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0. Introduction

A C0-semigroup {T (t)}t>0 (briefly, T (t)) of bounded linear operators on a Banach lattice
E will be called a multiplication semigroup if each operator T (t) is a band preserving opera-
tor. Multiplication semigroups arise naturally as the Fourier transforms of certain semigroups
generated by differential operators. Also, by the spectral theorem, semigroups generated by
selfadjoint operators are similar to multiplication semigroups. In this paper we are concerned
with the problem to characterise linear operators that generate multiplication semigroups.
The starting point are the following results:

(i) If A is the generator of a C0-semigroup T (t) on a σ-Dedekind complete Banach lattice
E, then T (t) is a multiplication semigroup if and only if D(A) is an ideal and Ax ∈ Bx for all
x ∈ D(A) [N2, Thm. C.II.5.13]. Since a bounded band preserving operator preserves ideals,
this is in turn equivalent to: D(A) is an ideal and Ax ∈ Ex for all x ∈ D(A). Here Bx and Ex
denote the band resp. ideal generated by x in E.

(ii) Let E be a Banach functiuon space. The operator A, defined as multiplication with
a measurable function g, generates a multiplication semigroup if and only if D(A) is dense
and maximal and g is bounded from above [NP]. The hypotheses imply that D(A) is an ideal;
moreover every Banach function space is σ-Dedekind complete.

In Section 1 we will prove the following generalization of these results. Call an operator
A positive if Ax > 0 for all 0 6 x ∈ D(A). An operator A with domain D(A) is said to be
band preserving if Ax ∈ Bx for all x ∈ D(A).

Theorem 0.1. Suppose A is a positive operator on a Banach lattice E. If D(A) is a dense
ideal and A preserves bands, then A is closable and −A generates a multiplication semigroup.
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Conversely, if A generates a multiplication semigroup, then D(A) is a dense ideal, A preserves
closed ideals, and there is a λ ∈ R such that λ−A is positive.

In particular no σ-Dedekind completeness assumption is made. Examples of non-σ-
Dedekind complete spaces are C[0, 1] and C0(R ). The generators of multiplication semigroups
turn out to be precisely the maximal elements of a certain class of operators to be defined
below (Theorem 1.5). This is analogous to the correspondence in Hilbert space between being
a generator of a contraction semigroup and being maximally dissipative.

If one is only interested in a unique extension of A that generates a multiplication semi-
group, then the first part of Theorem 0.1 may be improved as follows.

Theorem 0.2. Suppose A is a positive band preserving operator with D(A) a Riesz subspace
which generates a dense ideal. Then −A admits a unique extension to a generator of a
multiplication semigroup.

This theorem is proved in Section 2. An almost immediate consequence is the following
extension result: suppose F ⊂ E is a closed sublattice generating a dense ideal. If T ∈ L(F )
is a band preserving operator on F , then there is a unique extension to a band preserving
operator on E.

Combination of Theorems 0.1 and 0.2 leads to the following alternative characterization
of generators of multiplication semigroups.

Theorem 0.3. Let A be a linear operator on E whose domain generates a dense ideal.
Then A generates a multiplication semigroup if and only if there is a real λ ∈ %(A) such that
R(λ,A) = (λ−A)−1 is positive and band preserving.

In Section 3 we show that essentially there exist only two classes of Banach lattices which
can be �-reflexive with respect to a multiplication semigroup, viz. the reflexive and the atomic
ones.

All vector spaces will be real. Most results have an analogue in the complex case however,
cf. the remark after 2.13. We will follow the terminology of the books [AB], [M], [P] and [N2].

1. Proof of Theorem 0.1

Let E be a Riesz space. We will say that F is a Riesz subspace of E if it is a linear
subspace on E with the property that |x| ∈ F whenever x ∈ F . An operator A : F → E
between two Riesz spaces E and F is said to be disjointness preserving if x ⊥ y in F implies
Ax ⊥ Ay in E. A linear operator T : F → E is order bounded if it maps order bounded subsets
of F into order bounded subsets of E. Positive operators are order bounded. A linear operator
A on E with domain D(A) a Riesz subspace is called order bounded if A is order bounded as
an operator from the Riesz space D(A) to E. Finally, a linear operator A on E with domain
D(A) is called band preserving if for all x ∈ D(A) we have Ax ∈ Bx, the band generated in E
by x. We start with a lemma which describe some elementary properties of band preserving
operators.

Lemma 1.1. (i) Let A be a positive band preserving operator on E with D(A) a Riesz
subspace of E. If x ⊥ y in D(A), then Ax ⊥ Ay in E.

(ii) If A : F → E is a disjointness preserving and order bounded map between the
Archimeadean Riesz spaces F and E, then |A| exists and satisfies |Ax| = |A||x| =

∣∣A|x|
∣∣.; (i)

If x, y ∈ D(A) such that |x|∧|y| =: z > 0 holds in E, then z ∈ D(A) since D(A) is a sublattice,
and consequently |x| ∧ |y| = z > 0 also holds in D(A). Therefore, if x ⊥ y in D(A), then x ⊥ y
in E and (i) follows since A preserves bands. The proof of (ii) can be found in [AB, Thm. 8.6].
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In particular, by (i) and (ii) an order bounded band preserving operator A whose domain
is a Riesz subspace is the difference A+ −A− of two positive band preserving operators. If in
addition D(A) = E, then A is bounded.

Lemma 1.2. For a linear operator A on a Banach lattice E with D(A) = E the following
properties are equivalent:

(a) A is order bounded and band preserving;
(b) A is band preserving;
(c) A is ideal preserving;
(d) there exists a number λ > 0 such that A ∈ [−λI, λI].

The proof is given in [AB, Ch. 8 and 15].
If A generates a multiplication semigroup T (t), then each T (t) preserves ideals and con-

sequently A perserves closed ideals.

Lemma 1.3. Let T (t) be a multiplication semigroup on a Banach lattice E. Then there
exists a ω ∈ R such that 0 6 T (t) 6 eωt for all t > 0.

Proof: First we show that T (t) is positive. Since the band preserving operators form a com-
mutative subalgebra of L(E), which both as Riesz space and as algebra is isomorphic to a
space C(K) [AB, Thm 15.5], [M, Thm 3.1.10], we have T (t) = T (t/2)2 > 0 (recall that we are
dealing with real spaces). In order to obtain the other estimate, let TC denote the complexi-
fication of T . If T is a bounded band preserving operator, for the spectral radius r(TC ) of TC
we have r(TC ) = ‖TC ‖ = ‖T‖, cf. [A, Satz 1.8]. Let ω be the growth bound of TC (t). By [N2,
Prop. A.III.1.1] we have

‖T (t)‖ = r(TC (t)) = eωt.

The desired estimate now follows from the inequality T (t) 6 ‖T (t)‖I [A, Satz 1.8]. ////

Lemma 1.4. If T (t) is a multiplication semigroup on E, then D(A) is an ideal.

Proof: Suppose 0 6 |x| 6 |y| with y ∈ D(A). Then for t, s > 0 we have by Lemma 1.1(ii)

|1
t

(T (t)x− x)− 1

s
(T (s)x− x)| = |1

t
(T (t)− I)− 1

s
(T (s)− I)| |x|

6 |1
t

(T (t)− I)− 1

s
(T (s)− I)| |y|

= |1
t

(T (t)y − y)− 1

s
(T (s)y − y)|.

Therefore

‖1

t
(T (t)x− x)− 1

s
(T (s)x− x)‖ 6 ‖1

t
(T (t)y − y)− 1

s
(T (s)y − y)‖.

As t, s ↓ 0, the right hand side converges to zero. Therefore the net (t−1(T (t)x − x))t↓0 is
Cauchy, so x ∈ D(A). ////

Let ω be as in Lemma 1.3. It is easy to see that the resolvent R(λ,A) = (λ − A)−1 is
band preserving for λ > ω: this follows from

0 6 R(λ,A)x =

∫ ∞

0

e−λtT (t)x dt 6 1

λ− ωx, x > 0.

The above lemma shows that the range of R(λ,A) is an ideal. Unless E is Dedekind complete,
in general it is not true that the range of an arbitrary band preserving operator M is an ideal.
A simple counterexample is given by E = C[−1, 1], Mf(x) = xf(x). The function g(x) = 0,
x 6 0 and g(x) = x, x > 0 belongs to the ideal generated range(M) but not to range(M)
itself. Cf. also Remark 2.12.
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Let A denote the class of all densely defined linear operators on E with the properties
that (i) D(A) is an ideal, (ii) A is band preserving, and (iii) A is bounded from above, i.e,
ω − A > 0 for some ω ∈ R . The set A is partially ordered in a natural way by saying that
A ⊂ B if B is an extension of A.

The next theorem describes the structure of A.

Theorem 1.5. For a linear operator A on a Banach lattice E the following assertions are
equivalent:

(i) A is the generator of a multiplication semigroup;
(ii) A is a maximal element of A;
(iii) A is a closed element of A.

Moreover, each A ∈ A is closable and A generates a multiplication semigroup.

Proof: (Step 1) We start with (i)⇒(iii). As a generator, A is closed. By Lemma 1.4, D(A)
is an ideal in E. If x ∈ D(A), then Ax = limt↓0 t−1(T (t)x − x) ∈ Ex ⊂ Bx. Moreover, for
0 6 x ∈ D(A) we get

1

t
(T (t)x− x) 6 1

t
(eωt − 1)x

and letting t ↓ 0 we obtain Ax 6 ωx. This proves that A ∈ A.
(Step 2) We prove: IfA ∈ A, then A is closable andA generates a multiplication semigroup

on E. Before turning to the proof, we note that (iii)⇒(i) follows from this.
Without loss of generality assume that A 6 0. Let 0 6 u ∈ D(A), v := −Au > 0.

There exists a band preserving linear operator M ∈ L(Eu+v) such that M(u + v) = u. In
fact, representing Eu+v as a space C(K) such that u + v corresponds to the function 1K ,
we may take M to be multiplication with the function corresponding to u. The operator
S : Eu+v → Eu+v given by Sf := (I − A)Mf is well-defined: for M maps Eu+v into Eu, and
Eu ⊂ D(A) since D(A) is an ideal. Also, S is band preserving. Since S(u + v) = u + v, it
follows from [AB, Thm. 8.14] that S = I on Eu+v. This shows that Eu+v ⊂ range(I − A).
In particular u ∈ range(I − A) and consequently range(I − A) is dense. Next we prove that
A is dispersive. Let f ∈ D(A), g := f − Af . We must prove that ‖g+‖ > ‖f+‖. Put
u := |f | and v := −Au > 0. Let M be as above and define R ∈ L(Eu) by Rh := M(I −A)h.
Then R is well-defined and band preserving. Since Ru = u it follows that R = I on Eu. In
particular Mg = M(I − A)f = f . Hence Mg+ = f+. Since 0 6 M 6 I, it follows that
‖g+‖ > ‖f+‖, so A is dispersive. By [N2, Cor. C.II.1.3], A generates a positive semigroup
T (t). In particular R(λ,A) > 0 for λ sufficiently large. It remains to prove that T (t) is a
multiplication semigroup. Since λ − A > λ for all λ > 0, for all 0 6 x ∈ D(A) and λ large
enough we have 0 6 λR(λ,A)x 6 R(λ,A)(λ − A)x = x. Since D(A) is dense, it follows that
0 6 R(λ,A) 6 λ−1I, so R(λ,A) is band preserving. By the exponential formula [P, Thm.
1.8.3]

T (t)x = lim
k→∞

(k
t
R(
k

t
,A)

)k
x

we find that T (t) is a multiplication semigroup.
(Step 3) We prove (i)⇔(ii). Suppose A generates a multiplication semigroup. By Step

1, A ∈ A. Suppose some B̃ ∈ A extends A. By Step 2, some extension B of B̃ generates
a multiplication semigroup. Then B is an extension of A as well, and both A and B are
generators. By a simple standard argument this implies that A = B. This shows that A is
maximal in A. Conversely, suppose A is maximal in A. By Step 2, A generates a multiplication
semigroup and by Step 1, A ∈ A. By the maximality of A we must have A = A. ////

Since the intersection of two dense ideals is a dense ideal, from Theorem 1.5 we have:
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Corollary 1.6. Suppose A and B generate multiplication semigroups. Then A + B with
D(A + B) = D(A) ∩ D(B) is closable and its closure generates a multiplication semigroup.
Moreover, A and B commute.

Proof: The first part follows directly from Theorem 1.5. We will prove that A and B commute.
Since R(λ,A)R(λ,B) = R(λ,B)R(λ,A) we have D(BA) = D(AB) and by taking inverses we
obtain AB = BA. ////

2. Proof of Theorems 0.2 and 0.3

We will now proceed with the proof of Theorem 0.2. Let us outline the basic idea. We
represent E ‘locally’, i.e. on closed principal ideals, as a space of continuous R valued functions,
R denoting the two-point compactification of R , and show that the part of A in such an ideal
can be represented as multiplication with some continuous function g. Then we extend A as
multiplication with g.

We will use the representation theory for Banach lattices with quasi-interior points, devel-
oped by Davies [D], Lotz [L] and Schaefer [S1]; see also [N1]. Recall that u is a quasi-interior
point if the ideal Eu is dense in E.

Theorem 2.1 [L]. Suppose E is a Banach lattice with quasi-interior point u > 0. There
exists a compact Hausdorff space Ku such that E is vector lattice isomorphic to a space Ê of
continuous R -valued functions on Ku. Moreover, each x̂ ∈ Ê is finite on an open dense subset
of Ku. The space Ê contains C(Ku) as a dense ideal and u can be identified with the constant
one function.

From now on we will identify Ê with E.
E is in fact an ‘ideal’ in the space of all continuous functions f : Ku → R in the following

sense: if x ∈ E and f : Ku → R satisfies 0 6 |f(s)| 6 |x(s)| for all s ∈ Ku, then f represents
an element f ∈ E. We will refer to this as the ideal property.

Following [N1], call a subset N ⊂ Ku E-null if the ideal {f ∈ E : f(s) = 0 ∀s ∈ N}
is norm-dense in E. A set N is E-null if and only if there exists a g > 0 in E such that
N ⊂ {g = ∞}. If N is E-null, then Ku = β(Ku\N), the Stone-Čech compactification of
Ku\N . Moreover, the complement of each null set is dense.

We need one more description of E-null sets. To this end we first note that every element
0 6 x∗ ∈ E∗, the dual of E, can be identified with a positive Borel measure µx∗ ∈ (C(Ku))∗

by restriction. A subset N ⊂ Ku is E-null if and only if µx∗(N) = 0 for all 0 6 x∗ ∈ E∗. This
implies that the union of countably many E-null sets is E-null. The proofs can be found in
[N1].

Lemma 2.2. Suppose A is a positive band preserving operator on a Banach lattice E with
D(A) a Riesz subspace. If D(A) contains a countable subset (fn) > 0 which generates a
dense ideal in E, then E has a quasi-interior point u > 0 and there is a continuous function
0 6 gu : Ku → R such that Af = guf holds for all f ∈ D(A).

Proof: For u one can take
∑
n 2−n‖fn‖−1fn. Let Ku denote the representation space of E. Set

N := ∩n{fn = 0}. Then N is an E-null set. Indeed, this follows from the definition of E-null
and the fact that (fn) generates a dense ideal in E. Put Nn := {fn =∞}∪{Afn =∞}. Then
each Nn is E-null and since the countable union of E-null sets is E-null, so is M := N∪(∪nNn).
Fix s 6∈M . By the definition of M there is an n such that 0 < fn(s) <∞ and 0 6 Afn(s) <∞.
Put

gu(s) :=
Afn(s)

fn(s)
.
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Note that 0 6 gu(s) < ∞. If 0 6 h ∈ D(A) is any element satisfying 0 < h(s) < ∞
then we claim that Ah(s) = gu(s)h(s) holds. We may assume without loss of generality that
0 < h(s) = fn(s) < ∞. Since D(A) is a Riesz subspace, h ∧ (1 + ε)fn ∈ D(A) for all ε > 0.
Note that (h∧ (1 + ε)fn)(τ) = h(τ) holds on some open neighbourhood of s. Hence, since A is
band preserving, it follows that Ah(s) = A(h∧ (1 + ε)fn)(s). By the positivity of A we obtain

Ah(s) = A(h ∧ (1 + ε)fn)(s) 6 A((1 + ε)fn)(s) = (1 + ε)gu(s)fn(s) = (1 + ε)gu(s)h(s).

Since ε is arbitrary it follows that Ah(s) 6 gu(s)h(s). Arguing similarly with h ∨ (1 − ε)fn
we obtain Ah(s) > gu(s)h(s). This proves the claim. Taking for h any fm with fm(s) > 0
it follows that gu(s) does not depend on the choice of n. If 0 6 f ∈ D(A) is arbitrary, let
Nf := {f = ∞}. We will show that Af = guf holds outside the E-null set Nf ∪M . If
f(s) > 0 this follows from the claim. If f(s) = 0 choose m such that fm(s) > 0 and note that
Af(s) = A(f + fm)(s) − Afm(s) = gu(s)(f + fm)(s) − gu(s)fm(s) = gu(s)f(s). The proof is
completed by the observation that Ku\F is dense in Ku for every E-null set F ⊂ Ku. ////

Note that the set {gu = ∞} is null. It is easy to see that if A is a bounded, then gu is
bounded as well.

In applying this lemma to the proof of Theorem 0.2 we encounter two difficulties. First,
if 0 6 u ∈ D(A), then Au need not a priori belong to Eu since A is only assumed to be band
preserving. Therefore one has to care about the construction of certain ideals on which A can
be handled well. Secondly, if 0 6 x 6 y with y ∈ D(A) and if A is represented as multiplication
with some function g, then we have Ay = gy. We would like to apply the ideal property to
the function gx and then define Ax := gx. The problem is that the function gx need not a
priori be continuous or even well-defined at points s where g(s) =∞ and f(s) = 0.

Theorem 2.3. Suppose A is an order bounded band preserving operator whose domain D(A)
is a Riesz subspace generating a dense ideal. Then A preserves closed ideals. Moreover, A
admits a unique extension to a positive operator Ã, preserving closed ideals, whose domain
D(Ã) is the ideal generated by D(A).

Proof: By Lemma 1.1 without loss of generality we may assume that A is positive.
(Step 1). In this step we prove the theorem for the special case that D(A) contains a

countable subset (fn) > 0 which generates a dense ideal in E. Fixing any quasi-interior point
u > 0, by Lemma 2.2 there is a function g : Ku → R such that Ay = gy for all y ∈ D(A).
Moreover, Ng := {g = ∞} is a null set. Let J denote the ideal generated by D(A) and let
0 6 x ∈ J be arbitrary. Choose f ∈ D(A) such that 0 6 x 6 f .

First we claim that Af ∈ Ef . To this end, let Nf = {f = ∞}. Define φn := Af ∧ nf .
Then φn ∈ Ef and φn(s) ↑ Af(s) for all s ∈ Ku\(Ng ∪ Nf ). Fix 0 6 x∗ ∈ E∗ arbitrary.
Identifying x∗ with a positive Borel measure µx∗ ∈ C(Ku)∗, we see that 0 6 φn ↑ Af µ-almost
everywhere. Since Af ∈ L1(µ), the dominated convergence theorem implies that φn → Af
weakly. The convergence being monotone, Dini’s theorem implies that φn → Af in E-norm.
This proves the claim.

By Lemma 2.2, the part of A in Ef is represented as multiplication with a function gf .
Since 1Kf = f 6 f + x 6 2f , the function gf (f + x) is a well-defined continuous R valued
function on Kf . The ideal property, applied to 0 6 gf (f + x) 6 2Af implies that gf (f + x)

represents an element z ∈ Ef . We now define Ã(f + x) := z and Ãx := z − Af. Clearly

Ax = gfx outside some null set. Therefore Ã extends A. In this way we obtain a positive

operator Ã on Ef with domain D(Ã) = Ef . Clearly Ã preserves bands. Therefore, by an

argument as above or by Theorem 1.5 and the remark after Lemma 1.2, Ã preserves closed
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ideals.
We will show that Ã is well-defined, i.e. does not depend on the choice of f . Suppose

0 6 x 6 fi with fi ∈ D(A), i = 1, 2. After replacing f1 by f1 ∧ f2 we may assume that
0 6 x 6 f1 6 f2. We obtain two extensions Ã1 and Ã2 of A, both preserving closed ideals,
which are simultaneously defined on the ideal Ef1

. But on Ef1
each Ãi can be represented

as multiplication with continuous R -valued function gi. Since f1 corresponds to the constant
one function on Kf1

, we have gi = Ãif1 = Af1. This proves that Ã1x = Ã2x.
(Step 2). Now let E be arbitrary and let J be the ideal generated by D(A). Fix 0 6 y ∈ J

arbitrary and choose 0 6 x ∈ D(A) such that 0 6 y 6 x. Define the countable sets Sn ⊂ E+

and Tn ⊂ E+ as follows. Put S0 := {x}, T0 := {Ax}. Suppose the sets S0, ..., Sn−1 and
T0, ..., Tn−1 have been chosen. Since J is dense, for each y ∈ Tn−1 there is a sequence 0 6
(xk(y)) ⊂ J converging to y. For each k choose zk(y) ∈ D(A) such that 0 6 xk(y) 6 zk(y).
Put Sn := {zk(y) : k ∈ N , y ∈ Tn−1}. Note that Sn is a countable subset of D(A). Put
Tn := {Ay : y ∈ Sn}. Next we put S := ∪nSn and T := ∪nTn. Let F be the closed ideal
generated by S in E. Note that by construction we have T ⊂ F . Moreover, the part AF of A
in F is positive and band preserving considered as an operator in F , and its domain D(AF )
is a Riesz subspace of F (since A|x| = |Ax| ∈ F for all x ∈ D(AF )) containing S. But the
countable set S ⊂ D(AF ) generates a dense ideal in F . Hence by Step 1, AF extends to a
positive operator ÃF on the ideal generated by D(AF ) in F which preserves closed ideals. We
define the extension of A by Ãy := AF y.

It remains to show that Ã is well-defined, i.e. that the extensions AF glue together to a
well-defined linear operator. This can be done as in Step 1. ////

Combining this with Theorem 1.5 gives:

Corollary 2.4. SupposeA is a positive band preserving operator withD(A) a Riesz subspace
which generates a dense ideal. Then −A admits a unique extension −Ã to a generator of a
multiplication semigroup T̃ (t).

Corollary 2.5. Suppose E has a quasi-interior point u > 0. Then for all v < 0 there is a
unique multiplication semigroup on E, with generator Av, such that u ∈ D(Av) and Avu = v.

Corollary 2.5 can be derived directly from Theorem 1.5 as follows. Choose a positive band
preserving operator M such that M(u − v) = u; this is possible since 0 6 u 6 u − v. Then
M is easily seen to be injective. Define D(A) := ME and AMx := x−Mx. Then A satisfies
the hypotheses of Theorem 1.5. This proofs is interesting as it leads to a representation-free
proof of the following consequence of Corollary 2.5 [Ne]: Suppose E is a Banach lattice with
quasi-interior point. If every C0-semigroup on E is uniformly continuous, then E has the
Grothendieck property and there is a compact Hausdorff space K such that E is Banach
lattice isomorphic to C(K). Since every C(K)-space has the Dunford-Pettis property, this
is a partial converse of Lotz’s theorem that every C0-semigroup on a Banach space with the
Grothendieck- and the Dunford-Pettis property is uniformly continuous. This converse fails if
E has only a weak order unit; see [Le].

Corollary 2.6. Suppose A is an order bounded operator which preserves closed ideals with
D(A) a Riesz subspace. Then A admits a unique extension to an operator preserving closed
ideals whose domains is the ideal generated by D(A) in E.

Just apply Theorem 2.3 to the closed ideal generated by D(A).

Corollary 2.7. If two generators A,B of multiplication semigroups agree on a Riesz subspace
F of D(A) ∩D(B) which generates a dense ideal, then A = B.
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In particular it follows that D(A) = D(B). With a little more care one can show that
Corollary 2.7 is true even if F is only a linear subspace of D(A) ∩ D(B) generating a dense
ideal.

Corollary 2.8. Suppose F ⊂ E is a closed sublattice generating a dense ideal. If T ∈ L(F )
is a band preserving operator on F , then there is a unique extension T̃ to a band preserving
operator on E.

Proof: By Lemmas 1.1 and 1.2 we may assume 0 6 T 6 I. By Theorem 2.3 there is an
extension T̃ to a linear band preserving operator 0 6 T̃ 6 I whose domain is the dense ideal
generated by F in E. But the inequalities implies that T̃ is bounded; its extension to a
bounded operator on E again satisfies 0 6 T 6 I. ////

Remark 2.9. (i) This result is related to the following theorem due to Luxemburg and Schep
[M, Thm. 1.5.15]: If F is a majorizing Riesz subspace of the Dedekind complete Riesz space
E and if T : F → E is a lattice homomorphism, then T extends to a lattice homomorphism
E → E. Recall that a Riesz subspace of E is called majorizing if the ideal generated by it is
E.

(ii) The following example shows that the word ‘ideal’ in 2.8 cannot be replaced by ‘band’.
Let E = C[−1, 1], F = {f ∈ E : f(0) = 0},

Tf(s) =

{
0, s 6 0
f(s), s > 0

Since every band preserving operator on C[−1, 1] is multiplication with a continuous function
g (e.g. by Lemma 2.2), T̃ can only be multiplication with a function g which equals zero on
[−1, 0) and one on (0, 1]; such g fails to be continuous.

Note that this is a counterexample to [M, Thm. 3.1.19(ii)].
The following examples show that Theorem 2.3 is sharp.

Example 2.10. (i) Let E = L∞[0, 1], define D(A) := {f ∈ E : x−1f(x) ∈ E} and put
Af(x) = x−1f(x), f ∈ D(A). Then D(A) is an order dense ideal in E, A is positive and band
preserving, but not preserving closed ideals. This shows that Theorem 2.3 fails if the ideal
(generated by) D(A) is not norm-dense, even if it is order dense.

(ii) Let E = C[0, 1], define D(A) to be the set of all polynomials in E, and for f ∈ D(A)

put Af :=
∫ 1

0
f(x)dx. Then A is positive and band preserving and D(A) is dense, but A does

not preserve closed ideals. This shows that Theorem 2.3 fails if D(A) is not a Riesz subspace.
By taking for D(A) the set of functions of the form f(x) = ax+ b with a, b ∈ R we see that
Theorem 2.3 even fails in case D(A) is a Riesz space in its own right.

(iii) Let E = L∞[0, 1], let D(A) be the subspace of all bounded, piecewise linear functions
consisting of finitely many pieces. For f ∈ D(A) put Af := df/dx. Then D(A) is a Riesz
subspace of E generating a dense ideal, A preserves bands but not closed ideals. This shows
that Theorem 2.3 fails if A is not order bounded.

We now come to the proof of Theorem 0.3.

Theorem 2.11. Let A be a linear operator on E whose domain generates a dense ideal.
Then A generates a multiplication semigroup if and only if there is a λ ∈ %(A) such that
R(λ,A) is positive and band preserving.

Proof: First, |R(λ,A)x| = R(λ,A)|x| shows that D(A) = R(λ,A)E is a sublattice of E. We
claim that λ−A is positive and closed ideal preserving. Suppose 0 6 x = R(λ,A)y. We must
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prove that y > 0. Indeed, since R(λ,A)y = x = x+ = R(λ,A)y+, the injectivity of R(λ,A)
shows that y = y+, proving positivity. Now fix u > 0 arbitrary and represent the restriction
of R(λ,A) to Eu as multiplication with gu ∈ C(Ku). We claim that {g > 0} is open dense
in Ku. Indeed, if not, then one finds a non-zero Urysohn function f ∈ C(Ku) supported in
{g = 0}. But then R(λ,A)f = guf = 0, a contradiction to the injectivity of R(λ,A). For all
s 6∈ {g = 0} we have

(u ∧ nR(λ,A)u)(s) ↑n u(s).

Since the set of these s is open dense, it follows that u ∧ nR(λ,A)u ↑ u, so u belongs to the
band generated by R(λ,A)u. In other words, λ−A is band preserving.

Putting together what we have proved so far, an application of Theorem 2.3 shows that
A preserves closed ideals and admits a unique extension to a closed ideal preserving operator
Ã whose domain is the ideal generated by D(A) such that λ− Ã > 0.

We claim that λ−Ã is injective. Indeed, suppose (λ−Ã)u = 0 for some u ∈ D(Ã). Choose
|u| 6 v ∈ D(A). Since both λ−A and λ− Ã preserve closed ideals, we may apply Lemma 2.2
to their parts in Ev and represent them as multiplication with functions gv and hv respectively.
Since 1Kv = v ∈ D(A) ⊂ D(Ã), necessarily gv = hv. As above, {gv > 0} = {hv > 0} is open
dense; but if u 6= 0, then {hv = 0} is non-empty and open because of (λ− Ã)u = 0. Therefore
u = 0.

But λ − A is 1-1 and onto whereas its extension λ − Ã is still 1-1. Therefore A = Ã
and consequently D(A) is an ideal. Also, A is closed, since λ−A is the inverse of a bounded
operator. Therefore, by Theorem 1.5, A generates multiplication semigroup. ////

This is a remarkable result in that it gives a generation criterium in terms of one single
resolvent operator. Also note that the hypotheses are almost exclusively lattice-theoretic, the
only Banach space hypothesis being that the ideal generated by D(A) be dense. A similar
situation occurs in the following result of Arendt, Chernoff and Kato [N2, Thm. B.II.1.8]:
If A is a densely defined operator on a C(K)-space E such that there exists a sequence
%(A) 3 λn →∞ with R(λn, A) > 0 for all n, then A generates a positive semigroup on E.

Remark 2.12. Theorem 2.11 can be reformulated as follows: If 0 6 M is a bounded
band preserving operator on E whose range generates a dense ideal, then its range is an ideal.
Indeed, the hypothesis on M guarantees that M is 1-1 and we can apply 2.11 to its inverse.
One can show that the positivity assumption on M is actually redundant.

There are many positive band preserving operators whose domain fails to be a Riesz
subspace. A very general example of this situation is the following, which arises e.g. in the
context of differential operators.

Example 2.13. Let A be the generator of a multiplication semigroup on a Banach lattice
E. Since generators are closed, D(A) is a Banach space in the graph norm ‖ · ‖A. Let φ
be any bounded linear functional on (D(A), ‖ · ‖A) which is unbounded with respect to the
E-norm. For instance one might take E = l1, Axn := −nxn with maximal domain D(A) and
φ(x) :=

∑∞
n=1 nxn. Let Nφ denote the kernel of φ. Then

D(Aφ) := Nφ;

Aφx := Ax, x ∈ D(Aφ)

is a closed densely defined operator. Closedness is immediate from the continuity of φ with
respect to the graph norm and denseness of D(Aφ) follows easily from the denseness of D(A) in
combination with the unboundedness of φ with respect to the E-norm. Moreover Aφ preserves
closed ideals since A does and also Aφ is bounded from above. Aφ is not a generator, since
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from Aφ ⊂ A we would have that Aφ = A which is not the case since φ 6= 0 implies that the
inclusion D(Aφ) ⊂ D(A) is proper.

Many of the results in this paper carry over to the complex case. For example, suppose
E is a complex Banach lattice and A = A0 + iA1 is a linear operator in E with both Aj real.
If (i) A is order bounded and band preserving, (ii) D(A) is a dense ideal and (iii) the real part
A0 is bounded from above, then A is closable and A generates a multiplication semigroup.
With this in mind we have the following illustration of Example 2.13. Let E = L2[0, 1] and
define operators Ai, i = 0, 1, 2 by

D(A0) = {f ∈W 1,2[0, 1] : f(0) = f(1)},
D(A1) = {f ∈W 1,2[0, 1] : f(1) = 0},
D(A2) = D(A0) ∩D(A1),

with Aif = f ′. After taking Fourier transforms we obtain operators Ãi on l2(Z ). It is easy to
see that both Ã0 and Ã1 are generators of strongly continuous semigroups, of which the one
generated by Ã0 is a multiplication semigroup. Moreover, in the terminology of 2.13 we have
A2 = (A0)φ, where φf = f(1) so Ã2 fails to generate a semigroup. Note that Ã2 admits at
least two different extensions to a generator, but only one of them generates a multiplication
semigroup.

3. The adjoint of a multiplication semigroup

In this final section we are concerned with the duality theory of multiplication semigroups.
If T (t) is a C0-semigroup on a Banach space X, then for each t > 0 let T ∗(t) be the

adjoint of the operator T (t). The operators T ∗(t) form a semigroup on X∗ which however
need not be strongly continuous. Put

X� := {x∗ ∈ X∗ : lim
t↓0
‖T ∗(t)x∗ − x∗‖ = 0}.

Then X� is a weak∗-dense, norm-closed subspace of X∗. In fact we have X� = D(A∗), where
A∗ is the adjoint of A. The restrictions T�(t) of T ∗(t) to X� define a C0-semigroup on X�

whose generator A� is precisely the part of A∗ in X�. For a proof of these facts see [BB]. By
repeating this construction one defines X�� := (X�)� and similarly T��(t) and A��. The
canonical map j : X → X�∗, 〈jx, x�〉 := 〈x�, x〉 is an embedding which maps X into X��.
Thus we can identify X with a closed subspace of X��. In doing so, T��(t) is an extension of
T (t) and the same remark applies to A��. For the proofs see [HPh]. A well-known theorem
of Phillips [Ph] states that if X is a reflexive Banach space, then X� = X∗.

Theorem 3.1. Let T (t) be a multiplication semigroup on a Banach lattice E.
(i) E� is an ideal in E∗ and T�(t) is a multiplication semigroup on E�.
(ii) If E∗ has order continuous norm, then E� = E∗.

Proof: (i) Suppose 0 6 |x∗| 6 |y∗| holds with y∗ ∈ E�. Since each T ∗(t) is a band preserving
operator by Lemma 1.2(d), by Lemma 1.1(ii) we have

|T ∗(t)x∗ − x∗| = |T ∗(t)− I||x∗| 6 |T ∗(t)− I||y∗| = |T ∗(t)y∗ − y∗|.

By the lattice property of the norm, x∗ ∈ E� and therefore E� is an ideal. Once more by
Lemma 1.2, each T�(t) is a multiplication operator. This proves the first assertion.

(ii) First we claim that A∗ is band preserving. Fix x∗ ∈ D(A∗) and let π be the band
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projection onto the band generated by x∗. It follows from Lemma 1.2 that R(λ,A∗) = R(λ,A)∗

is band preserving, so

R(λ,A∗)(λ−A∗)x∗ = πR(λ,A∗)(λ−A∗)x∗ = R(λ,A∗)π(λ−A∗)x∗.

It follows that R(λ,A∗)(1 − π)(λ − A∗)x∗ = 0 and therefore (1 − π)(λ − A∗)x∗ = 0 by the
injectivity of R(λ,A∗). This proves the claim. Since E∗ has order continuous norm, E� is a
band (since it is a closed ideal by the above). Since D(A∗) ⊂ E�, for x∗ ∈ D(A∗) it follows
that A∗x∗ ∈ Bx∗ ⊂ E�. Since A� is the part of A∗ in E� it follows that A� = A∗ and hence
E� = E∗. ////

Recall that every reflexive Banach lattice has order continuous norm.
If E∗ does not have order continuous norm it can happen that E� is a proper subspace

of E∗, as is shown by the example E = L1[0, 1], Af(x) = −x−1f(x) with D(A) maximal.
However for arbitrary E one can show that the adjoint of a multiplication semigroup is always
strongly continuous for t > 0.

Let T (t) be a C0-semigroup on a Banach space X. If the canonical map j : X → X�∗

maps X onto X�� then the Banach space X is called �-reflexive with respect to T (t). This
is the case if and only if the resolvent R(λ,A) is weakly compact [Pa]. ¿From this it follows
easily that each T (t)-invariant closed subspace of a �-reflexive X is �-reflexive with respect
to the restricted semigroup.

Trivially, if X is reflexive, then X is �-reflexive with respect to any semigroup on X. If
E = c0 or l1 then E is �-reflexive with respect to the multiplication semigroup T (t) defined
by T (t)xn = e−ntxn, where xn is the nth unit vector. Note that both c0 and l1 are atomic
Banach lattices. Recall that x ∈ E is called an atom if the principal ideal generated by x
is one-dimensional and that a Banach lattice is atomic if there exists a maximal orthogonal
system {xα}α with each xα an atom. The band Ea generated by all atoms of E is called
the atomic part of E and is an atomic Banach lattice. Finite-dimensional Banach lattices are
atomic. See [S2] for more information.

We will prove that reflexive Banach lattices and atomic Banach lattices with order continu-
ous norm are essentially the only ones which can be �-reflexive with respect to a multiplication
semigroup. This was conjectured by Ben de Pagter (oral communication).

In [NP] it is shown that whenever a σ-Dedekind complete Banach lattice E is �-reflexive
with respect to some C0-semigroup, then E necessarily has order continuous norm. For con-
venience of the reader, we give the short proof. First we claim that E does not contain a
closed subspace isomorphic to l∞. Suppose the contrary and let Y be a closed subspace of E
which is isomorphic to l∞. Since l∞ is complemented in every Banach space containing it as
a closed subspace [DU, p. 178], it follows that Y is complemented in E. Since E is weakly
compactly generated (WCG) by the weak compactness of R(λ,A), and since complemented
subspaces of WCG spaces are trivially seen to be WCG again, we conclude that l∞ is WCG, a
contradiction. In fact, every weakly compact set of l∞ is separable (e.g. note that l∞ embeds
into L∞[0, 1] and apply [DU, Thm. VIII.4.13]). This proves the claim. But a σ-Dedekind
complete space without copies of l∞ has order continuous norm [AB, Thm. 14.9].

Lemma 3.2. If E is �-reflexive with respect to a multiplication semigroup then E has order
continuous norm.

Proof: From Theorem 3.1 we know that E��, being an ideal in the Dedekind complete Banach
lattice E�∗, is a Dedekind complete Banach lattice. Clearly E�� is �-reflexive with respect
to T��(t), so by the above remarks E�� has order continuous norm. Let 0 6 xα ↑ x in E.
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Since j is positive we have 0 6 jxα ↑6 jx and hence (jxα) is norm convergent to sup jxα.
Thus (xα) is norm convergent as well and its limit must be x, which shows that E has order
continuous norm. ////

Let K be a subset of a Banach space X. In the next lemma we use the standard fact
[AB, Thm. 10.17] that if for each ε > 0 there exists a weakly compact subset Kε ⊂ X such
that K ⊂ Kε + εUX , where UX is the closed unit ball of X, then K is weakly compact.

Lemma 3.3. If a Banach lattice E is �-reflexive with respect to a multiplication semigroup
T (t), then T (t) is weakly compact for t > 0.

Proof: Let (xn) be a bounded sequence in E and let t > 0 be fixed. By the Eberlein-Shmulyan
theorem it suffices to show that the sequence (T (t)xn) has a weakly convergent subsequence.
The closed linear span of (xn) is contained in some closed principal ideal of E, invariant under
T (t). Therefore without loss of generality we may assume that E has a quasi-interior point
u > 0. Also we may assume 0 6 T (t) 6 I. Let the generator A be represented on Ku as
multiplication with a continuous R -valued function g 6 0. Define the open sets Fn by

Fn := {s ∈ Ku : −n < g(s) 6 0}

and let Gn be its closure. Since E is Dedekind complete, Ku is Stonean and consequently
Gn is clopen. Define bandprojections πn on E by πnx := χGnx and denote the corresponding
bands by Bn (χGn is the characteristic function of Gn). The restriction of the semigroup T (t)
to each Bn is uniformly continuous by construction. Hence B�n = B∗n and Bn = B�n

� = B∗n
∗

so each Bn is reflexive. Moreover for t > 0 we have

T (t)UE ⊂ UBn + e−ntUE

since 0 6 T (t) 6 e−nt holds on the orthogonal complement of Bn. By the above remark the
weak compactness of T (t) follows. ////

Theorem 3.4. Let E be �-reflexive with respect to a multiplication semigroup. Then E
has order continuous norm, and either E contains an infinite-dimensional reflexive band or E
is atomic.

Proof: Suppose there are no infinite-dimensional reflexive bands in E. Let Ea denote the
atomic part of E. We will show that E = Ea. If not, then E = Ea ⊕ B for some nonempty
band B. The proof of the previous lemma shows how to find a reflexive band in B which by
assumption must be finite-dimensional. But finite-dimensional Banach lattices are atomic, a
contradiction to the definition of Ea. ////

A Banach space X is said to have the Dunford-Pettis property if the square of each weakly
compact operator on X is compact. Every AM -space and every AL-space is Dunford-Pettis
[AB]. A Dunford-Pettis space cannot contain a complemented infinite-dimensional reflexive
subspace, for then the associated projection π = π2 would be compact.

Corollary 3.5. If E is a Dunford-Pettis lattice which is �-reflexive with respect to a
multiplication semigroup T (t), then E is atomic and T (t) is compact.
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Tübingen and all members of the faculty in Tübingen for their warm hospitality. Especially
I thank Rainer Nagel and Günther Greiner for their many valuable comments on this paper.



13

I am also indebted to Ben de Pagter for some interesting discussions and to the referees for
their valuable comments and suggesting a slight generalization of Theorem 1.5 along with a
simplified proof.

4. References

[AB] Aliprantis, C.D., and O. Burkinshaw, ”Positive Operators”, Pure and Applied Math.
119, Academic Press, 1985
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