ‘if’ part. Fon > 1, lety,, € .#(R%) be defined as

Un(€) = 27"2(27¢),
wherec := |\¢||L2(Rd Then(v,),>1 is an orthonormal system ib?(R%). For any finite sequende:,,)Y_, in
E we then have, witlf := anl UV3n @ Tn,

N
2
||f||'2y(Rd;E) = EH Z Tnn
n=1

Notice that fork > 1

_1
llon * @rllLr(ray = 23R g« Dl L (re)
and

_ okd—1

lok+1 * @kl Loy = "1 % ¢l Lo (ray.-

Therefore, fom =1,..., N,

_3 1_1
losn * fllzo@am) = €272 lesn * 0anll Lo [l = 22756 % | Lo(ga) |l
and similarly,

1 5)3nd—

_1
lo3n—1 * fHLP(]Rd;E) = 02(2 )d”%ﬁl * ¢||Lp(Rd)||17n||

and

lfl
lp3nt1 * fllomesmy = 2772501 % Ol Lo @ayl|2n .

Finally, fork > 3N + 2 we havep;, « f = 0. Summing up, it follows that there exists a constahtlepending
only onp, d and¢ such that

1910 g (Zuxnu)

By putting things together we see théthas typep, with Gaussian type constantZ;)(E) < C|I||, where

I Bz(n,p 2 (R%; E) — ~(R%; E) is the embedding.

(2) This is proved similarly. O

As a special case of Theorelrl, note that for every Banach spaEewe obtain continuous embeddings
BE{(RY ) = 4(L*(RY), E) — B4 (RY B).

As is easily checked by going through the proofs, these edibgd are contractive.

Let H*P(R%; E), with o € R and1 < p < oo, denote the usudl-valued Lebesgue-Bessel potential spaces
[3, Section 6.2], 21, Section 2.33]. In 10 the y-Sobolev spaces(H*?(R%), E) are introduced and their
basic properties are studied. From Theorkethwe obtain the followingy-analogue of the Sobolev embedding
theorem.

Corollary 2.3
1. If E hastypep € [1, 2], we have continuous embeddings

ﬁ+(1

1
HO? (R E) — Bot T2 RE ) < 4 (HP2(RY), E)

forall o, 8 € R satisfyinga > 8+ (£ — 1)d.

1_
p
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2. If E has cotype € [2, o], we have continuous embeddings

B-i—(

Y(HP2RY), E) — By VYR B) o HO(RY B)

forall «, 3 € R satisfyinge < 8+ (2 — 3)d.

1
q
Remark 2.4 Takingq = oo in (2) we obtain the embedding H —%2(R%), E) — Bfofo%(Rd; E) as a special
case. Ifg — g is strictly positive and not an integer, the latter spacelmaidentified, up to an equivalent norm,
with the Holder spac(aBUC)B—% (R4, E) [1, Equation (5.8)] and we thus obtain a continuous embedding

(HP2R); E) — (BUC) % (R% E). 4)

Proof. The second embedding in (1) and the first embedding)iareé immediate from Theoreinl com-
bined with the fact that/ — A)~#/2 acts as an isomorphism fromlgﬁj_f)d(Rd; E) ontosz( 2)d(Rd; E)
[1, Theorem 6.1] and fromy(L?(R?), E) onto~y(H ~#2(R%), ). The first embedding in (1) and the second

embedding in (2) follow from thé’-valued analogues o8] Theorem 6.2.4]. O

Note that (2) can be combined with the classical Sobolev eltlibg theorem to yield an inclusion result
which is slightly weaker thardj.

If we combine Theorem.1 with the boundedness of the Fourier transforrm@i?(R9); ) we obtain the
following result for the Fourier transform di?.

Corollary 2.5 Let E be a Banach space with type € [1,2] and cotypeg € [2,00]. Then the Fourier

1_1
transform is a bounded operator froB;f,g, 2)d(Rd; E) into B; q 2 (R4 E).

3 Embedding results for bounded domains

Let D be a nonempty bounded open domaifRih Forl < p, ¢ < oo ands € R we define
B} (D;E) ={flp: f € B, (R:E)}.

This space is a Banach space endowed with the norm

l9lls; o) = inf 1115 rem)-

See P2, Section 3.2.2] (where the scalar case is considered)Znd [
In Theorenm3.2below we shall obtain a version of Theordni for bounded domains. We need the following
lemma, where for > 0 we denoteB, := {x € E : ||z| < r}.

Lemma 3.1 Let1 < p,q < oo, s € R. There exists a constant such that for every: > 1 and for all
f € By ,(R% E) with supp(f) C B,,

1fBs re;m) < Cllf|Ba. |l B3, (B2rsE)-

Proof. Choose) € .7 (R?) such that) = 1 on B; andy = 0 outsideB,. Fix an integek > max {s, g -
s}. Notice that for thel-dilation 11 (z) := ¥(1z) we have|[t1 [[yyr.oora) < [[¢0] . (ray. Choosey €
Bs ,(R% E) such thay = f on B, and

”gHBS (REGE) S 2Hf|B2T||B (B2 E)-
Then it follows from the vector-valued generalization 2] Theorem 2.8.2] that
”f”Bqu(]Rd;E) = ”d}%f”Bqu(Rd;E) = |W%g|

< [Yllwro ey llgll By mesm) < Cllf|Bo N Bs , (BariE)

Bg ,(R%E)

whereC' = 2¢||Y |k, ra)- O
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10  Nigel Kalton, Jan van Neerven, Mark Veraar, and Lutz \Wégstor-valued Besov spaces apdadonifying operators

Theorem 3.2 Let1 < p < 2 < ¢ < oo and letD C R? be a nonempty bounded open domain.

1. E has typep if and only if we have a continuous embedding
(5-3)
By (D§E) ;»'y(LQ(D),E).

2. E has cotype if and only if we have a continuous embedding

(NIE

(3-3)d
Y(L*(D), B) < Byfy * (D; B).
In both cases, the norm of the embedding does not exceed timeafidhe corresponding embedding with
replaced byR<.

Note again the special cases correspondingte1 andg = oo, which hold for arbitrary Banach spacés
Corollary2.3admits a version for bounded domains as well.

Proof. The “only if” parts in (1) and (2) and the final remarkdw directly from the definition.

For the proofs of the “if” parts in (1) and (2), there is no lafsgenerality in assuming th&t € D. Let
D,, = 2" D and note thal p, — 1 pointwise. The idea is to ‘dilate’ the embedding forto D,, and pass to the
limit n — oo to obtain the corresponding embeddingRst. ThatE has typep or cotypey is then a consequence
of Theoreml.1

(1): The result being trivial fop = 1 we shall assume that € (1,2]. Fix a functionf € .7 (R%; ) and
note that by Lemma.1 (applied withp = 1) that f € (R%; E). Fix n > 1 arbitrary and puff,, := f|p,. Let
gn : D — FE be defined by

gn(z) = fn(2™x), e D.
Theng,, € v(D; E) and
lgnlly(pimy = 272" fully(Di)-

Also, g, = g™ |p, whereg™(z) = f(2"x) for z € R?. By Lemmal.2there exists a constadt > 0,
independent ofi, such that

d
lgnll 1-g)a < llg™ | e 1) s

P P 2)d d
Bylp (D;E) (R ?E)

; (3—%)d
Denoting by! : B,%,

(REE)
(D; E) — ~(D; E) the embedding, it follows that

ln
”an'y(Dn;E) =22 ngnH'y(D;E)
in
< 22" 1] [lgn

1-4a SO 215

Byh, 2 (DiE) Bph 2 (R%E)

Passing to the limit. — oo we obtain, by virtue ofZ),

11y < CILIIA B P (map)

An application of Theorer.1finishes the proof.
(2): It suffices to consider the cages [2, 00). Fix f € C>°(R¢; E) and letr > 1 be so large that sudy) C
B,.. With the same arguments as in (1) one can show that

Il b0y, S OV ey

wheref, = f|p, as before and’ is a constant not depending grandn. It follows from Lemma3.1that there
is a constan€’, independent of andr, such that

I cas)a S OBl 3 -pa
q,9

(R%:E) By P (BariE)
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Choosingn so large thaB3s,. C D,,, we may conclude that

/ /
0t g ) S Ol sppa < CCUany
SinceC>(R%; E) is dense iny(RY; E) the result follows from Theorerh.1 O

Itis an interesting fact that at least in dimensiba- 1, the “if part” of Theorem3.2 (1) can be improved as
follows.

Theorem 3.3 If p € [1,2) is such that we have a continuous embedding

By, P ((0,1); E) = y(L2(0,1), B),
thenE has typep.

Proof. We may assume thate (1,2).

First, fors > 0 we introduce an equivalent norm @},  (R; E') which does not involve the Fourier transform
and can be handled quite easily from the computational dinew.

Forh € R and a functionf : R — E we define the functioff' (k) f : R — E as the translate of overh, i.e.

(T(R))(E) == f(t+h).
Forf € LP(R; E) andt > 0 let
op(fi1) == El‘lg IT(R)f = fllze®;E)-
Then

1 1
N s dt\ g
55 2= vy + ([ 6 0n(r0)" )

(with the obvious modification foy = oc) defines an equivalent norm d@sy,  (R; E) (see [L8, Proposition 3.1]
or [20, Theorem 4.3.3]).
With these preliminaries out of the way we turn to the prodheftheorem. Since every Banach space has type

1 we may assume thate (1,2). Letn > 1 andxy,...,z,—1 € E be arbitrary and fixed. Fgr=0,...,2n—1,
lett; = 5. Definef : R — E as

n—1
f= Z 1(t2k7t2k+1]xk'
k=0
Then||f|| Lr(r;p) = (2n) " (S0, H:ckHP)%. Let0 < t < (2n)~! and take) < |h| < t. If h > 0, then

n—1
T(h)f -f= Z(l(tzk—h,tzk] - 1(t2k+1_h7t2k+1])xk'
k=0

If h <0, then
n—1
T(h)f -f= Z(_l(t2k;t2k+h] + 1(t2k+1;t2k+1+h])xk'
k=0

In both cases we find that

n—1 n—1
T = ey < 2001 D laell? < 26 fla”.
k=0 k=0

Copyright line will be provided by the publisher
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1

This shows thab,(f,t) < 27t7 (7} ||Ik||p)% forall0 <t < (2n)~'. It follows that

@m~ | 1 (2n)~ !
/ 5 0, (f, 2P(Z|\xk|\p)p/ t
0 0
1
Tl (2n) _%(Z lzk]|” )p

=

dt
t

If £ > (2n)~1, theng, (f,1) < 2||f]l, = 2(2n) 7 (7=2 [l |?)? . It follows that

/1 ()T (ZII ||)%/ it
p , x P —
(2n) 1 k on )—1 t
1 s > 1_1
=200) 75 (Y llanll?) " T (@n)3E - 1)
k=0 p 2
1 = :
<20t (X )
P 2 k=0

1

1_1
It follows that f € B}, *(R; E) and by restricting tq0, 1) we obtain

»(2n) -%(ankn )"

=

[Rale <A s

1_1
BP 2<<0,1>;E) BP, 2(R;E>

whereC),, depends only op. On the other hand,

Z”Yk k’

1
2

1
¢l (z2(0,1),8) = L2(QE)

From the boundedness of the embedding3?, *((0,1); E) — ~(L?(0,1), E) we conclude that

1
< Gpen) A ( )"
ka 2y < @ HU ankn

HenceFE has typep, with Gaussian type constant of at most, || 1] O

_1
2

Returning to Theorer.2, we note the following consequence:

Corollary 3.4 Let D C R be a nonempty bounded open domain with smooth boundary. &€, 2] and
a, 8 € Rsatisfya > 3 + (% — %)d > 0. If E has typep, we have a continuous embedding

C*(D; E) — ~(H**(D), E).
Proof. Fora >~ >+ (5 — 5)d > 0 we have, cf. ],
I 1_1
Co(D; E) = Bl (D; E) — Byy? Y (D; B,
The result now follows from Theoref2

For dimensioni = 1 we have the following converse:
Theorem 3.5 Let E be a Banach space, and lpt € (1,2) anda € (O,% - 3). If C*([0,1;E) —
~((0,1); E), thenE has typep.
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In particular this shows that in the spadés= [* andE = L?(0, 1), with p € [1, 2), for everya € (0, % -3
there existy-Holder continuous functions which do not belongytd.?(0, 1), E). Indeed, for such we can find
p < p' < 2suchthat € (0, — 3), but both/” and L?(0, 1) fail type p'. A similar result holds forZ =
andE = C([0,1]) anda € (0, 3). This improves the examples i 9], where only measurable functions are

considered.

Proof. Assume for a contradiction thatis not of typep. We will show that this leads to a contradiction.
By the Maurey-Pisier theorem (se®d)]), [? is finitely representable ifr. Fix an integem and letT" : [? — E
be such that for alt: € [

el < IT]l < 2f|2l-

Choosel < r < (3p+ap)~L. Letc = >is1 i7" andletto = 0,t), = ¢ Zle i~ fork > 1. Let(ex)y_, be
the standard basis ¢f and defing,, : [0,1] — I? as

oy = { (1= BRI e it te (o nl for 1 < k<,
" 0, otherwise.

We claim thaty,, is Holder continuous of exponeatand

lg(t) — g(s)llaz
o Py = Sup t p + sup — e
lgnllce o) te[0,1] lon E)lee ogs<t<1 [t —s|®

)

<144ty —th—1) “ =144c"n"".

To show this we consider several cases. First of @ll(t)||,» < 1forallt € [0,1]. If ¢, 5 € [tx_1, 1] for some
1<k<n,

19(t) = gn($)llz, = 2t =tk —ti—a| |25 =tk — th1]
" n n -

tk —tkfl tk —tkfl
2|t — 5| . 2|t — s|* o 2|t — 5|
L e A L

If s € (tk—1,tx] andt € (tg,tr11] for somel < k < n — 1, then by the above estimate and the concavity of

T — x%,
9n(t) — gn(S)lliz < 19 () — gn(te)lliz + [1gn (k) — gn(s)[liz
At — tal* 2t —s]* _ 22— s

= |tn - tn71|a |tn - tn71|a = |tn - tn71|a '

If s € (t;—1,t]andt € (tp_1,t;] forl +2 < k < nthen
Hgn(t) - gn(s)”lﬁ <2 < 2(th—1 — ) (tn — tn—l)_a < 2(t - S)Q(tn —tp-1)" "

For the other cases the estimate is obvious and we provethihe Ve havey,, € v(L?(0,1),(?) and a standard
square function estimate (cfL§, Example 7.3]) gives

- K |2t =ty — tp—1]\?
||IgnHz(L2(o,1),lﬁ) > KIZ;Z (/ (1 - —) dt)

p
2

= Mt T — th—1
ox- (b=t [ 5 N5
- KPZ( > (1 |s|) dt)
k=1 -1
P p 2 pr
>3 2¢ 2 KP 1)~ =t —1),
¢ 2K} _pr((n+ ) )
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where K, is a constant depending only gn Definef, : [0,1] — E asf, := Tg,. Thenf, is a-Holder
continuous and;, € v(L?(0,1), E) with

I fullceo,1),2) < 2[lgnllce(o,1,m) < 2(1 + 4e“n"™).
and

e e

||Ians(L2(O_,1)7E) 2 HI 71||5(L2(071)7l:¢7l) > 3_§C_§K52 —

n —FH ).
()7 )

Since the inclusion operatdr: C([0, 1]; E) — v(L?(0, 1), E) is bounded we conclude that

2 r
373 K, ——((n+ 1) FH —1)p < 2(1 +4c*n").

(2—pr)”
Since we may take arbitrary large, this implies-5 + % < ra, sor = (ap + §)~*. But this contradicts the
choice ofr, and the proof is complete. O

After the completion of this paper, an improvement of Theo8e5has been obtained id4] where itis shown
thatif po € [1,2) andC*([0, 1]; E) < 7(L*(0,1), E) for a = - — 3, thenk has typep for somep > po.
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