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It is shown that a Banach spaceE has typep if and only for some (all)d > 1 the Besov spaceB
( 1

p
−

1
2
)d

p,p (Rd; E)
embeds into the spaceγ(L2(Rd), E) of γ-radonifying operatorsL2(Rd)→ E. A similar result characterizing
cotypeq is obtained. These results may be viewed asE-valued extensions of the classical Sobolev embedding
theorems.
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1 Introduction

Let E be a real or complex Banach space and denote byS (Rd;E) the Schwartz space of smooth, rapidly
decreasing functionsf : Rd → E. For a functionf ∈ S (Rd;E) we consider the linear mappingIf : L2(Rd) →
E defined by

Ifg =

∫

Rd

f(x)g(x) dx.

The aim of this paper is to prove the following characterization of Banach spacesE with typep in terms of the
embeddability of certainE-valued Besov spaces into spaces ofγ-radonifying operators with values inE and vice

versa. The precise definitions of the spacesB
( 1

p
− 1

2 )d
p,p (Rd;E) andγ(L2(Rd), E) are recalled below.

Theorem 1.1 LetE be a Banach space and let1 6 p 6 2 6 q 6 ∞.
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1. E has typep if and only if for some (all)d > 1 the mappingI : f 7→ If extends to a continuous embedding

B
( 1

p
− 1

2 )d
p,p (Rd;E) →֒ γ(L2(Rd), E);

2. E has cotypeq if and only if for some (all)d > 1 the mappingI−1 : If 7→ f extends to a continuous
embedding

γ(L2(Rd), E) →֒ B
( 1

q
− 1

2 )d
q,q (Rd;E).

A version of this result for bounded open domains inRd is obtained as well.
As is well known [8, 19], see also [17], E has type2 if and only if the mappingf 7→ If extends to a continuous

embeddingL2(Rd;E) →֒ γ(L2(Rd), E), andE has cotype2 if and only if γ(L2(Rd), E) →֒ L2(Rd;E). Thus
in some sense, Theorem1.1may be viewed as an extension of these results for general values ofp andq.

If dimE = 1, thenγ(L2(Rd);E) = L2(Rd) and the embeddings of Theorem1.1 reduce to the well-known
Sobolev embeddings

B
( 1

p
− 1

2 )d
p,p (Rd) →֒ L2(Rd) →֒ B

( 1
q
− 1

2 )d
q,q (Rd), 1 6 p 6 2 6 q 6 ∞.

Vector-valued Besov spaces have attracted recent attention in the theory of parabolic evolution equations
in Banach spaces as a tool for establishing optimal regularity results; see for instance [1, 4]. In [7], Fourier
multiplier theorems with optimal exponents are established for operator-valued multipliers on Besov spaces of
functions taking values in Banach spaces with Fourier typep.

On the other hand, the spacesγ(L2(Rd), E) have recently played an important role in the theory ofH∞-
functional calculus for sectorial operators [6, 10, 11] and the theory of wavelet decompositions [9]. Furthermore,
the spacesγ(L2(Rd), E) have been characterized in terms of stochastic integrals with respect to (cylindrical)
Brownian motions [15, 16, 19]. Therefore, our results allow to compare various square functions and they also
give conditions for the stochastic integrability ofE-valued functions. These applications, which motivated our
results, will be detailed in a forthcoming paper.

Throughout this paper,H is a Hilbert space andE is a Banach space, which may be taken both real or both
complex. Furthermore,(rn)n>1 denotes a Rademacher sequence and(γn)n>1 a Gaussian sequence.

1.1 Type and cotype

Let p ∈ [1, 2] andq ∈ [2,∞]. A Banach spaceE is said to havetypep if there exists a constantC > 0 such that
for all finite subsets{x1, . . . , xN} of E we have

(
E

∥∥∥
N∑

n=1

rnxn

∥∥∥
2) 1

2

6 C
( N∑

n=1

‖xn‖
p
) 1

p

.

The least possible constantC is called thetypep constantof E and is denoted byTp(E). A Banach spaceE is
said to havecotypeq if there exists a constantC > 0 such that for all finite subsets{x1, . . . , xN} of E we have

( N∑

n=1

‖xn‖
q
) 1

q

6 C
(
E

∥∥∥
N∑

n=1

rnxn

∥∥∥
2) 1

2

,

with the obvious modification in the caseq = ∞. The least possible constantC is called thecotypeq constant
of E and is denoted byCp(E). As is well known, in both definitions the rôle of the Rademacher variables may
be replaced by Gaussian variables without altering the class of spaces under consideration. The least constants
arising from these equivalent definitions are called theGaussian typep constantand theGaussian cotypeq
constantof E respectively, notationT γ

p (E) andCγ
q (E).

Every Banach space has type1 and cotype∞. TheLp-spaces have typemin{p, 2} and cotypemax{p, 2} for
1 6 p <∞. Every Hilbert space has both type2 and cotype2, and a famous result of Kwapień asserts that up to
isomorphism this property characterizes the class of Hilbert spaces.

For more information we refer to Maurey’s survey article [12] and the references given therein.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 3

1.2 Besov spaces

Next we recall the definition of Besov spaces using the so-called Littlewood-Paley decomposition. We follow
the approach of Peetre; see [21, Section 2.3.2] (where the scalar-valued case is considered) and [1, 7, 20]. The
Fourier transform of a functionf ∈ L1(Rd;E) will be normalized as

f̂(ξ) =
1

(2π)d/2

∫

Rd

f(x)e−ix·ξ dx, ξ ∈ Rd.

Let φ ∈ S (Rd) be a fixed Schwartz function whose Fourier transformφ̂ is nonnegative and has support in
{ξ ∈ Rd : 1

2 6 |ξ| 6 2} and which satisfies

∑

k∈Z

φ̂(2−kξ) = 1 for ξ ∈ Rd \ {0}.

Define the sequence(ϕk)k>0 in S (Rd) by

ϕ̂k(ξ) = φ̂(2−kξ) for k = 1, 2, . . . and ϕ̂0(ξ) = 1 −
∑

k>1

ϕ̂k(ξ), ξ ∈ Rd.

For 1 6 p, q 6 ∞ ands ∈ R theBesov spaceBs
p,q(R

d;E) is defined as the space of allE-valued tempered
distributionsf ∈ S ′(Rd;E) for which

‖f‖Bs
p,q(R

d;E) :=
∥∥∥
(
2ksϕk ∗ f

)
k>0

∥∥∥
lq(Lp(Rd;E))

is finite. Endowed with this norm,Bs
p,q(R

d;E) is a Banach space, and up to an equivalent norm this space is
independent of the choice of the initial functionφ. The sequence(ϕk ∗ f)k>0 is called theLittlewood-Paley
decompositionof f associated with the functionφ.

The following continuous inclusions hold:

Bs
p,q1

(Rd;E) →֒ Bs
p,q2

(Rd;E), Bs1
p,q(R

d;E) →֒ Bs2
p,q(R

d;E)

for all s, s1, s2 ∈ R, p, q, q1, q2 ∈ [1,∞] with q1 6 q2, s2 6 s1. Also note that

B0
p,1(R

d;E) →֒ Lp(Rd;E) →֒ B0
p,∞(Rd;E).

If 1 6 p, q <∞, thenBs
p,q(R

d;E) contains the Schwartz spaceS (Rd;E) as a dense subspace.
In Section3 we shall need the following lemma. Forλ > 0 let fλ(x) := f(λx).

Lemma 1.2 Letp, q ∈ [1,∞] ands ∈ R, s 6= 0.

1. If s > 0, there exists a constantC > 0 such that for allλ = 2n, n > 1, andf ∈ Bs
p,q(R

d;E) we have

‖fλ‖Bs
p,q(Rd;E) 6 Cλs− d

p ‖f‖Bs
p,q(R

d;E).

2. If s < 0, there exists a constantC > 0 such that for allλ = 2n, n 6 −1, andf ∈ Bs
p,q(R

d;E) we have

‖fλ‖Bs
p,q(Rd;E) 6 Cλs− d

p ‖f‖Bs
p,q(R

d;E).

P r o o f. We only prove (1), the proof of (2) being similar. The proofs are patterned after [22, Proposition
3.4.1].

Let φ andϕk, k = 0, 1, 2, . . . , be as in Subsection1.2. Define, form ∈ Z, the functionsψm by ψ̂m(ξ) :=

φ̂(2−mξ). Thenψm = ϕm for m = 1, 2, . . . and(ψ̂m)λ = ψ̂m−n for m ∈ Z andλ = 2n, n ∈ Z. Fors > 0 we
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have ( ∑

k>0

2ksq‖ϕk ∗ fλ‖
q
Lp(Rd;E)

) 1
q

= λ−
d
p

( ∑

k>0

2ksq‖F−1((ϕ̂k)λf̂)‖q
Lp(Rd;E)

) 1
q

6 λ−
d
p ‖F−1((ϕ̂0)λf̂)‖Lp(Rd;E)

+ λ−
d
p

( n∑

k=1

2ksq‖F−1(ψ̂k−nf̂)‖q
Lp(Rd;E)

) 1
q

+ λs− d
p

( ∑

l>1

2lsq‖F−1(ψ̂lf̂)‖q
Lp(Rd;E)

) 1
q

=: (I) + (II) + (III).

Sinceϕ̂0 = 1 on (0, 1] and(ϕ̂0)λ has support in(0, 2−n] ⊆ (0, 1
2 ], by Young’s inequality we have

‖F−1((ϕ̂0)λf̂)‖Lp(Rd;E) = ‖F−1((ϕ̂0)λϕ̂0f̂)‖Lp(Rd;E) 6 ‖ϕ0‖L1(Rd)‖ϕ0 ∗ f‖Lp(Rd;E).

Hence,
(I) 6 λ−

d
p ‖ϕ0‖L1(Rd)‖f‖Bs

p,p(Rd;E) 6 λs− d
p ‖ϕ0‖L1(Rd)‖f‖Bs

p,q(R
d;E).

To estimate (II) we note that fork = 1, . . . , n− 1 the functionsψ̂k−n have support in(0, 1]. Therefore,

‖F−1(ψ̂k−nf̂)‖Lp(Rd;E) 6 ‖ψk−n‖L1(Rd)‖ϕ0 ∗ f‖Lp(Rd;E)

= ‖φ‖L1(Rd)‖ϕ0 ∗ f‖Lp(Rd;E).

Similarly, fork = n,

‖F−1((ψ̂n)λf̂)‖Lp(Rd;E) 6 ‖φ‖L1(Rd)

(
‖ϕ0 ∗ f‖Lp(Rd;E) + ‖ϕ1 ∗ f‖Lp(Rd;E)

)
.

Summing these terms and using thats > 0 we obtain

(II) 6 Cs,qλ
s− d

p ‖ϕ‖L1(Rd)‖f‖Bs
p,q(Rd;E)

with a constantCq,s depending only ofq ands. Obviously,

(III) 6 λs− d
p ‖f‖Bs

p,q(Rd;E).

By putting these estimates together the desired inequalityfollows.

1.3 γ-Radonifying operators

For a finite rank operatorR : H → E of the form

Rh =

N∑

n=1

[h, hn]H xn (1)

with h1, . . . , hN orthonormal inH , we define

‖R‖2
γ(H,E) := E

∥∥∥
N∑

n=1

γnRhn

∥∥∥
2

.

Note that‖R‖γ(H,E) does not depend on the particular representation ofR as in (1). The completion of the
space of finite rank operators with respect to the norm‖ · ‖γ(H,E) defines a two-sided operator idealγ(H,E) in
L (H,E). If H is separable, an operatorR ∈ L (H,E) belongs toγ(H,E) if and only if for some (equivalently,
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for every) orthonormal basis(hn)n>1 of H the Gaussian sum
∑

n>1 γnRhn converges inL2(Ω;E), in which
case we have

‖R‖2
γ(H,E) = E

∥∥∥
∑

n>1

γnRhn

∥∥∥
2

.

We refer to [5, Chapter 12] for more information.
The following elementary convergence result, cf. [15, Proposition 2.4], will be useful. If theT1, T2, . . . ∈

L (H) andT ∈ L (H) satisfy supn>1 ‖Tn‖ < ∞ and limn→∞ T ∗h = T ∗
nh for all h ∈ H , then for all

R ∈ γ(H,E) we have

lim
n→∞

‖R ◦ Tn −R ◦ T ‖γ(H,E) = 0. (2)

If H1 andH2 are Hilbert spaces, then every bounded operatorT : H1 → H2 induces a bounded operator
T̃ : γ(H1, E) → γ(H2, E) by the formula

T̃R := R ◦ T ∗

and we have

‖T̃‖L (γ(H1,E),γ(H2,E)) 6 ‖T ‖L (H1,H2). (3)

This extension procedure is introduced in [11] and will be useful below.
If (S,Σ, µ) is aσ-finite measure space, we denote byγ(S;E) the vector space of all stronglyµ-measurable

functionsf : S → E for which 〈f, x∗〉 belongs toL2(S) for all x∗ ∈ E∗ and the associated Pettis operator
If : L2(S) → E,

Ifg =

∫

S

fg dµ

belongs toγ(L2(S), E). We identify functions defining the same operator. An easy approximation argument
shows that the simple functions inγ(S;E) form a dense subspace ofγ(L2(S), E). We shall write

‖f‖γ(S;E) := ‖If‖γ(L2(S),E).

2 Embedding results forRd

The proof of Theorem1.1is based on two lemmas.

Lemma 2.1

1. LetE have typep ∈ [1, 2]. If f ∈ S (Rd;E) satisfiessuppf̂ ⊆ [−π, π]d, thenf ∈ γ(Rd;E) and

‖f‖γ(Rd;E) 6 T γ
p (E)‖f‖Lp(Rd;E),

whereT γ
p (E) denotes the Gaussian typep constant ofE.

2. LetE have cotypeq ∈ [2,∞]. If f ∈ S (Rd;E) satisfiessuppf̂ ⊆ [−π, π]d, then

‖f‖γ(Rd;E) > Cγ
q (E)−1‖f‖Lq(Rd;E),

whereCγ
q (E) denotes the Gaussian cotypeq constant ofE.

P r o o f. LetQ := [−π, π]d. We consider the functionshn(x) = (2π)−d/2ein·x with n ∈ Zd, x ∈ Q, which
define an orthonormal basis forL2(Q).

(1) Define the bounded operatorsIf : L2(Rd) → E andIbf : L2(Rd) → E by

Ifg :=

∫

Rd

f(x)g(x) dx, Ibfg :=

∫

Rd

f̂(x)g(x) dx.

Copyright line will be provided by the publisher
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In caseE is a real Banach space we consider its complexification in thesecond definition. By the assumption
on the support of̂f we may identifyIbf with a bounded operator fromL2(Q) to E of the same norm. Since

Ibfhn = f(n), for any finite subsetF ⊆ Zd we have

(
E

∥∥∥
∑

n∈F

γnIbfhn

∥∥∥
2) 1

2

=
(

E

∥∥∥
∑

n∈F

γnf(n)
∥∥∥

2) 1
2

6 T γ
p (E)

( ∑

n∈F

‖f(n)‖p
) 1

p

.

It follows thatIbf ∈ γ(L2(Q), E). By the identification made above it follows thatIbf ∈ γ(L2(R), E) and

‖Ibf‖γ(L2(Rd),E) = ‖Ibf‖γ(L2(Q),E) 6 T γ
p (E)

( ∑

n∈Zd

‖f(n)‖p
) 1

p

.

From (3) it follows that

‖f‖γ(Rd;E) = ‖If‖γ(L2(Rd),E) = ‖Ibf‖γ(L2(Rd),E) 6 T γ
p (E)

( ∑

n∈Zd

‖f(n)‖p
) 1

p

.

For t ∈ R := [0, 1]d putft(s) = f(s+ t). Then supp̂ft ⊆ Q and

‖f‖γ(Rd;E) = ‖ft‖γ(Rd;E) 6 T γ
p (E)

( ∑

n∈Zd

‖ft(n)‖p
) 1

p

.

By raising both sides to the powerp and integrating overR we obtain

‖f‖γ(Rd;E) 6 T γ
p (E)

( ∫

R

∑

n∈Zd

‖ft(n)‖p dt
) 1

p

= T γ
p (E)

( ∫

Rd

‖f(s)‖p ds
) 1

p

.

(2) This is proved similarly. Note that by part (1) (withp = 1) we havef ∈ γ(Rd;E).

Let (S,Σ, µ) be a measure space. For a bounded operatorR : L2(S) → E and a setS0 ∈ Σ we define
R|S0 : L2(S) → E by

R|S0g := R(1S0g).

Note that ifR ∈ γ(L2(S), E), thenR|S0 ∈ γ(L2(S), E) and

‖R|S0‖γ(L2(S),E) 6 ‖R‖γ(L2(S),E)

by the operator ideal property ofγ(L2(S), E).
In the following lemma we use the well known fact that ifE has typep (cotypeq), then the same is true for

the spaceL2(Ω;E) and we have

Tp(L
2(Ω;E)) = Tp(E), Cq(L

2(Ω;E)) = Cq(E).

Lemma 2.2 Let (S,Σ, µ) be a measure space and let(Sj)j>1 ⊆ Σ be a partition ofS.

1. LetE have typep ∈ [1, 2]. Then for allR ∈ γ(L2(S), E) we have

‖R‖γ(L2(S),E) 6 Tp(E)
( ∑

j>1

‖R|Sj
‖p

γ(L2(S),E)

) 1
p

.

2. LetE have cotypeq ∈ [2,∞]. Then for allR ∈ γ(L2(S), E) we have

‖R‖γ(L2(S),E) > Cq(E)−1
( ∑

j>1

‖R|Sj
‖q

γ(L2(S),E)

) 1
q

.
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P r o o f. (1) We may assume thatµ(Sj) > 0 for all j. FixingR, we may also assume thatΣ is countably
generated. As a result,L2(S) is separable and we may choose an orthonormal basis(hjk)j,k>1 for L2(S) in
such a way that for eachj the sequence(hjk)k>1 is an orthonormal basis forL2(Sj). Let (γjk)j,k>1 and(r′j)j>1

be a doubly-indexed Gaussian sequence and a Rademacher sequence on probability spaces(Ω,P) and(Ω′,P′),
respectively. By a standard randomization argument,

‖R‖γ(L2(S),E) =
(

E

∥∥∥
∑

j,k>1

γjkRhjk

∥∥∥
2) 1

2

=
(

E

∥∥∥
∑

j,k>1

γjkR|Sj
hjk

∥∥∥
2) 1

2

=
(

E′
∥∥∥

∑

j>1

r′j

∑

k>1

γjkR|Sj
hjk

∥∥∥
2

L2(Ω;E)

) 1
2

6 Tp(L
2(Ω;E))

( ∑

j>1

∥∥∥
∑

k>1

γjkR|Sj
hjk

∥∥∥
p

L2(Ω;E)

) 1
p

= Tp(E)
( ∑

j>1

‖R|Sj
‖p

γ(L2(S),E)

) 1
p

.

(2) This is proved similarly.

We are now prepared for the proof of Theorem1.1. Recall that the Schwartz functionsφ andϕk, k > 1, are
defined in Subsection1.2.

Proof of Theorem1.1. (1) First we prove the ‘only if’ part and assume thatE has typep. Letf ∈ S (Rd;E)
and letfk := ϕk ∗ f . Puttinggk(x) := fk(2−kx) we havegk ∈ S (Rd;E) and

suppĝk ⊆ {ξ ∈ Rd : |ξ| 6 2} ⊆ [−π, π]d.

Hence from Lemma2.1we obtainfk ∈ γ(Rd;E) and

‖fk‖γ(Rd;E) = 2−kd/2‖gk‖γ(Rd;E)

6 2−kd/2T γ
p (E)‖gk‖Lp(Rd;E) = 2

kd
p
−kd

2 T γ
p (E)‖fk‖Lp(Rd;E).

Using the Lemma2.2, applied to the decompositions(S2k)k∈Z and(S2k+1)k∈Z of Rd \ {0}, we obtain, for all
n > m > 0,

∥∥∥
2n∑

k=2m

fk

∥∥∥
γ(Rd;E)

6 T γ
p (E)Tp(E)

( n∑

j=m

2( 2jd

p
− 2jd

2
)p‖f2j‖

p
Lp(Rd;E)

) 1
p

+ T γ
p (E)Tp(E)

( n−1∑

j=m

2( (2j+1)d
p

− (2j+1)d
2 )p‖f2j+1‖

p
Lp(Rd;E)

) 1
p

.

Estimating sums of the form
∑2n+1

k=2m,
∑2n

k=2m+1, and
∑2n+1

k=2m+1 in a similar way, it follows thatf ∈ γ(Rd;E)
and

‖f‖γ(Rd;E) 6 2T γ
p (E)Tp(E)‖f‖

B
( 1

p
−

1
2
)d

p,p (Rd;E)
.

SinceS (Rd;E) is dense inB
( 1

p
− 1

2 )d
p,p (Rd;E) it follows that the mappingf 7→ If extends to a bounded operator

I fromB
( 1

p
− 1

2 )d
p,p (Rd;E) into γ(Rd;E) of norm‖I‖ 6 2T γ

p (E)Tp(E). The simple proof thatI is injective is left
to the reader.
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Next we prove the ‘if’ part. Forn > 1, letψn ∈ S (Rd) be defined as

ψ̂n(ξ) = c2−nd/2φ̂(2−nξ),

wherec := ‖φ‖−1
L2(Rd)

. Then(ψ3n)n>1 is an orthonormal system inL2(Rd). For any finite sequence(xn)N
n=1 in

E we then have, withf :=
∑N

n=1 ψ3n ⊗ xn,

‖f‖2
γ(Rd;E) = E

∥∥∥
N∑

n=1

γnxn

∥∥∥
2

.

Notice that fork > 1,

‖ϕk ∗ ϕk‖Lp(Rd) = 2kd− 1
p

kd‖φ ∗ φ‖Lp(Rd)

and

‖ϕk+1 ∗ ϕk‖Lp(Rd) = 2kd− 1
p

kd‖ϕ1 ∗ φ‖Lp(Rd).

Therefore, forn = 1, . . . , N ,

‖ϕ3n ∗ f‖Lp(Rd;E) = c2−
3
2 nd‖ϕ3n ∗ ϕ3n‖Lp(Rd)‖xn‖ = c2( 1

2−
1
p
)3nd‖φ ∗ φ‖Lp(Rd)‖xn‖

and similarly,

‖ϕ3n−1 ∗ f‖Lp(Rd;E) = c2( 1
2−

1
p
)3nd−(1− 1

p
)d‖ϕ1 ∗ φ‖Lp(Rd)‖xn‖

and

‖ϕ3n+1 ∗ f‖Lp(Rd;E) = c2( 1
2−

1
p
)3nd‖ϕ1 ∗ φ‖Lp(Rd)‖xn‖.

Finally, for k > 3N + 2 we haveϕk ∗ f = 0. Summing up, it follows that there exists a constantC, depending
only onp, d andφ such that

‖f‖
B

( 1
p
−

1
2
)d

p,p (Rd;E)
6 C

( N∑

n=1

‖xn‖
p
) 1

p

.

By putting things together we see thatE has typep, with Gaussian typep constantT γ
p (E) 6 C‖I‖, where

I : B
( 1

p
− 1

2 )d
p,p (Rd;E) →֒ γ(Rd;E) is the embedding.

(2) This is proved similarly.

As a special case of Theorem1.1, note that for every Banach spaceE we obtain continuous embeddings

B
1
2 d
1,1(R

d;E) →֒ γ(L2(Rd), E) →֒ B
− 1

2 d
∞,∞(Rd;E).

As is easily checked by going through the proofs, these embeddings are contractive.
LetHα,p(Rd;E), with α ∈ R and1 6 p < ∞, denote the usualE-valued Lebesgue-Bessel potential spaces

[3, Section 6.2], [21, Section 2.33]. In [10] the γ-Sobolev spacesγ(Hα,2(Rd), E) are introduced and their
basic properties are studied. From Theorem1.1 we obtain the followingγ-analogue of the Sobolev embedding
theorem.

Corollary 2.3

1. If E has typep ∈ [1, 2], we have continuous embeddings

Hα,p(Rd;E) →֒ B
β+( 1

p
− 1

2 )d
p,p (Rd;E) →֒ γ(H−β,2(Rd), E)

for all α, β ∈ R satisfyingα > β + ( 1
p − 1

2 )d.
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2. If E has cotypeq ∈ [2,∞], we have continuous embeddings

γ(H−β,2(Rd), E) →֒ B
β+( 1

q
− 1

2 )d
q,q (Rd;E) →֒ Hα,q(Rd;E)

for all α, β ∈ R satisfyingα < β + (1
q − 1

2 )d.

Remark 2.4 Takingq = ∞ in (2) we obtain the embeddingγ(H−β,2(Rd), E) →֒ B
β− d

2
∞,∞(Rd;E) as a special

case. Ifβ − d
2 is strictly positive and not an integer, the latter space canbe identified, up to an equivalent norm,

with the Hölder space(BUC)β− d
2 (Rd;E) [1, Equation (5.8)] and we thus obtain a continuous embedding

γ(H−β,2(Rd);E) →֒ (BUC)β− d
2 (Rd;E). (4)

P r o o f. The second embedding in (1) and the first embedding in (2) are immediate from Theorem1.1com-

bined with the fact that(I − ∆)−β/2 acts as an isomorphism fromB
( 1

p
− 1

2 )d
p,p (Rd;E) ontoB

β+( 1
p
− 1

2 )d
p,p (Rd;E)

[1, Theorem 6.1] and fromγ(L2(Rd), E) onto γ(H−β,2(Rd), E). The first embedding in (1) and the second
embedding in (2) follow from theE-valued analogues of [3, Theorem 6.2.4].

Note that (2) can be combined with the classical Sobolev embedding theorem to yield an inclusion result
which is slightly weaker than (4).

If we combine Theorem1.1 with the boundedness of the Fourier transform onγ(L2(Rd);E) we obtain the
following result for the Fourier transform onRd.

Corollary 2.5 Let E be a Banach space with typep ∈ [1, 2] and cotypeq ∈ [2,∞]. Then the Fourier

transform is a bounded operator fromB
( 1

p
− 1

2 )d
p,p (Rd;E) intoB

( 1
q
− 1

2 )d
q,q (Rd;E).

3 Embedding results for bounded domains

LetD be a nonempty bounded open domain inRd. For1 6 p, q 6 ∞ ands ∈ R we define

Bs
p,q(D;E) = {f |D : f ∈ Bs

p,q(R
d;E)}.

This space is a Banach space endowed with the norm

‖g‖Bs
p,q(D;E) = inf

f |D=g
‖f‖Bs

p,q(R
d;E).

See [22, Section 3.2.2] (where the scalar case is considered) and [2].
In Theorem3.2below we shall obtain a version of Theorem1.1for bounded domains. We need the following

lemma, where forr > 0 we denoteBr := {x ∈ E : ‖x‖ < r}.

Lemma 3.1 Let 1 6 p, q 6 ∞, s ∈ R. There exists a constantC such that for everyr > 1 and for all
f ∈ Bs

p,q(R
d;E) with supp(f) ⊆ Br,

‖f‖Bs
p,q(R

d;E) 6 C‖f |B2r
‖Bs

p,q(B2r;E).

P r o o f. Chooseψ ∈ S (Rd) such thatψ ≡ 1 onB1 andψ ≡ 0 outsideB2. Fix an integerk > max
{
s, d

p −

s
}

. Notice that for the1
r -dilation ψ 1

r
(x) := ψ(1

rx) we have‖ψ 1
r
‖W k,∞(Rd) 6 ‖ψ‖W k,∞(Rd). Chooseg ∈

Bs
p,q(R

d;E) such thatg ≡ f onB2r and

‖g‖Bs
p,q(R

d;E) 6 2‖f |B2r
‖Bs

p,q(B2r ;E).

Then it follows from the vector-valued generalization of [22, Theorem 2.8.2] that

‖f‖Bs
p,q(R

d;E) = ‖ψ 1
r
f‖Bs

p,q(Rd;E) = ‖ψ 1
r
g‖Bs

p,q(Rd;E)

6 c‖ψ‖W k,∞(Rd)‖g‖Bs
p,q(R

d;E) 6 C‖f |B2r
‖Bs

p,q(B2r ;E),

whereC = 2c‖ψ‖W k,∞(Rd).
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Theorem 3.2 Let1 6 p 6 2 6 q 6 ∞ and letD ⊆ Rd be a nonempty bounded open domain.

1. E has typep if and only if we have a continuous embedding

B
( 1

p
− 1

2 )d
p,p (D;E) →֒ γ(L2(D), E).

2. E has cotypeq if and only if we have a continuous embedding

γ(L2(D), E) →֒ B
( 1

q
− 1

2 )d
q,q (D;E).

In both cases, the norm of the embedding does not exceed the norm of the corresponding embedding withD
replaced byRd.

Note again the special cases corresponding top = 1 andq = ∞, which hold for arbitrary Banach spacesE.
Corollary2.3admits a version for bounded domains as well.

P r o o f. The “only if” parts in (1) and (2) and the final remark follow directly from the definition.
For the proofs of the “if” parts in (1) and (2), there is no lossof generality in assuming that0 ∈ D. Let

Dn = 2nD and note that1Dn
→ 1 pointwise. The idea is to ‘dilate’ the embedding forD toDn and pass to the

limit n→ ∞ to obtain the corresponding embedding forRd. ThatE has typep or cotypeq is then a consequence
of Theorem1.1.

(1): The result being trivial forp = 1 we shall assume thatp ∈ (1, 2]. Fix a functionf ∈ S (Rd;E) and
note that by Lemma2.1 (applied withp = 1) thatf ∈ γ(Rd;E). Fix n > 1 arbitrary and putfn := f |Dn

. Let
gn : D → E be defined by

gn(x) := fn(2nx), x ∈ D.

Thengn ∈ γ(D;E) and
‖gn‖γ(D;E) = 2−

1
2nd‖fn‖γ(Dn;E).

Also, gn = g(n)|D, whereg(n)(x) = f(2nx) for x ∈ Rd. By Lemma1.2 there exists a constantC > 0,
independent ofn, such that

‖gn‖
B

( 1
p
−

1
2
)d

p,p (D;E)
6 ‖g(n)‖

B
( 1

p
−

1
2
)d

p,p (Rd;E)
6 C2−

1
2nd‖f‖

B
( 1

p
−

1
2
)d

p,p (Rd;E)
.

Denoting byI : B
( 1

p
− 1

2 )d
p,p (D;E) →֒ γ(D;E) the embedding, it follows that

‖fn‖γ(Dn;E) = 2
1
2nd‖gn‖γ(D;E)

6 2
1
2nd‖I‖ ‖gn‖

B
( 1

p
−

1
2
)d

p,p (D;E)
6 C‖I‖ ‖f‖

B
( 1

p
−

1
2
)d

p,p (Rd;E)
.

Passing to the limitn→ ∞ we obtain, by virtue of (2),

‖f‖γ(Rd;E) 6 C‖I‖ ‖f‖
B

( 1
p
−

1
2
)d

p,p (Rd;E)
.

An application of Theorem1.1finishes the proof.
(2): It suffices to consider the caseq ∈ [2,∞). Fix f ∈ C∞

c (Rd;E) and letr > 1 be so large that supp(f) ⊆
Br. With the same arguments as in (1) one can show that

‖fn‖
B

( 1
q
−

1
2
)d

q,q (Dn;E)
6 C‖f‖γ(Rd;E),

wherefn = f |Dn
as before andC is a constant not depending onf andn. It follows from Lemma3.1that there

is a constantC′, independent off andr, such that

‖f‖
B

( 1
q
−

1
2
)d

q,q (Rd;E)
6 C′‖f |B2r

‖
B

( 1
q
−

1
2
)d

q,q (B2r;E)
.
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Choosingn so large thatB2r ⊆ Dn, we may conclude that

‖f‖
B

( 1
q
−

1
2
)d

q,q (Rd;E)
6 C′‖fn‖

B
( 1

q
−

1
2
)d

q,q (Dn;E)
6 C′C‖f‖γ(Rd;E).

SinceC∞
c (Rd;E) is dense inγ(Rd;E) the result follows from Theorem1.1.

It is an interesting fact that at least in dimensiond = 1, the “if part” of Theorem3.2 (1) can be improved as
follows.

Theorem 3.3 If p ∈ [1, 2) is such that we have a continuous embedding

B
1
p
− 1

2

p,1 ((0, 1);E) →֒ γ(L2(0, 1), E),

thenE has typep.

P r o o f. We may assume thatp ∈ (1, 2).
First, fors > 0 we introduce an equivalent norm onBs

p,q(R;E) which does not involve the Fourier transform
and can be handled quite easily from the computational pointof view.

Forh ∈ R and a functionf : R → E we define the functionT (h)f : R → E as the translate off overh, i.e.

(T (h)f)(t) := f(t+ h).

Forf ∈ Lp(R;E) andt > 0 let

̺p(f, t) := sup
|h|6t

‖T (h)f − f‖Lp(R;E).

Then

‖f‖∗Bs
p,q(R;E) := ‖f‖Lp(R;E) +

( ∫ 1

0

(
t−s̺p(f, t)

)q dt

t

) 1
q

(with the obvious modification forq = ∞) defines an equivalent norm onBs
p,q(R;E) (see [18, Proposition 3.1]

or [20, Theorem 4.3.3]).
With these preliminaries out of the way we turn to the proof ofthe theorem. Since every Banach space has type

1 we may assume thatp ∈ (1, 2). Letn > 1 andx0, . . . , xn−1 ∈ E be arbitrary and fixed. Forj = 0, . . . , 2n−1,
let tj = j

2n . Definef : R → E as

f =

n−1∑

k=0

1(t2k,t2k+1]xk.

Then‖f‖Lp(R;E) = (2n)−
1
p

( ∑n−1
k=0 ‖xk‖

p
) 1

p . Let 0 < t < (2n)−1 and take0 < |h| 6 t. If h > 0, then

T (h)f − f =
n−1∑

k=0

(1(t2k−h,t2k] − 1(t2k+1−h,t2k+1])xk.

If h < 0, then

T (h)f − f =

n−1∑

k=0

(−1(t2k,t2k+h] + 1(t2k+1,t2k+1+h])xk.

In both cases we find that

‖T (h)f − f‖p
Lp(R;E) 6 2|h|

n−1∑

k=0

‖xk‖
p

6 2t

n−1∑

k=0

‖xk‖
p.
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This shows that̺ p(f, t) 6 2
1
p t

1
p

( ∑n−1
k=0 ‖xk‖

p
) 1

p for all 0 < t < (2n)−1. It follows that

∫ (2n)−1

0

t−
1
p
+ 1

2 ̺p(f, t)
dt

t
6 2

1
p

( n−1∑

k=0

‖xk‖
p
) 1

p

∫ (2n)−1

0

t
1
2
dt

t

= 2
1
p
+1(2n)−

1
2

( n−1∑

k=0

‖xk‖
p
) 1

p

.

If t > (2n)−1, then̺p(f, t) 6 2‖f‖p = 2(2n)−
1
p

( ∑n−1
k=0 ‖xk‖

p
) 1

p . It follows that

∫ 1

(2n)−1

t−
1
p
+ 1

2 ̺p(f, t)
dt

t
6 2(2n)−

1
p

( n−1∑

k=0

‖xk‖
p
) 1

p

∫ 1

(2n)−1

t−
1
p
+ 1

2
dt

t

= 2(2n)−
1
p

( n−1∑

k=0

‖xk‖
p
) 1

p 1
1
p − 1

2

((2n)
1
p
− 1

2 − 1)

6 2(2n)−
1
2

1
1
p − 1

2

( n−1∑

k=0

‖xk‖
p
) 1

p

.

It follows thatf ∈ B
1
p
− 1

2

p,1 (R;E) and by restricting to(0, 1) we obtain

‖f‖
B

1
p
−

1
2

p,1 ((0,1);E)
6 ‖f‖

B
1
p
−

1
2

p,1 (R;E)
6 Cp(2n)−

1
2

( n−1∑

k=0

‖xk‖
p
) 1

p

,

whereCp depends only onp. On the other hand,

‖If‖γ(L2(0,1),E) = (2n)−
1
2

∥∥∥
n−1∑

k=0

γkxk

∥∥∥
L2(Ω;E)

.

From the boundedness of the embeddingI : B
1
p
− 1

2

p,1 ((0, 1);E) →֒ γ(L2(0, 1), E) we conclude that

(2n)−
1
2

∥∥∥
n−1∑

k=0

γkxk

∥∥∥
L2(Ω;E)

6 Cp(2n)−
1
2 ‖I‖

( n−1∑

k=0

‖xk‖
p
) 1

p

.

HenceE has typep, with Gaussian typep constant of at mostCp‖I‖.

Returning to Theorem3.2, we note the following consequence:

Corollary 3.4 LetD ⊆ Rd be a nonempty bounded open domain with smooth boundary. Letp ∈ [1, 2] and
α, β ∈ R satisfyα > β + ( 1

p − 1
2 )d > 0. If E has typep, we have a continuous embedding

Cα(D;E) →֒ γ(Hβ,2(D), E).

P r o o f. Forα > γ > β + ( 1
p − 1

2 )d > 0 we have, cf. [2],

Cα(D;E) →֒ Bγ
∞,∞(D;E) →֒ B

β+( 1
p
− 1

2 )d
p,p (D;E).

The result now follows from Theorem3.2.

For dimensiond = 1 we have the following converse:

Theorem 3.5 Let E be a Banach space, and letp ∈ (1, 2) and α ∈ (0, 1
p − 1

2 ). If Cα([0, 1];E) →֒

γ((0, 1);E), thenE has typep.
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In particular this shows that in the spacesE = lp andE = Lp(0, 1), with p ∈ [1, 2), for everyα ∈ (0, 1
p − 1

2 )

there existα-Hölder continuous functions which do not belong toγ(L2(0, 1), E). Indeed, for suchα we can find
p < p′ < 2 such thatα ∈ (0, 1

p′
− 1

2 ), but bothlp andLp(0, 1) fail type p′. A similar result holds forE = c0

andE = C([0, 1]) andα ∈ (0, 1
2 ). This improves the examples in [19], where only measurable functions are

considered.

P r o o f. Assume for a contradiction thatE is not of typep. We will show that this leads to a contradiction.
By the Maurey-Pisier theorem (see [13]), lp is finitely representable inE. Fix an integern and letT : lpn → E

be such that for allx ∈ lpn

‖x‖lpn 6 ‖Tx‖ 6 2‖x‖lpn .

Choose1 < r < (1
2p+ αp)−1. Let c =

∑
i>1 i

−r and lett0 = 0, tk = c−1
∑k

i=1 i
−r for k > 1. Let (ek)n

k=1 be
the standard basis oflpn and definegn : [0, 1] → lpn as

gn(t) =

{ (
1 − |2t−tk−tk−1|

tk−tk−1

)
ek, if t ∈ (tk−1, tk] for 1 6 k 6 n,

0, otherwise.

We claim thatgn is Hölder continuous of exponentα and

‖gn‖Cα([0,1];lpn) = sup
t∈[0,1]

‖gn(t)‖lpn + sup
06s<t61

‖g(t) − g(s)‖lpn

|t− s|α

6 1 + 4(tn − tn−1)
−α = 1 + 4cαnrα.

To show this we consider several cases. First of all‖gn(t)‖lpn 6 1 for all t ∈ [0, 1]. If t, s ∈ [tk−1, tk] for some
1 6 k 6 n,

‖gn(t) − gn(s)‖lpn =
∣∣∣
|2t− tk − tk−1|

tk − tk−1
−

|2s− tk − tk−1|

tk − tk−1

∣∣∣

6
2|t− s|

tk − tk−1
6

2|t− s|α

|tk − tk−1|α
6

2|t− s|α

|tn − tn−1|α
.

If s ∈ (tk−1, tk] andt ∈ (tk, tk+1] for some1 6 k 6 n − 1, then by the above estimate and the concavity of
x 7→ xα,

‖gn(t) − gn(s)‖lpn 6 ‖gn(t) − gn(tk)‖lpn + ‖gn(tk) − gn(s)‖lpn

6
2|t− tk|

α

|tn − tn−1|α
+

2|tk − s|α

|tn − tn−1|α
6

22−α|t− s|α

|tn − tn−1|α
.

If s ∈ (tl−1, tl] andt ∈ (tk−1, tk] for l + 2 6 k 6 n then

‖gn(t) − gn(s)‖lpn 6 2 6 2(tk−1 − tl)
α(tn − tn−1)

−α
6 2(t− s)α(tn − tn−1)

−α.

For the other cases the estimate is obvious and we proved the claim. We havegn ∈ γ(L2(0, 1), lpn) and a standard
square function estimate (cf. [16, Example 7.3]) gives

‖Ign
‖p

γ(L2(0,1),lpn)
> Kp

p

n∑

k=1

( ∫ tk

tk−1

(
1 −

|2t− tk − tk−1|

tk − tk−1

)2

dt
) p

2

= Kp
p

n∑

k=1

( tk − tk−1

2

∫ 1

−1

(1 − |s|)2 dt
) p

2

> 3−
p

2 c−
p

2Kp
p

2

2 − pr
((n+ 1)−

pr

2 +1 − 1),
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whereKp is a constant depending only onp. Definefn : [0, 1] → E asfn := Tgn. Thenfn is α-Hölder
continuous andIfn

∈ γ(L2(0, 1), E) with

‖fn‖Cα([0,1],E) 6 2‖gn‖Cα([0,1],lpn) 6 2(1 + 4cαnrα).

and

‖Ifn
‖p

γ(L2(0,1),E) > ‖Ign
‖p

γ(L2(0,1),lpn)
> 3−

p

2 c−
p

2Kp
p

2

2 − pr
((n+ 1)−

pr

2 +1 − 1).

Since the inclusion operatorI : Cα([0, 1];E) → γ(L2(0, 1), E) is bounded we conclude that

3−
1
2 c−

1
2Kp

2
1
p

(2 − pr)
1
p

((n+ 1)−
pr

2 +1 − 1)
1
p 6 2(1 + 4cαnrα).

Since we may taken arbitrary large, this implies− r
2 + 1

p 6 rα, sor > (αp + p
2 )−1. But this contradicts the

choice ofr, and the proof is complete.

After the completion of this paper, an improvement of Theorem3.5has been obtained in [14] where it is shown
that if p0 ∈ [1, 2) andCα([0, 1];E) →֒ γ(L2(0, 1), E) for α = 1

p0
− 1

2 , thenE has typep for somep > p0.
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[18] A. PELCZYŃSKI AND M. WOJCIECHOWSKI, Molecular decompositions and embedding theorems for vector-valued
Sobolev spaces with gradient norm, Studia Math.107(1993), no. 1, 61–100.
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