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Abstract. This paper presents a brief survey of the theory of stochastic
integration in Banach spaces. Expositions of the stochastic integrals in
martingale type 2 spaces and UMD spaces are presented, as well as
some applications of the latter to vector-valued Malliavin calculus and
the stochastic maximal regularity problem. A new proof of the stochastic
maximal regularity theorem is included.
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1. Introduction

Stochastic calculus was developed in the 1950s in the fundamental work of
Itô. In its simplest form, the construction of the Itô stochastic integral with
respect to a Brownian motion (Bt)t>0 relies on an L2-isometry, which asserts
that if φ : R+ × Ω→ R is an adapted simple process, then

E
∣∣∣ ∫ ∞

0

φt dBt

∣∣∣2 = E
∫ ∞

0

|φt|2 dt.
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This isometry is used to extend the stochastic integral to arbitrary progres-
sively measurable processes satisfying E

∫∞
0
|φt|2 dt <∞. The stochastic inte-

gral process t 7→
∫ t

0
φs dBs defines a continuous L2-martingale, and by means

of stopping time techniques the integral can be extended to all progressively
measurable processes satisfying∫ ∞

0

|φt|2 dt <∞ almost surely.

It was immediately realised that the above programme generalises mu-
tatis mutandis to stochastic integrals of progressively measurable processes
with values in a Hilbert space H. Some of the early works in this direction
include [3, 17, 25, 28, 72]. More generally, if H ′ is another Hilbert space one
may allow operator-valued integrands with values in the space of Hilbert-
Schmidt operators L2(H,H ′) to define an H ′-valued stochastic integral with
respect to an H-cylindrical Brownian motion. This integral was popularised
by Da Prato and Zabczyk, who used it to study stochastic partial differen-
tial equations (SPDE) by functional analytic and operator theoretic methods
[26, 27]; see also [73].

From the point of view of SPDE the limitation to the Hilbert space
framework is rather restricting, and various authors have attempted to ex-
tend the theory of stochastic integration to more general classes of Banach
spaces. It was realised soon that a stochastic integral for square integrable
functions with values in a Banach space X can be defined if X has type 2
[44], whereas a bounded measurable function f : [0, 1] → `p may fail to be
stochastically integrable for 1 6 p < 2 [99]; see [95] for more detailed results
and examples along these lines. A systematic theory of stochastic integration
in 2-smooth Banach spaces was developed by Neidhardt in his 1978 PhD
thesis and, independently, by Belopol′skaya and Dalecky, [2] and Dettweiler
[31] independently developed a parallel theory for martingale type 2 spaces.
Interestingly, Pisier [90] had already shown in 1975 that a Banach space has
an equivalent 2-smooth norm if and only if it has martingale type 2. The
stochastic integrals of Neidhardt and Dettweiler were further developed and
applied to SPDEs by Brzeźniak [8, 9, 10, 11]. We shall briefly summarize the
martingale type 2 approach in Section 4.

Along a different line, the fundamental work of Burkholder [14, 15]
showed that many of the deeper inequalities in the theory of martingales
extend to a class of Banach spaces in which martingale differences are un-
conditional, nowadays called the class of UMD Banach spaces. These spaces
were characterised by Burkholder [14] and Bourgain [5] as precisely those
Banach spaces X for which the Hilbert transform on Lp(R) extends bound-
edly to Lp(R;X). As a consequence, UMD spaces provide a natural frame-
work for vector-valued harmonic analysis, and indeed large parts of the
theory of singular integrals have by now been extended to UMD spaces
[6, 40, 42, 45, 69, 98, 101].

The probabilistic definition of the UMD property in terms of martin-
gale differences suggests the possibility to develop stochastic calculus in UMD
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spaces. The first result in this direction is due to Garling [37], who proved a
two-sided Lp-estimate for the stochastic integral of an adapted simple pro-
cess φ with values in a UMD space in terms of the stochastic integral of
φ with respect to an independent Brownian motion. McConnell [70] proved
decoupling inequalities for tangent martingale difference sequences and used
them to obtain a sufficient condition for stochastic integrability of an UMD-
valued process with respect to a Brownian motion in terms of the almost
sure stochastic integrability of its trajectories with respect to an independent
Brownian motion. The ideas of Garling and McConnell have been stream-
lined and extended in a systematic way by the present authors [77, 78, 83]
and applied to SPDEs [12, 79, 80, 81]. A key idea in obtaining two-sided
estimates of Burkholder-Gundy type is to measure the integrand in a norm
that is custom-made for the Gaussian setting, rather than in the traditional
Lebesgue-Bochner norms. In an operator-theoretic language, these Gaussian
norms are given in terms of certain γ-radonifying operators (see Section 3 for
the relevant definitions). The main aim of this paper is to provide a coherent
presentation of this theory and some of its applications, in particular to the
vector-valued Malliavin calculus and the stochastic maximal Lp-regularity
problem. In the final section of this paper we discuss some recent Lp-bounds
for vector-valued Poisson stochastic integrals.

Let us mention that various different approaches to stochastic integra-
tion in Banach spaces exist in the literature, e.g., [7, 33, 32, 74].

We finish the introduction by fixing some notation. All vector spaces
are real. Throughout the paper, H and H are fixed Hilbert spaces. We will
always identify Hilbert spaces with their duals via the Riesz representation
theorem. All random variables are supposed to be defined on a fixed proba-
bility space (Ω,P).

2. Isonormal processes

It is a well-known result in the theory of Gaussian measures that an infinite-
dimensional Hilbert space H does not support a standard Gaussian measure
(cf. [4]). By this we mean that there exists no Radon probability measure γ
on H with the property that for all h ∈H of norm one the image measure
of γ under the mapping h : H → R is standard Gaussian. The following
definition serves as a substitute.

Definition 2.1. An H -isonormal process is a bounded linear mapping W :
H → L2(Ω) with the following properties:

(i) for all h ∈H the random variable Wh is Gaussian;
(ii) for all h1, h2 ∈H we have E(Wh1 ·Wh2) = [h1, h2].

It is an easy exercise to check that for any Hilbert space H , an H -
isonormal process does indeed exist. The random variables Wh, h ∈ H, are

jointly Gaussian, as every linear combination
∑k
j=1 cjWhj = W (

∑k
j=1 cjhj)
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is Gaussian. In particular this implies that if h1, . . . , hk are orthogonal, then
Wh1, . . . ,Whk are independent. For more details we refer to [85, Chapter 1].

Example. If (Bt)t>0 is a standard Brownian motion in Rd, then the Itô sto-
chastic integral

W (f) :=

∫ ∞
0

f(t) dBt, f ∈ L2(R+;Rd),

defines an L2(R+;Rd)-isonormal process W . In the converse direction, if W
is an L2(R+;Rd)-isonormal process, we let (ej)

d
j=1 denote the standard unit

basis of Rd and note that

B
(j)
t := W (1[0,t] ⊗ ej), t > 0,

defines a standard Brownian motion for each 1 6 j 6 d; these Brownian
motions are independent and define the coordinates of a standard Brownian
motion in Rd.

Definition 2.2. An H-cylindrical Brownian motion is an L2(R+;H)-isonormal
process.

Definition 2.3. A space-time white noise on a domain D ⊆ Rd is an L2(R+×
D)-isonormal process.

Under the natural identification L2(R+×D) = L2(R+;L2(D)), a space-
time white noise may be identified with an L2(D)-cylindrical Brownian mo-
tion.

3. Radonifying operators

Let H ⊗X denote the linear space of all finite rank operators from H to X.

Every element in H⊗X can be represented in the form
∑N
n=1 hn⊗xn, where

hn⊗xn is the rank one operator mapping the vector h ∈ H into [h, hn]xn ∈ X.
By a Gram-Schmidt orthogonalisation argument we may assume that the
vectors h1, . . . , hN are orthonormal in H.

Let (γn)n>1 be a Gaussian sequence, i.e., a sequence of independent
real-valued standard Gaussian random variables.

Definition 3.1. The Banach space γ(H,X) is defined as the completion of
H ⊗X with respect to the norm(∥∥∥ N∑

n=1

hn ⊗ xn
∥∥∥2

γ(H,X)

)1/2

:=
(
E
∥∥∥ N∑
n=1

γnxn

∥∥∥2)1/2

,

where it is assumed that h1, . . . , hN are orthonormal in H.

The quantity on the right-hand side is independent of the above rep-
resentation as long as the vectors in H are taken to be orthonormal; this is
an easy consequence of the fact that the distribution of a Gaussian vector
in RN is invariant under orthogonal transformations. As a result, the norm
‖ · ‖γ(H,X) is well defined.
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The celebrated Kahane-Khintchine inequality asserts that for all 0 <
p, q < ∞ there exists a constant κq,p > 0, depending only on p and q, such
that (

E
∥∥∥ N∑
n=1

γnxn

∥∥∥q)1/q

6 κq,p
(
E
∥∥∥ N∑
n=1

γnxn

∥∥∥p)1/p

. (3.1)

Proofs can be found in [34, 59, 61]. It was shown in [60] that the optimal

constant is given by κq,p = max{ ‖γ1‖q‖γ1‖p , 1}. In particular, κq,p 6 Cp
√
q for

q > 1.

It follows from (3.1) that for each p ∈ [1,∞) we obtain an equivalent
norm on γ(H,X) if we replace the exponent 2 by p in Definition 3.1. The
resulting space will be indicated by γp(H,X).

The identity mapping on H⊗X extends to an injective and contractive
embedding of γ(H,X) into L (H,X), the space of all bounded linear opera-
tors from H into X (for the simple proof see [76, Section 3]). We may thus
identify γ(H,X) with a linear subspace in L (H,X). Assuming this identifi-
cation, we call a bounded operator T ∈ L (H,X) γ-radonifying if it belongs
to γ(H,X).

Example. If X is a Hilbert space, then we have an isometric isomorphism

γ(H,X) = L2(H,X),

where L2(H,X) is the space of all Hilbert-Schmidt operators from H to X.

Example. For 1 6 p <∞ we have an isometric isomorphism of Banach spaces

γp(H,Lp(µ;X)) ' Lp(µ; γp(H;X))

which is obtained by associating with f ∈ Lp(µ; γ(H;X)) the mapping
h′ 7→ f(·)h′ from H to Lp(µ;X). The proof is an easy application of Fu-
bini’s theorem. In particular, upon identifying γp(H,R) isomorphically with
H, we obtain an isomorphism of Banach spaces

γp(H,Lp(µ)) ' Lp(µ;H). (3.2)

4. Stochastic integration in martingale type 2 spaces

In this section we shall give a brief account of the construction of the Itô sto-
chastic integral in martingale type 2 spaces. In order to bring out the analogy
with the UMD approach more clearly we will first consider the simpler case
of deterministic integrands, for which it suffices to assume that X has type
2.

4.1. Deterministic integrands

Let (rn)n>1 be a Rademacher sequence, i.e., a sequence of independent ran-
dom variables taking the values ±1 with probability 1

2 .
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Definition 4.1. Let p ∈ [1, 2]. A Banach space X has type p if there exists a
constant τ > 0 such that for all finite sequences (xn)Nn=1 in X we have

E
∥∥∥ N∑
n=1

rnxn

∥∥∥p 6 τp N∑
n=1

‖xn‖p.

The least admissible constant is denoted by τp,X . In the next subsection
we will give some examples of spaces with type p; in fact these examples have
the stronger property of martingale type p.

In the proof of the next proposition we shall use the following randomi-
sation identity. If (ξn)n>1 is a sequence of independent symmetric random
variables in Lp(Ω;X), and if (r̃n)n>1 is an independent Rademacher sequence

defined on another probability space (Ω̃, P̃), then for all N > 1 we have

E
∥∥∥ N∑
n=1

ξn

∥∥∥p = EẼ
∥∥∥ N∑
n=1

r̃nξn

∥∥∥p. (4.1)

This follows readily from Fubini’s theorem, noting that for each ω̃ ∈ Ω̃ the
sequences (ξn)n>1 and (r̃n(ω̃)ξn)n>1 are identically distributed.

Suppose now that W is an H-cylindrical Brownian motion (i.e, an
L2(R+;H)-isonormal process). A function φ : R+ → H ⊗ X is called an
elementary function if it is a linear combination of functions of the form
1(s,t] ⊗ (h ⊗ x) with 0 6 s < t < ∞, h ∈ H and x ∈ X. The stochastic
integral with respect to W of such a function is defined by putting∫ ∞

0

1(s,t] ⊗ (h⊗ x) dW := W (1(s,t] ⊗ h)⊗ x

and extending this definition by linearity.

Proposition 4.2. Suppose that X has type 2 and let φ : R+ → H ⊗ X be
elementary. Then

E
∥∥∥∫ ∞

0

φdW
∥∥∥2

6 τ2
2,X

∫ ∞
0

‖φ(t)‖2γ(H,X) dt.

Proof. We may write

φ =

N∑
n=1

1(tn−1,tn] ⊗
k∑
j=1

hj ⊗ xjn

for some fixed orthonormal system (hj)
k
j=1 in X and suitable 0 6 t0 < · · · <

tN <∞ and xjn ∈ X.

Since the functions (1(tn−1,tn) ⊗ hj)/(tn − tn−1)1/2 are orthonormal in

L2(R+;H), their images under W , denoted by γjn, form a Gaussian sequence.
Hence, by (4.1) and the type 2 property,

E
∥∥∥∫ ∞

0

φdW
∥∥∥2

= E
∥∥∥ N∑
n=1

k∑
j=1

γjn ⊗ [(tn − tn−1)1/2xjn]
∥∥∥2
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= EẼ
∥∥∥ N∑
n=1

r̃n

k∑
j=1

γjn ⊗ [(tn − tn−1)1/2xjn]
∥∥∥2

6 τ2
2,X

N∑
n=1

E
∥∥∥ k∑
j=1

γjn ⊗ [(tn − tn−1)1/2xjn]
∥∥∥2

= τ2
2,X

N∑
n=1

(tn − tn−1)E
∥∥∥ k∑
j=1

γjn ⊗ xjn
∥∥∥2

= τ2
2,X

N∑
n=1

(tn − tn−1)
∥∥∥ k∑
j=1

hj ⊗ xjn
∥∥∥2

γ(H,X)

= τ2
2,X

∫ ∞
0

‖φ(t)‖2γ(H,X) dt.

�

The following proposition shows that there is no hope of extending
Proposition 4.2 beyond the type 2 case, even in the case H = R (in which
case W can be identified with a standard Brownian motion B and γ(H,X)
with X).

As a preparation for the proof we recall the Kahane contraction princi-
ple, which asserts that if (ξn)Nn=1 is a sequence of independent and symmetric
random variables, then for all scalar sequences (an)Nn=1 we have

E
∥∥∥ N∑
n=1

anξn

∥∥∥p 6 max
16n6N

|aN |p E
∥∥∥ N∑
n=1

ξn

∥∥∥p
for all 1 6 p <∞. Using this result together with the observation that (ξn)Nn=1

and (rn|ξn|)Nn=1 are identically distributed we see that if inf16n6N E|ξn| > δ,
then

Ẽ
∥∥∥ N∑
n=1

r̃nxn

∥∥∥p = Ẽ
∥∥∥E N∑

n=1

r̃n|ξn|
E|ξn|

xn

∥∥∥p
6 ẼE

∥∥∥ N∑
n=1

r̃n|ξn|
E|ξn|

xn

∥∥∥p 6 1

δp
E
∥∥∥ N∑
n=1

ξnxn

∥∥∥p. (4.2)

In the case of standard Gaussian variables, note that

E|γ| =
√

2/π (4.3)

Proposition 4.3. If there exists a constant C > 0 such that for all elementary
functions φ : R+ → X we have

E
∥∥∥∫ ∞

0

φdB
∥∥∥2

6 C2

∫ ∞
0

‖φ(t)‖2 dt,

then X has type 2.
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Proof. Fix x1, . . . , xN ∈ X and consider the function φ =
∑N
n=1 1(n−1,n]⊗xn.

If a constant C > 0 with the above property exists, then, using that the
increments Bn −Bn−1 are standard Gaussian and independent,

E
∥∥∥ N∑
n=1

γnxn

∥∥∥2

= E
∥∥∥ N∑
n=1

(Bn −Bn−1)xn

∥∥∥2

= E
∥∥∥∫ ∞

0

φdB
∥∥∥2

6 C2

∫ ∞
0

‖φ(t)‖2 dt = C2
N∑
n=1

‖xn‖2.

This proves that X has Gaussian type 2, with Gaussian type 2 constant
τγ2,X 6 C. By (4.2) and (4.3), this implies that X has type 2 with τ2,X 6

C
√
π/2. �

Further examples may be found in [95, 99].

4.2. Random integrands

If one tries to extend the above proof to the case of a random integrand,
one sees that the type 2 property does not suffice. Indeed, the coupling be-
tween the integrand andW destroys the Gaussianity. However, the martingale
structure is retained, and this can be exploited to make a variation of the
argument work under a slightly stronger assumption on the Banach space X,
viz. that it has martingale type 2.

Definition 4.4. Let p ∈ [1, 2]. A Banach space X has martingale type p if
there exists a constant µ > 0 such that for all all finite X-valued martingale
difference sequences (dn)Nn=1 we have

E
∥∥∥ N∑
n=1

dn

∥∥∥p 6 µp N∑
n=1

E‖dn‖p.

The least admissible constant in this definition is denoted by µp,X .

Example. Here are some examples.

• Every Banach space has martingale type 1.
• Every Hilbert space has martingale type 2.
• Every Lp(µ) space, 1 6 p <∞, has martingale type p ∧ 2.

Since every Gaussian sequence is a martingale difference sequence, we
see immediately that every Banach space with martingale type p has type p,
with constant τp,X 6 µp,X .

Suppose now that an H-cylindrical Brownian motion W is given. We
shall denote by (Ft)t>0 the filtration induced by W , i.e., Ft is the σ-algebra
generated by all random variables W (f) with f ∈ L2(0, t;H). The following
lemma is proved by a standard monotone class argument.

Lemma 4.5. If the functions f1, . . . , fk ∈ L2(R+;H) have support in [t,∞),
then (W (f1), . . . ,W (fk)) is independent of Ft.
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More generally, we could consider any filtration with the property stated
in the lemma.

Let φ : R+ ×Ω→ H ⊗X be an adapted elementary process. By this we
mean that φ is a linear combination of processes of the form

1(s,t]×F ⊗ (h⊗ x)

with 0 6 s < t, F ∈ Fs, h ∈ H, and x ∈ X. The stochastic integral of φ with
respect to W is then defined by putting∫ ∞

0

1(s,t]×F (h⊗ x) dW := 1FW (1(s,t] ⊗ h)⊗ x

and extending this definition by linearity.

Theorem 4.6. Suppose that the Banach space X has martingale type 2 and
let φ : R+ × Ω→ H ⊗X be an adapted elementary process. Then

E
∥∥∥∫ ∞

0

φdW
∥∥∥2

6 µ2
2,XE

∫ ∞
0

‖φt‖2γ(H,X) dt.

Proof. By assumption we may represent φ as

φ =

N∑
n=1

1(tn−1,tn]

M∑
m=1

1Fmn ⊗
k∑
j=1

hj ⊗ xjmn. (4.4)

Here, (hj)
k
j=1 is an orthonormal system in H, for each 1 6 n 6 N the sets

Fmn, 1 6 m 6 M , are disjoint and belong to Ftn−1 , and the vectors xjmn
are taken from X. Then∫ ∞

0

φdW =

N∑
n=1

M∑
m=1

k∑
j=1

1FmnW (1(tn−1,tn] ⊗ hj)⊗ xjmn.

As before, the images under W of the functions (1(tn−1,tn]⊗hj)/(tn−tn−1)1/2,
which we denote by γjn, form a Gaussian sequence. The random variables

dn := (tn − tn−1)1/2
M∑
m=1

k∑
j=1

1Fmnγjn ⊗ xjmn

form a martingale difference sequence (dn)Nn=1 with respect to (Ftn)Nn=0. To
see this, note that dn is Ftn-measurable and Fnm ∈ Ftn−1

, and therefore

E(1Fmnγjn|Ftn−1
) = 1FmnEγjn = 0

since γjn is independent of Ftn−1 . Using the martingale type 2 property of
X, the lemma, and the disjointness of the sets F1n, . . . , FMn, we may now
estimate

E
∥∥∥ ∫ ∞

0

φdW
∥∥∥2

= E
∥∥∥ N∑
n=1

(tn − tn−1)1/2
M∑
m=1

k∑
j=1

1Fmnγjn ⊗ xjmn
∥∥∥2

= E
∥∥∥ N∑
n=1

dn

∥∥∥2

6 µ2
2,X

N∑
n=1

E‖dn‖2
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= µ2
2,X

N∑
n=1

(tn − tn−1)

M∑
m=1

E1FmnE
∥∥∥ k∑
j=1

γjnxjmn

∥∥∥2

= µ2
2,X

N∑
n=1

(tn − tn−1)

M∑
m=1

E1Fmn
∥∥∥ k∑
j=1

hj ⊗ xjmn
∥∥∥2

γ(H,X)

= µ2
2,XE

∫ ∞
0

‖φt‖2γ(H,X) dt.

�

By Doob’s inequality, this improves to the maximal inequality

E sup
t>0

∥∥∥∫ t

0

φdW
∥∥∥2

6 4µ2
2,XE

∫ ∞
0

‖φt‖2γ(H,X) dt.

From here, it is a routine density argument to extend the stochastic integral
to arbitrary progressively measurable processes φ : R+ × Ω → γ(H,X) that

satisfy E
∫∞

0
‖φt‖2γ(H,X) dt <∞; the process t 7→

∫ t
0
φdW is then a continuous

martingale. Then, the usual stopping time techniques apply to extend the
integral to progressively measurable processes satisfying

∫∞
0
‖φt‖2γ(H,X) dt <

∞ almost surely.

The following version of Burkholder’s inequality holds:

Theorem 4.7. Let X have martingale type 2. Then for any strongly measurable
adapted process φ : R+ × Ω→ γ(H,X) and 0 < p <∞,

E sup
t>0

∥∥∥ ∫ t

0

φdW
∥∥∥p 6 Cpp,X‖φ‖pLp(Ω;L2(R+;γ(H,X))).

For p > 2 this result is due to Dettweiler [31] who gave a proof based on
a martingale version of Rosenthal’s inequality. A particularly simple proof,
based on a good-λ inequality, was obtained by Ondreját [86]. Both proofs
produce non-optimal constants Cp,X as p → ∞. A proof with the optimal
constant

Cp,X 6 CX
√
p, p > 2,

was obtained by Seidler [97] using square function techniques in combination
with a maximal inequality for discrete-time martingales due to Pinelis [89].

The drawback of the martingale type 2 theory is not so much the fact
that the class of spaces to which it applies is rather limited (e.g., it applies
to Lp-spaces only for p ∈ [2,∞)) but rather the fact that the inequalities of
Theorems 4.6 and 4.7 are not sharp. In applications to parabolic SPDE, this
lack of sharpness prevents one from proving the sharp endpoint inequalities
needed for maximal regularity of mild solutions. As we will outline next,
the theory of stochastic integration in UMD spaces does produce the sharp
estimates that are needed for this purpose.
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5. Stochastic integration in UMD spaces

5.1. Deterministic integrands

Let X be an arbitrary Banach space and W be an H-cylindrical Brownian
motion. For an elementary function φ : R+ → H⊗X we define the stochastic
integral

∫∞
0
φdW as before. The following proposition provides a two-sided

estimate for the Lp-norms of this integral. As a preliminary observation we
note that φ, being an elementary function, defines an element in the algebraic
tensor product L2(R+)⊗(H⊗X). In view of the linear isomorphism of vector
spaces

L2(R+)⊗ (H ⊗X) ' (L2(R+)⊗H)⊗X (5.1)

we may view φ as an element of (L2(R+) ⊗ H) ⊗ X. Identifying L2(R+) ⊗
H with a dense subspace of L2(R+;H), we may view φ as an element in
γ(L2(R+;H), X).

Proposition 5.1 (Itô isometry). Let X be a Banach space and let p ∈ [1,∞).
For all elementary functions φ : R+ → H ⊗X we have

E
∥∥∥ ∫ ∞

0

φdW
∥∥∥p = ‖φ‖pγp(L2(R+;H),X).

Proof. Representing φ as in the proof of Proposition 4.2 and using the nota-
tions introduced there, we have

E
∥∥∥∫ ∞

0

φdW
∥∥∥p = E

∥∥∥ N∑
n=1

k∑
j=1

γjn ⊗ (tn − tn−1)1/2xjn

∥∥∥p
=
∥∥∥ N∑
n=1

k∑
j=1

fjn ⊗ (tn − tn−1)1/2xjn

∥∥∥p
γp(L2(R+;H),X)

= ‖φ‖pγp(L2(R+;H);X),

where we used that the functions fjn := (1(tn−1,tn] ⊗ hj)/(tn − tn−1)1/2 are

orthonormal in L2(R+;H) and satisfy
∑N
n=1

∑k
j=1 fjn⊗ (tn− tn−1)1/2xjn =

φ. �

By a density argument, the mapping φ 7→
∫∞

0
φdW extends to an isom-

etry from γp(L2(R+;H), X) into Lp(Ω;X).
Combining the estimates of Propositions 4.2 and 5.1 under the assump-

tion that X have type 2, we obtain the inequality1

‖φ‖γ(L2(R+;H);X) 6 τ2,X‖φ‖L2(R+;γ(H,X))

for elementary functions φ. This implies that if X has type 2, then the natural
identification made in (5.1) extends to a bounded inclusion

L2(R+; γ(H,X)) ↪→ γ(L2(R+;H);X)

of norm at most τ2,X . For further results along this line we refer the reader
to [46, 84, 95].

1This corrects a misprint in the published version
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5.2. UMD spaces

Next we show that it is possible to extend Proposition 5.1 to random inte-
grands if X is a UMD space. We start with a brief introduction of this class
of Banach spaces.

Definition 5.2. A Banach spaceX is called a UMD space if for some p ∈ (1,∞)
(equivalently, for all p ∈ (1,∞)) there is a constant β > 0 such that for all
X-valued Lp-martingale difference sequences (dn)n>1 and all signs (εn)n>1

one has

E
∥∥∥ N∑
n=1

εndn

∥∥∥p 6 βpE∥∥∥ N∑
n=1

dn

∥∥∥p, ∀N > 1. (5.2)

The least admissible constant in this definition is called the UMDp-
constant of X and is denoted by βp,X . It is by no means obvious that once
the UMD property holds for one p ∈ (1,∞), then it holds for all p ∈ (1,∞);
this seems to have been first observed by Pisier, whose proof was outlined
in [68]. A more systematic proof based on martingale decompositions can be
found in [14] and the survey paper [16].

Example. Let us provide some examples of UMD spaces. Fix p, p′ ∈ (1,∞)
such that 1

p + 1
p′ = 1.

• Every Hilbert space H is a UMD space (with τp,H = max
{
p, p′

}
).

• The spaces Lp(µ), 1 < p < ∞, are UMD spaces (with βp,Lp(µ) =

max
{
p, p′

}
). More generally, if X is a UMD space, then Lp(µ;X),

1 < p <∞, is a UMD space (with βp,Lp(µ;X) = βp,X)
• X is a UMD space if and only X∗ is a UMD space (with βp,X = βp′,X∗).
• Every Banach space which is isomorphic to a closed subspace or a quo-

tient of a UMD space is a UMD space.

By applying (5.2) to the martingale difference sequence (εndn)n>1 one
obtains the reverse estimate

E
∥∥∥ N∑
n=1

dn

∥∥∥p 6 βpp,XE
∥∥∥ N∑
n=1

εndn

∥∥∥p, ∀N > 1. (5.3)

If (rn)n>1 is a Rademacher sequence which is independent of (dn)n>1, then
(5.2) and (5.3) easily imply the two-sided randomised inequality

1

βpp,X
E
∥∥∥ N∑
n=1

dn

∥∥∥p 6 E
∥∥∥ N∑
n=1

rndn

∥∥∥ 6 βpp,XE
∥∥∥ N∑
n=1

dn

∥∥∥p, ∀N > 1, (5.4)

In [38] the lower and upper estimates in (5.4) were studied for their own sake
(see also Remark 5.9).

We include the simple observation that within the class of UMD spaces,
the notions of type and martingale type are equivalent (see [8]).

Proposition 5.3. Let p ∈ [1, 2]. If X is a UMD space with type p, then X has
martingale type p and µp,X 6 βp,Xτp,X .
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Proof. Let (r̃n)n>1 be a Rademacher sequence on another probability space

(Ω̃, P̃). By (5.4) and Fubini’s theorem,

E
∥∥∥ N∑
n=1

dn

∥∥∥p 6 βpp,XEẼ
∥∥∥ N∑
n=1

r̃ndn

∥∥∥p 6 βpp,Xτpp,XE
N∑
n=1

‖dn‖p.

�

5.3. Decoupling

The extension of Proposition 5.1 to adapted elementary processes will be
achieved by means of a decoupling technique, which allows us to replace

the cylindrical Brownian motion W by an independent copy W̃ on a second

probability space Ω̃. With respect to W̃ , we may estimate the Lp-norms
path-by-path with respect to Ω. The UMD property will provide the relevant
estimates for the decoupled integral in terms of the original integral and vice
versa.

We begin with a decoupling inequality for martingale transforms due to
McConnell [71]. The setting is as follows. We are given a probability space

(Ω,P) with filtration F , and independent copies (Ω̃, P̃) and F̃ . We identify

F and F̃ with the filtrations on Ω× Ω̃ given by F ×{∅, Ω̃} and {∅,Ω}×F̃ ,

respectively. In a similar way, random variables ξ and ξ̃ on Ω and Ω̃ are

identified with the random variables ξ(ω, ω̃) := ξ(ω) and ξ̃(ω, ω̃) := ξ̃(ω̃) on

Ω× Ω̃, respectively.

Theorem 5.4. Let X be a UMD space and let p ∈ (1,∞). Let (ηn)n>1 be an
F -adapted sequence of centered random variables in Lp(Ω) such that for each

n > 1, ηn is independent of Fn−1. Let (η̃n)n>1 be an independent F̃ -adapted

copy of this sequence in Lp(Ω̃;X). Finally, let (vn)n>1 be an F -predictable
sequence in L∞(Ω;X). Then, for all N > 1,

1

βpp,X
EẼ
∥∥∥ N∑
n=1

vnη̃n

∥∥∥p 6 EẼ
∥∥∥ N∑
n=1

vnηn

∥∥∥p 6 βpp,XEẼ
∥∥∥ N∑
n=1

vnη̃n

∥∥∥p.
This decoupling inequality was further extended in [71] to more general

martingale difference sequences.

Proof. The functions ηn : Ω → X and η̃n : Ω̃ → X will be interpreted

as functions on Ω × Ω̃ by considering (ω, ω̃) 7→ ηn(ω) and (ω, ω̃) 7→ η̃n(ω̃),
respectively.

For n = 1, . . . , N define

d2n−1 := 1
2vn(ηn + η̃n) and d2n := 1

2vn(ηn − η̃n).

We claim that (dj)
2N
j=1 is an Lp-martingale difference sequence with respect

to the filtration (Gj)2N
j=1, where for n > 1,

G2n−1 = σ(Fn−1 × F̃n−1, ηn + η̃n) and G2n = Fn × F̃n,
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with Fn × F̃n denoting the product σ-algebra. Clearly, (dn)2N
n=1 is (Gn)2N

n=1-
adapted. For n = 1, . . . , N ,

E(d2n+1|G2n) = 1
2vn+1E(ηn+1 + η̃n+1|G2n) = 1

2vn+1(Eηn+1 + Ẽη̃n+1) = 0,

since ηn+1 and η̃n+1 are independent of G2n and centered. For n = 1, . . . , N ,

E(d2n|G2n−1) = 1
2vnE(ηn − η̃n|G2n−1)

(i)
= 1

2vnE(ηn − η̃n|ηn + η̃n)
(ii)
= 0.

Here (i) follows from the independence of σ(ηn, η̃n) and Fn−1 × F̃n−1. For
the identity (ii) let B ⊆ X be a Borel set. Let ν and ν̃ denote the image
measure of ηn and η̃n on B(X), respectively. Then ν = ν̃ and therefore

EẼ1{ηn+η̃n∈B} ηn =

∫
X

∫
X

1{x+y∈B} x dν(x)dν(y)

=

∫
X

∫
X

1{x+y∈B}y dν(y)dν(x) = EẼ1{ηn+η̃n∈B} η̃n,

which gives (ii) and also finishes the proof of the claim.
Now since

N∑
n=1

vnηn =

2N∑
j=1

dj and

N∑
n=1

vnη̃n =

2N∑
j=1

(−1)j+1dj ,

the result follows from the UMD property applied to the sequences (dj)
2N
j=1

and ((−1)j+1dj)
2N
j=1. �

5.4. Random integrands

We are now in a position to prove sharp estimates for the stochastic integrals
of adapted elementary processes. Similar to what we did in the case of ele-
mentary functions, we will identify an adapted elementary process with an
element of

(L2(R+)⊗ Lp(Ω))⊗ (H ⊗X) ' Lp(Ω)⊗ ((L2(R+)⊗H)⊗X).

In the next theorem we identify the right-hand side with a dense subspace of
Lp(Ω; γ(L2(R+;H), X)).

Theorem 5.5 (Itô isomorphism). Let X be a UMD space and let p ∈ (1,∞).
For all adapted elementary processes φ : R+ × Ω→ H ⊗X we have

1

βp,X
‖φ‖Lp(Ω;γp(L2(R+;H),X)) 6

∥∥∥∫ ∞
0

φdW
∥∥∥
Lp(Ω;X)

6 βp,X‖φ‖Lp(Ω;γp(L2(R+;H),X)).

Proof. Let W̃ be an H-cylindrical Brownian motion on a probability space

Ω̃. As before we may view W and W̃ as independent H-cylindrical Brownian

motions on Ω× Ω̃.
We may represent φ as in (4.4), i.e.,

φ =

N∑
n=1

1(tn−1,tn]

M∑
m=1

1Fmn ⊗
k∑
j=1

hj ⊗ xjmn,
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where (hj)
k
j=1 is orthonormal in H, for each 1 6 n 6 N the sets Fmn,

1 6 m 6 M , are disjoint and belong to Ftn−1 , and the vectors xjmn are

taken from X. We view φ as being defined on Ω× Ω̃.
Define, for 1 6 j 6 k and 1 6 n 6 N ,

ηjn := W (1(tn−1,tn] ⊗ hj), η̃jn := W̃ (1(tn−1,tn] ⊗ hj),

and

vjn :=
M∑
m=1

1Fmn ⊗ xjmn.

With these notations,∫ T

0

φdW =

N∑
n=1

k∑
j=1

vjnηjn,

∫ T

0

φdW̃ =

N∑
n=1

k∑
j=1

vjnη̃jn.

We consider the filtration (Fjn), where

Fjn = σ(Ftn−1 , η1n, . . . , ηjn);

the indices (jn) are ordered lexicographically by the rule (j′, n′) 6 (j, n)⇐⇒
n′ < n or [n′ = n & j′ 6 j]. By Theorem 5.4,

1

βp,X

∥∥∥ N∑
n=1

k∑
j=1

vjnη̃jn

∥∥∥
Lp(Ω×Ω̃;X)

6
∥∥∥ N∑
n=1

k∑
j=1

vjnηjn

∥∥∥
Lp(Ω;X)

6 βp,X
∥∥∥ N∑
n=1

k∑
j=1

vjnη̃jn

∥∥∥
Lp(Ω×Ω̃;X)

.

On the other hand, by Proposition 5.1, for each ω ∈ Ω we have∥∥∥ N∑
n=1

vn(ω)η̃n

∥∥∥
Lp(Ω̃;X)

= ‖φ(ω)‖γp(L2(R+;H),X).

Therefore, by Fubini’s theorem,∥∥∥ N∑
n=1

k∑
j=1

vjnηjn

∥∥∥
Lp(Ω×Ω̃;X)

= ‖φ‖Lp(Ω;γp(L2(R+;H),X)).

�

By an application of Doob’s inequality, for 1 < p < ∞ we obtain the
equivalence of norms

1

βp,X
‖φ‖Lp(Ω;γp(L2(R+;H),X))

6
(
E sup
t>0

∥∥∥ ∫ t

0

φdW
∥∥∥p)1/p

6
p

p− 1
βp,X‖φ‖Lp(Ω;γp(L2(R+;H),X)).

(5.5)
By a standard application of Lenglart’s inequality [62], this equivalence ex-
tends to all exponents 0 < p < ∞ with different constants (see Remark 5.7
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below). This yields the UMD analogue of the Burkholder inequality of The-
orem 4.7. It is interesting to observe that no additional argument is needed
to pass from the case p = 2 to the case 1 < p <∞; the result for 1 < p <∞
is obtained right away from the decoupling inequalities.

By Theorem 5.5, the stochastic integral can be extended to the closure in
Lp(Ω; γ(L2(R+;H), X)) of all adapted elementary processes. We shall denote
this closure by LpF (Ω; γ(L2(R+;H), X)). In this way the stochastic integral
defines an isomorphic embedding

I : LpF (Ω; γ(L2(R+;H), X))→ Lp(Ω,F∞;X). (5.6)

Moreover, by (5.5), the indefinite stochastic integral defines an isomorphic
embedding of LpF (Ω; γ(L2(R+;H), X)) into Lp(Ω;Cb(R+;X)).

In the special case of the augmented filtration FW generated by W ,
the isomorphic embedding (5.6) is actually onto (pass to the limit T → ∞
in the corresponding result for finite time intervals in [78, Theorem 3.5]) and
we obtain an isomorphism of Banach spaces

I : LpFW (Ω; γ(L2(R+;H), X)) ' Lp(Ω,FW
∞ ;X).

This result contains a martingale representation theorem: every FW
∞ -meas-

urable random variable in Lp(Ω;X) is the stochastic integral of a suitable
element of LpFW (Ω; γ(L2(R+;H), X)).

We continue with a description of LpF (Ω; γ(L2(R+;H), X)) (the defini-
tion of which extends to p ∈ [0,∞) in the obvious way). A proof can be found
in [78, Proposition 2.10].

Proposition 5.6. Let p ∈ [0,∞). For an element φ ∈ Lp(Ω; γ(L2(R+;H), X))
the following assertions are equivalent:

(1) φ ∈ LpF (Ω; γ(L2(R+;H), X));
(2) the random variable 〈φ(1[0,t]f), x∗〉 ∈ Lp(Ω) is Ft-measurable for all

t ∈ R+, f ∈ L2(R+;H), and x∗ ∈ X∗.

In particular if φ : R+ × Ω → L (H,X) is H-strongly measurable and
adapted, in the sense that for all h ∈ H theX-valued process φh : R+×Ω→ X
is strongly measurable and adapted, then φ ∈ Lp(Ω; γ(L2(R+;H), X)) im-
plies φ ∈ LpF (Ω; γ(L2(R+;H), X)). Indeed, in that case, for all h ∈ H and
x∗ ∈ X∗ the process [h, φ∗x∗] is measurable and adapted. Since φ : Ω →
γ(L2(R+;H), X) is strongly measurable and elements in γ(L2(R+;H) are
separably supported (see [76, Section 3]), we may assume that H is sepa-
rable, and then the Pettis measurability theorem implies that the H-valued
process φ∗x∗ is strongly measurable and adapted. Passing to a progressively
measurable version of φ∗x∗ (see [87] for a short existence proof), we see that
〈φ(1[0,t]f), x∗〉 is equal almost surely to a strongly Ft-measurable random
variable.

In the special case X = Lq(µ) with 1 < q < ∞, combination of (5.5)
with (3.2) gives the following two-sided inequality for a measurable and



Stochastic integration in Banach spaces 17

adapted processes φ : R+ × Ω → Lq(µ;H): if φ ∈ Lp(Ω;Lq(µ;L2(R+;H)))
for some 0 < p <∞, then

E sup
t>0

∥∥∥ ∫ ·
0

φdW
∥∥∥p
Lq(µ)

hp,q E‖φ‖pLq(µ;L2(R+;H))).

The next step in the construction of the UMD stochastic integral con-
sists in a localisation argument. The process

ζ :=

∫ ·
0

φdW

is a continuous martingale, and by standard stopping time techniques (see
[94, Lemma 4.6]) one proves the following inequalities, valid for all δ > 0 and
ε > 0:

P
(
‖ζ‖Cb(R+;X) > ε

)
6 ε−pCpp,XE(δp ∧ ‖φ‖pγp(L2(R+;H),X)) + P

(
‖φ‖γp(L2(R+;H),X) > δ

)
,

where Cp,X = p
p−1βp,X , and

P
(
‖φ‖γp(L2(R+;H),X) > ε

)
6 ε−pβpp,XE(δp ∧ ‖ζ‖pCb(R+;X)) + P

(
‖ζ‖Cb(R+;X) > δ

)
.

A direct consequence is that the stochastic integral I : φ 7→
∫ ·

0
φdW uniquely

extends to a continuous linear embedding

I : L0
F (Ω; γ(L2(R+;H), X))→ L0(Ω;Cb(R+;X))).

For the details we refer to [78]. We call Iφ the stochastic integral of φ with
respect to W and write∫ t

0

φdW = Iφ(t), t > 0, φ ∈ L0
F (Ω; γ(L2(R+;H), X)).

Remark 5.7. Fix p ∈ (1,∞) and 0 < q < p. Taking ε = δ in the above esti-
mates and integrating with respect to dεq one obtains that (see [94, Propo-
sition 4.7] for a similar argument)( p− q

βp,Xp

)1/q

‖φ‖Lq(Ω;γp(L2(R+;H),X))

6
(
E sup
t>0

∥∥∥∫ t

0

φdW
∥∥∥q)1/q

6
(pCp,X
p− q

)1/q

‖φ‖Lq(Ω;γp(L2(R+;H),X)).

Up to this point we have set up the abstract stochastic integral by
a density argument, starting from adapted elementary processes. The next
result, taken from [88, Theorem 4.1], gives a criterion which enables one
to decide whether a given operator-valued stochastic process belongs to the
closure of the adapted elementary processes. Earlier versions of this result,
as well as related characterisations, can be found in [77, 78].
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Theorem 5.8. Let X be a UMD Banach space. Let φ : R+×Ω→ L (H,X) be
an H-strongly measurable adapted process such that φ∗x∗ ∈ L0(Ω;L2(R+;H))
for all x∗ ∈ X∗. Let ζ : R+ × Ω → X be a process whose paths are almost
surely bounded. If for all x∗ ∈ X∗ almost surely, one has∫ t

0

φ∗x∗ dW = 〈ζt, x∗〉, t ∈ R+,

then φ represents an element in L0
F (Ω; γ(L2(R+;H), X)), and almost surely

one has ∫ t

0

φdW = ζt, t ∈ R+.

Moreover, ζ is a local martingale with continuous paths almost surely.

This theorem is contrasted by the following example [88, Theorem 2.1].

Example. If X is an infinite-dimensional Hilbert space, then there exists a
strongly measurable adapted process φ : (0, 1) × Ω → X with the following
properties:

(i) for all x ∈ X, the real-valued process [φ, x] belongs to L0(Ω;L2(0, 1))
and we have ∫ 1

0

[φ, x] dW = 0, almost surely;

(ii) ‖φ‖L2(0,1;X) =∞ almost surely.

In particular, φ does not define an element of L0(Ω;L2(0, 1;X)).

Concerning the necessity of the UMD condition we have the following
result due to Garling [37]. Suppose that for a Banach space X and an expo-
nent p ∈ (1,∞) the estimates of Theorem 5.5 hold for all adapted elementary
processes φ : R+ × Ω→ X (we take H = R):

1

cp
‖φ‖Lp(Ω;γp(L2(R+),X)) 6

∥∥∥ ∫ ∞
0

φdB
∥∥∥
Lp(Ω;X)

6 Cp‖φ‖Lp(Ω;γp(L2(R+),X)).

(5.7)
Then X is a UMD space, with constant βp,X 6 cpCp. This result shows that
the scope of Theorem 5.5 is naturally restricted to the class of UMD spaces.

Remark 5.9. In [20, 23, 38] the class of Banach spaces in which the right-
hand side inequality of (5.7) holds for all adapted elementary processes φ is
investigated. This class includes all UMD spaces, but also some non-UMD
spaces such as the spaces L1(µ). By extrapolation techniques from [39], (see
[23, Remark 3.2]) this implies that for all 1 6 p 6 q <∞,∥∥∥∫ ·

0

φdW
∥∥∥
Lq(Ω;Cb(R+;X))

6 CX,pq‖φ‖Lq(Ω;γp(L2(R+;H),X)).

This shows that an estimate with linear dependence in q holds.
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Remark 5.10. In the case when X is a Hilbert space or X = Lp(µ) with
p > 1, it is known that∥∥∥∫ ·

0

φdW
∥∥∥
Lp(Ω;Cb(R+;X))

6 Cp,X‖φ‖Lp(Ω;γp(L2(R+;H),X))

holds with a constant Cp,X 6 CX . In particular,∥∥∥∫ ·
0

φdW
∥∥∥
Lp(Ω;Cb(R+;X))

6 Cp,X‖φ‖Lp(Ω;γ(L2(R+;H),X))

holds with a constant Cp,X 6 C ′X
√
p (for Hilbert spaces this also follows

from Seidler’s result quoted earlier, and for Lp from Fubini’s theorem). It
would be interesting to know whether this remains true for arbitrary (UMD)
Banach spaces X. This problem is open even in the case X = Lq with q ∈
(1,∞) \ {2, p}.

We continue with a version of Itô’s lemma taken from [12]. Let X,Y, Z
be Banach spaces and let (hn)n>1 be an orthonormal basis of H. Let R ∈
γ(H,X), S ∈ γ(H,Y ) and T ∈ L (X,L (Y, Z)) be given. It is not hard to
show that the sum

trR,ST :=
∑
n>1

(TRhn)(Shn)

converges in Z and does not depend on the choice of the orthonormal basis.
Moreover,

‖trR,ST‖ 6 ‖T‖‖R‖γ(H,X)‖S‖γ(H,Y ).

If X = Y we shall write trR := trR,R.

Proposition 5.11 (Itô lemma). Let X and Y be UMD spaces. Assume that
f : R+×X → Y is of class C1,2 on every bounded interval. Let φ : R+×Ω→
L (H,X) be H-strongly measurable and adapted and assume that φ locally
defines an element of L0(Ω; γ(L2(R+;H), X))∩L0(Ω;L2(R+; γ(H,X))). Let
ψ : R+ × Ω → X be strongly measurable and adapted with locally integrable
paths almost surely. Let ξ : Ω → X be strongly F0-measurable. Define ζ :
R+ × Ω→ X by

ζ = ξ +

∫ ·
0

ψs ds+

∫ ·
0

φs dWs.

Then s 7→ D2f(s, ζs)φs is stochastically integrable and almost surely we have,
for all t > 0,

f(t, ζt)− f(0, ζ0) =

∫ t

0

D1f(s, ζs) ds+

∫ t

0

D2f(s, ζs)ψs ds

+

∫ t

0

D2f(s, ζs)φs dWs +
1

2

∫ t

0

trφs
(
D2

2f(s, ζs)
)
ds.

The first two integrals and the last integral are almost surely defined as
a Bochner integral.
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As a special case, let X be a UMD space, let X1 = X, X2 = X∗, and
set

(ζi)t = ξi +

∫ t

0

(ψi)s ds+

∫ t

0

(φi)s dWs, i = 1, 2,

where φi : R+ × Ω → L (H,Xi), ψi : R+ × Ω → Xi and ξi : Ω → Xi satisfy
the assumptions of Itô’s lemma. Then, almost surely, for all t > 0 we have

〈(ζ1)t, (ζ2)t〉 − 〈(ζ1)0, (ζ2)0〉 =

∫ t

0

〈(ζ1)s, (ψ2)s〉+ 〈(ψ1)s, (ζ2)s〉 ds

+

∫ t

0

〈(ζ1)s, (φ2)s〉+ 〈(φ1)s, (ζ2)s〉 dWs

+

∫ t

0

∑
n>1

〈(φ1)shn, (φ2)shn〉 ds.

6. Malliavin calculus

The techniques of the previous section lend themselves very naturally to set
up a Malliavin calculus in UMD Banach spaces.

Let H be a Hilbert space and let W : H → L2(Ω) be an isonormal
Gaussian process (cf. Definition 2.1). The Malliavin derivative of an X-valued
smooth random variable of the form

F = f(Wh1, . . . ,Whn)⊗ x

with f ∈ C∞b (Rn), h1, . . . , hn ∈ H and x ∈ X, is the random variable
DF : Ω→ γ(H , X) defined by

DF =

n∑
j=1

∂jf(Wh1, . . . ,Whn)⊗ (hj ⊗ x).

Here, ∂j denotes the j-th partial derivative. The definition extends by linear-
ity. Thanks to the integration by parts formula

E〈DF (h), G〉) = E(Wh〈F,G〉)− E〈F,DG(h)〉,

valid for smooth random variables F and G with values in X and X∗, respec-
tively, the operator D is closable as a densely defined linear operator from
Lp(Ω;X) into Lp(Ω; γ(H , X)), 1 6 p < ∞ (see [64, Proposition 3.3]). The
domain of its closure in Lp(Ω;X) is denoted by D1,p(Ω;X). This is a Banach
space endowed with the norm

‖F‖D1,p(Ω;X) := (‖F‖pLp(Ω;X) + ‖DF‖pLp(Ω;γ(H ,X)))
1/p.

Let (Hm)m>0 denote the Hermite polynomials, given by H0(x) = 1,
H1(x) = x, and the recurrence relation (m + 1)Hm+1(x) = xHm(x) −
Hm−1(x). Let

Hm = lin{Hm(Wh) : ‖h‖ = 1}, m > 0.
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The Wiener-Itô decomposition theorem asserts that

L2(Ω,G) =
⊕
m>0

Hm,

where G is the σ-algebra generated by W . Let P be the Ornstein-Uhlenbeck
semigroup on L2(Ω,G),

P (t) :=
∑
m>0

e−mtJm,

where Jm is the orthogonal projection onto Hm. The semigroup P ⊗ IX
extends to a strongly continuous semigroup of contractions on L2(Ω,G ;X).
Its generator will be denoted by LX .

The following result is due Pisier [91].

Theorem 6.1 (Meyer inequalities). Let X be a UMD space and let 1 < p <∞.
Then

Dp((−LX)1/2) = D1,p(Ω;X)

and for all F ∈ D1,p(Ω;X) we have an equivalence of the homogeneous norms

‖DF‖Lp(Ω;γ(H ,X)) hp,X ‖(L⊗ IX)1/2F‖Lp(Ω;X).

An extension to higher order derivatives was obtained by Maas [63]. We
refer the reader to this paper for more on history of vector-valued Malliavin
calculus.

From now on we assume that X is a UMD space. Since UMD spaces
are K-convex, trace duality establishes a canonical isomorphism

γ(H , X∗) h (γ(H , X))∗.

See [48, 92] for a proof. We apply this with X replaced by X∗ and note that
X, being a UMD space, is K-convex. Starting from the Malliavin derivative D
on Lp

′
(Ω;X∗) with 1 < p <∞ and 1

p+ 1
p′ = 1, we define the Skorohod integral

δ as the adjoint of D; thus, δ is a densely defined closed linear operator from
Lp(Ω; γ(H , X) into Lp(Ω;X), 1 < p <∞. The domain of its closure will be
denoted by Dp(δ).

So far, H has been an arbitrary Hilbert space. We now specialise to
H = L2(R+;H) and let (Ft)t>0 be the filtration induced by W (see Section
4.2). The following result has been proved in [64]:

Theorem 6.2. Let X be a UMD space and let 1 < p <∞ be given. The space
LpF (Ω; γ(L2(R+;H), X)) is contained in Dp(δ) and

δ(φ) =

∫ ∞
0

φdW, φ ∈ LpF (Ω; γ(L2(R+;H), X)).

Let FW denote the filtration generated by W and define step functions
f : R+ → γ(H,Lp(Ω;X)) with bounded support,

(PFW f)(t) := E(f(t)|FW
t ),

where E(·|FW
t ) is considered as a bounded operator on γ(H,Lp(Ω;X)). It is

shown in [64] that if 1 < p, q <∞ satisfy 1
p + 1

q = 1, then the mapping PFW
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extends to a bounded operator on γ(L2(R+;H), Lp(Ω;X)). Moreover, as a
bounded operator on Lp(Ω; γ(L2(R+;H), X)), PFW is a projection onto the
closed subspace LpFW (Ω; γ(L2(R+;H), X)).

Theorem 6.3 (Clark-Ocone representation, [64]). Let X be a UMD space.
The operator PFW ◦D has a unique extension to a continuous operator from
L1(Ω,FW

∞ ;X) to L0
FW (Ω; γ(L2(R+;H), X)), and for all F ∈ L1(Ω,FW

∞ ;X)
we have the representation

F = E(F ) + I((PFW ◦D)F ),

where I is the stochastic integral with respect to W . Moreover, (PFW ◦D)F
is the unique element φ ∈ L0

FW (Ω; γ(L2(R+;H), X)) satisfying F = E(F ) +
I(φ).

The UMD Malliavin calculus has been pushed further in the recent
paper [93], where in particular the authors obtained an Itô formula for the
Skorohod integral.

7. Stochastic maximal Lp-regularity

Applications of the theory of stochastic integration in UMD spaces have been
worked out in a number of papers; see [12, 13, 18, 21, 22, 24, 30, 57, 56, 58,
79, 80, 81, 93, 96] and the references therein. Here we will limit ourselves to
the maximal regularity theorem for stochastic convolutions from [81] which
is obtained by combining Theorem 7.1 and 7.3 below, and which crucially
depends on the sharp two-sided inequality of Theorem 5.5.

As before we let (Ω,P) be a probability space, let W be an H-cylindrical
Brownian motion defined on it, and let the filtration F be as before. For an
operator A admitting a bounded H∞-calculus, we denote by (S(t))t>0 the
bounded analytic semigroup generated by −A. For detailed treatments of the
H∞-calculus we refer to [29, 41, 55].

The main result of [81] is formulated for Lq-spaces with q ∈ [2,∞), but
inspection of the proof shows that can be restated for UMD spaces satisfying
a certain hypothesis which will be explained in detail below.

Theorem 7.1. Let p ∈ [2,∞) and let X be a UMD Banach space with type
2 which satisfies Hypothesis (Hp). Suppose the operator A admits a bounded
H∞-calculus of angle less than π/2 on X and let (S(t))t>0 denote the bounded
analytic semigroup on X generated by −A. For all G ∈ LpF (R+×Ω; γ(H,X))
the stochastic convolution process

U(t) =

∫ t

0

S(t− s)Gs dWs, t > 0, (7.1)

is well defined in X, takes values in the fractional domain D(A1/2) almost
surely, and we have the stochastic maximal Lp-regularity estimate

E‖A1/2U‖pLp(R+;X) 6 C
pE‖G‖pLp(R+;γ(H,X)) (7.2)
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with a constant C independent of G. If, in addition to the above assumptions,
we have 0 ∈ %(A), then

E‖U‖pBUC(R+;(Lq(O),D(A)) 1
2
− 1
p
,p

) 6 C
p E‖G‖pLp(R+;Lq(O;H)). (7.3)

In the special case of X = Lq(O), where (O, µ) is a σ-finite measure
space and q ∈ [2,∞), Hypothesis (Hp) is fulfilled for all p ∈ (2,∞); the value
p = 2 is allowed if q = 2 (see Theorem 7.3 below). In this special case, (7.2)
is equivalent to the estimate

E‖A1/2U‖pLp(R+;Lq(O)) 6 C
pE‖G‖pLp(R+;Lq(O;H)).

The convolution process U defined by (7.1) is the mild solution of the
abstract SPDE

dU(t) +AU(t) dt = Gt dWt, t > 0,

and therefore Theorem 7.1 can be interpreted as a maximal Lp-regularity
result for such equations. As is well-known [8, 26, 51], stochastic maximal
regularity estimates can be combined with fixed point arguments to obtain
existence, uniqueness and regularity results for solutions to more general
classes of nonlinear stochastic PDEs. For the setting considered here this
has been worked out in detail in [80], where an application is included for
Navier-Stokes equation with multiplicative gradient-type noise.

Theorem 7.1 generalises previous results due to Krylov [50, 51, 52, 53]
who proved the estimate for second-order uniformly elliptic operators on
X = Lq(Rd) with 2 6 q 6 p, where D = Rd or D is a smooth enough
bounded domain in Rd. Using PDE arguments, Krylov was able to prove his
result for operators with coefficients which may be both time-dependent and
random in an adapted and measurable way. These results were extended to
half-spaces and bounded domains by Kim [49].

The proof of Theorem 7.1 for X = Lq(O) in [81] consists of three main
steps:

(i) The H∞-calculus of A is used to obtain a reduction to an estimate for
stochastic convolutions of scalar-valued kernels;

(ii) This estimate is then proved using Hypothesis (Hp).
(iii) Hypothesis (Hp) is verified for X = Lq(O).

In this section we shall present a proof of Theorem 7.1 which replaces (i) and
(ii) by a simpler H∞-functional calculus argument.

Let us first turn to the precise formulation of Hypothesis (Hp). Let
K be the set of all absolutely continuous functions k : R+ → R such that
limt→∞ k(t) = 0 and ∫ ∞

0

t1/2|k′(t)| dt 6 1.

Fix p ∈ [2,∞) and let X be an arbitrary Banach space. For k ∈ K and
adapted elementary processes G : R+ ×Ω→ L (H,X) we define the process



24 Jan van Neerven, Mark Veraar and Lutz Weis

I(k)G : R+ × Ω→ X by

(I(k)G)t :=

∫ t

0

k(t− s)Gs dWs, t > 0.

Since G is an adapted elementary process, the Itô isometry for scalar-valued
processes shows that these stochastic integrals are well-defined for all t > 0;
no condition on X is needed for this. If X has martingale type 2 (in particular,
when X is UMD with type 2), then by Theorem 4.6 and Young’s inequal-
ity it is easy see that I(k) extends to a bounded operator from LpF (R+ ×
Ω; γ(H,X)) into Lp(R+ × Ω;X) and that the family

I := {I(k) : k ∈ K}

is uniformly bounded. We will need that this family has the stronger property
of being R-bounded.

A family T of bounded linear operators from a Banach space X1 into
another Banach space X2 is called R-bounded if there exists a constant C > 0
such that for all finite sequences (xn)Nn=1 in X1 and (Tn)Nn=1 in T we have

E
∥∥∥ N∑
n=1

rnTnxn

∥∥∥2

6 C2E
∥∥∥ N∑
n=1

rnxn

∥∥∥2

.

Every R-bounded family is uniformly bounded; the converse holds if (and
only if, see [1]) X has cotype 2 and Y has type 2. In particular, the converse
holds if X1 and X2 are Hilbert spaces. The notion of R-boundedness has been
first studied systematically in [19]; for further results and historical remarks
see [29, 55].

Now we are ready to formulate Hypothesis (Hp):

(Hp) Each of the operators I(k), k ∈ K}, extends to a bounded operator from
LpF (R+ × Ω; γ(H,X)) into Lp(R+ × Ω;X), and the family

I = {I(k) : k ∈ K}

is R-bounded from LpF (R+ × Ω; γ(H,X)) into Lp(R+ × Ω;X).

One can show that if the operators I(k) extend to a uniformly bounded family
of bounded operators from LpF (R+ × Ω; γ(H,X)) into Lp(R+ × Ω;X), then
p > 2 and X has type 2 (see [82]). If X satisfies (Hp) and Y is isomorphic to
a closed subspace of X, then Y satisfies (Hp) as well.

Hypothesis (Hp) admits various equivalent formulations. We present one
of them, implicit in [81]; for a systematic study we refer the reader to [82].
Let B be a real-valued Brownian motion.

Proposition 7.2. Hypothesis (Hp) holds if and only if the family {It : t > 0}
of stochastic convolution operators defined by

Itg(s) :=

∫ t

0

1√
t
1(0,t)(s− r)g(r) dBr, s > 0,

is well defined and R-bounded from Lp(R+;X) into Lp(R+ × Ω;X).



Stochastic integration in Banach spaces 25

Stated differently, in order to verify (Hp) it suffices to take H = R and
to consider the kernels 1√

t
1(0,t), t > 0.

The following theorem gives sufficient conditions for (Hp) in case X =
Lq(O).

Theorem 7.3. Let X be isomorphic to a closed subspace of a space Lq(O)
with q ∈ [2,∞). Then (Hp) holds for all p ∈ (2,∞). The same result holds
when p = q = 2.

This is a non-trivial result which has been proved in [81] using the
Fefferman–Stein maximal theorem; it is here that the full force of Theorem
5.5 is needed. By the above remarks, (Hp) also holds for Sobolev spaces
Wα,p(O) as long as p ∈ [2,∞). It is an open problem to describe the class
of Banach spaces X to which the result of Theorem 7.3 can be extended. A
sufficient condition for Hypothesis (Hp) for any p > 2 is that X be a UMD
Banach function space for which the norm can be written as ‖x‖X = ‖ |x|2 ‖F ,
and F is another UMD Banach function space [82].

In order to set the stage for the proof of Theorem 7.1 we need to in-
troduce some terminology. Let X be a Banach space and let Σσ = {z ∈
C \ {0} : | arg z| < σ} denote the open sector of angle σ about the positive
real axis in the complex plane. Let A be a sectorial operator on X with a
bounded H∞(Σσ)-calculus. Following [47] and [55, Chapter 12], we denote
by A the sub-algebra of L (X) of all operators commuting with the resol-
vent R(λ,A) = (λ − A)−1. For ν > σ, the space of all bounded analytic
functions f : Σν → A with R-bounded range is denoted by RH∞(Σν ,A ).
By RH∞0 (Σν ,A ) we denote the functions in RH∞(Σν ,A ) whose operator
norm is dominated by |λ|ε/(1 + |λ|)2ε for some ε > 0. For such f we may
define

f(A) =
1

2πi

∫
∂Σσ′

f(λ)R(λ,A) dλ

as an absolutely convergent Bochner integral in L (X) for σ < σ′ < ν. By
[47, Theorem 4.4] (see also [55, Theorem 12.7]), the mapping f 7→ f(A)
extends to a bounded algebra homomorphism from RH∞(Σν ,A ) to L (X)
which is unique in the sense that it has the following convergence property:
if (fn) is a bounded sequence in RH∞(Σν ,A ) (in the sense that the corre-
sponding R-bounds are uniformly bounded) and fn(λ)x → f(λ)x for some
f ∈ RH∞(Σν ,A ) and all λ ∈ Σν and x ∈ X, then fn(A)x → f(A)x for all
x ∈ X.

Proof of Theorem 7.1. Let X be a UMD Banach space with type 2 satisfying
Hypothesis (Hp) for some fixed p ∈ [2,∞). For adapted elementary processes
G : R+ × Ω→ γ(H,X) and λ ∈ C with Reλ > 0 define

(LλG)t :=

∫ t

0

λ1/2e−λ(t−s)Gs dWs, t > 0.

The functions kλ(t) := λ1/2e−λt are uniformly bounded in the norm of
L2(R+) and therefore Young’s inequality and Theorem 4.7 show that the
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operators Lλ are bounded from LpF (R+ × Ω; γ(H,X)) to Lp(R+ × Ω;X).
Moreover, the substitution tReλ = s gives, for λ ∈ Σν ,∫ ∞

0

t1/2|k′λ(t)| dt 6 1√
cos ν

∫ ∞
0

s1/2e−s ds =
1

2

√
π

cos ν
.

This shows that the functions kλ, λ ∈ Σν , belong to K after scaling by a
constant depending only on ν. Hence, by Hypothesis (Hp), for any 0 6 ν < 1

2π
the family {Lλ : λ ∈ Σν} is R-bounded from LpF (R+ × Ω; γ(H,X)) to
LpF (R× Ω;X).

In order to view the operators Lλ as bounded operators on X̃ :=
LpF (R+ × Ω; γ(H,X)) we think of X as being embedded isometrically as
a closed subspace of γ(H,X) by identifying each x ∈ X with the rank one
operator h0 ⊗ x, where h0 ∈ H is an arbitrary but fixed unit vector. Using

this identification, LpF (R+×Ω;X) is isometric to a closed subspace of X̃ and

we may identify Lλ with a bounded operator L̃λ on X̃; the resulting family

{L̃λ : λ ∈ Σν} is R-bounded on X̃.
Suppose A has a bounded H∞(Σσ)-calculus on X for some σ ∈ [0, 1

2π).

Let Ã denote the induced operator on X̃ = LpF (R+ × Ω; γ(H,X)), given by

(ÃG)t := A(Gt) for G ∈ LpF (R+×Ω; γ(H,D(A))). It is routine to check that

Ã has a bounded H∞(Σσ)-calculus on X̃ and

(ϕ(Ã)G)t = ϕ(A)(Gt).

Noting that the operators L̃λ and R(λ, Ã) commute, the above-mentioned
result from [47], applied to the function

f(λ) = L̃λ, λ ∈ Σν ,

shows that the operator

G 7→ f(Ã)G =

∫
∂Σσ′

R(λ, Ã)L̃λGdλ

with σ < σ′ < ν, is well defined and bounded on X̃. It follows that the
operator

G 7→ f(Ã)G =

∫
∂Σσ′

R(λ, Ã)LλGdλ

with σ < σ′ < ν, is well defined and bounded from X̃ to LpF (R+×Ω;X) (cf.
[47, Theorem 4.5]). By the stochastic Fubini theorem, for adapted elementary
processes G : R+ × Ω→ L (H,D(A)) we have, for all t > 0,

(f(Ã)G)t =

∫
∂Σσ′

R(λ, Ã)LλGt dλ

=

∫
∂Σσ′

∫ t

0

λ1/2e−λ(t−s)R(λ,A)Gs dWs dλ

=

∫ t

0

∫
∂Σσ′

λ1/2e−λ(t−s)R(λ,A)Gs dλ dWs
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=

∫ t

0

A1/2e−(t−s)AGs dWs.

Putting the results together we obtain∥∥∥t 7→ ∫ t

0

A1/2S(t− s)Gs dWs

∥∥∥
Lp(R+×Ω;X)

= ‖f(Ã)G‖Lp(R+×Ω;X)

6 Cp‖G‖Lp(R+×Ω;γ(H,X))

This proves Theorem 7.1. �

Next we deduce a variant of Theorem 7.1 for processes with mixed
integrability assumptions. Its proof is a straightforward application of the
two-sided estimates for stochastic integrals in UMD spaces.

Corollary 7.4. Let the assumptions of Theorem 7.1 be satisfied, and let G ∈
LrF (Ω;Lp(R+; γ(H,X))) with r ∈ (0,∞) be given. If U is defined as in (7.1),
then

E‖A1/2U‖rLp(R+;X) 6 C
rE‖G‖rLp(R+;γ(H,X)) (7.4)

with a constant C independent of G.

Proof. By Proposition 5.1 and Theorem 7.1, applied to deterministic func-
tions G ∈ Lp(R+; γ(H,D(A))), we have

‖s 7→ A1/2S(t− s)1[0,t](s)Gs‖γ(L2(R+;H),Lp(R+;X)) 6 C‖G‖Lp(R+;γ(H,D(A))).
(7.5)

Next let G ∈ LrF (Ω;Lp(R+; γ(H,D(A)))). By Theorem 5.5 (or rather,
by its extension to the closure of the elementary adapted processes, cf. (5.6))
applied to the UMD space Lp(R+;X) we obtain

‖A1/2U‖Lr(Ω;Lp(R+;X))

h ‖s 7→ A1/2S(t− s)1[0,t](s)Gs‖Lr(Ω;γ(L2(R+;H),Lp(R+;X))).

Now (7.4) follows by applying the estimate (7.5) pointwise in Ω. �

Remark 7.5. A variation of the notion of stochastic maximal Lp-regularity,
in which the Lp(R+;X)-norm over the time variable is replaced by the
γ(L2(R+), X)-norm, has been studied in [75]. With this change, a stochastic
maximal Lp-regularity result holds for arbitrary UMD Banach spaces with
Pisier’s property (α) and all exponents 0 < p <∞. In this situation the trace
inequality (7.3) holds with (X,D(A)) 1

2−
1
p ,p

replaced by X.

8. Poisson stochastic integration

Up to this point we have been exclusively concerned with the Gaussian case.
Here we shall briefly address the problem of extending Theorem 5.5 to more
general classes of integrators. More specifically, with an eye towards the Lévy
case, a natural question is whether similar two-sided estimates as in Theorem
5.5 can be given in the Poissonian case. This question has been addressed
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recently by Dirksen [35], who was able to work out the correct norms in the
special case X = Lq(O).

We begin by recalling some standard definitions. Let (Ω,F ,P) be a
probability space and let (E,E ) be a measurable space. We write N = N ∪
{∞}.

Definition 8.1. A random measure is a mapping N : Ω × E → N with the
following properties:

(i) For all B ∈ E the mapping N(B) : ω 7→ N(ω,B) is measurable;
(ii) For all ω ∈ Ω, the mapping B 7→ N(ω,B) is a measure.

The measure µ(B) := EN(B) is called the intensity measure of N .

Definition 8.2. A random measure N : Ω× E → N with intensity µ is called
a Poisson random measure if the following conditions are satisfied:

(iii) For all pairwise disjoint sets B1, . . . , Bn in E the random variables
N(B1), . . . , N(Bn) are independent;

(iv) For all B ∈ E with µ(B) < ∞ the random variable N(B) is Poisson
distributed with parameter µ(B).

Recall that a random variable f : Ω → N is Poisson distributed with
parameter λ > 0 if

P(f = n) =
λn

n!
e−λ, n ∈ N.

For B ∈ E with µ(B) <∞ we write

Ñ(B) := N(B)− µ(B).

It is customary to call Ñ the compensated Poisson random measure associated
with N (even it is not a random measure in the sense of Definition 8.1, as it
is defined on the sets of finite µ-measure only).

Let (J,J , ν) be a σ-finite measure space and let N be a Poisson random
measure on (R+× J,B(R+)×J , dt× ν). Throughout this section we let F

be the filtration generated by the random variables {Ñ((s, u]×A) : 0 6 s <
u 6 t, A ∈J }.

An adapted elementary process φ : Ω × R+ × J → X is a linear com-
bination of processes of the form φ = 1F1(s,t]×A ⊗ x, with 0 6 s < t < ∞,
A ∈ J satisfying ν(Aj) < ∞, F ∈ Fs, and x ∈ X. For an adapted ele-
mentary process φ and a set B ∈ J we define the (compensated) Poisson
stochastic integral by∫

R+×B
1F1(s,t]×A ⊗ x dÑ := 1F Ñ((s, t]× (A ∩B))⊗ x

and extend this definition by linearity.
The next two theorems, taken from [36], give an upper and lower bound

for the Poisson stochastic integral of an elementary adapted process in the
presence of non-trivial martingale type and finite martingale cotype, respec-
tively. Theorem 8.3 may be regarded as a Poisson analogue of Theorem 4.6.
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We write

Dp
s,X := Lp(Ω;Ls(R+ × J ;X)).

Theorem 8.3. Let φ be an elementary adapted process with values in a Banach
space X with martingale type s ∈ (1, 2].

(1) If 1 < s 6 p <∞ we have, for all B ∈J ,(
E sup
t>0

∥∥∥∫
[0,t]×B

φ dÑ
∥∥∥p)1/p

.p,s,X ‖1Bφ‖Dps,X∩Dpp,X .

(2) If 1 6 p < s we have, for all B ∈J ,(
E sup
t>0

∥∥∥∫
[0,t]×B

φ dÑ
∥∥∥p)1/p

.p,s,X ‖1Bφ‖Dps,X+Dpp,X
.

Theorem 8.3 extends several known vector-valued inequalities in the
literature. In the special case where X = Rn and 2 6 p <∞, the estimate (1)
was obtained in [54, p. 335, Corollary 2.12] by a completely different argument
based on Itô’s formula. An estimate for Hilbert spaces X and 2 6 p < ∞
was obtained in [66, Lemma 3.1]. The estimate (1) is slightly stronger in this
case. In [67, Lemma 4], a slightly weaker inequality than (1) was obtained
in the special case X = Ls(µ) and p = s > 2. This result was deduced from
the corresponding scalar-valued inequality via Fubini’s theorem. Finally, in
[43], the inequality (1) was obtained in the special case when p = sn for some
integer n > 1. Using a different approach, Theorem 8.3 has been obtained
independently by Zhu [100].

The following ‘dual’ version of Theorem 8.3 holds for Banach spaces
with martingale cotype.

Theorem 8.4. Let φ be an elementary adapted process with values in a Banach
space X with martingale cotype s ∈ [2,∞).

(1) If s 6 p <∞ we have, for all B ∈J and t > 0,

‖1[0,t]×Bφ‖Dps,X∩Dpp,X .p,s,X
(
E
∥∥∥ ∫

[0,t]×B
φ dÑ

∥∥∥p)1/p

.

(2) If 1 < p < s we have, for all B ∈J and t > 0,

‖1[0,t]×Bφ‖Dps,X+Dpp,X
.p,s,X

(
E
∥∥∥∫

[0,t]×B
φ dÑ

∥∥∥p)1/p

.

For Hilbert spaces X, Theorems 8.3 and 8.4 combine to yield two-sided
estimates for the Lp-norm of the stochastic integral with respect to a com-
pensated Poisson random measure.

Corollary 8.5. Let H be a Hilbert space and let φ be an elementary adapted
H-valued process.

(1) If 2 6 p <∞, then for all B ∈J we have(
E sup
t>0

∥∥∥ ∫
[0,t]×B

φ dÑ
∥∥∥p)1/p

'p ‖1Bφ‖Dps,H∩Dpp,H .
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(2) If 1 < p < 2, then for all B ∈J we have(
E sup
t>0

∥∥∥∫
[0,t]×B

φ dÑ
∥∥∥p)1/p

'p ‖1Bφ‖Dps,H+Dpp,H
.

For the spaces X = Lq(O), where (O,Σ, µ) is an arbitrary measure
space, sharp two-sided bounds for the Poisson stochastic integral can be
proved. This result, due Dirksen [35], may be regarded as the Poisson ana-
logue of Theorem 5.5 for X = Lq(O). An alternative proof has been obtained
subsequently by Marinelli [65]. We write

Spq := Lp(Ω;Lq(O;L2(R+ × J))),

Dp
s,q := Lp(Ω;Ls(R+ × J ;Lq(O))).

Theorem 8.6. Let 1 < p, q < ∞. For any B ∈ J and for any elementary
adapted Lq(O)-valued process φ,(

E sup
t>0

∥∥∥∫
[0,t]×B

φ dÑ
∥∥∥p
Lq(O)

)1/p

'p,q ‖1Bφ‖Ip,q , (8.1)

where Ip,q is given by

Spq ∩Dp
q,q ∩Dp

p,q if 2 6 q 6 p;

Spq ∩ (Dp
q,q +Dp

p,q) if 2 6 p 6 q;

(Spq ∩Dp
q,q) +Dp

p,q if p 6 2 6 q;

(Spq +Dp
q,q) ∩Dp

p,q if q 6 2 6 p;

Spq + (Dp
q,q ∩Dp

p,q) if q 6 p 6 2;

Spq +Dp
q,q +Dp

p,q if p 6 q 6 2.

It is also shown that the estimate .p,q in (8.1) remains valid if q = 1. A
non-commutative version of Theorem 8.6 in a more general abstract setting
can be found in [35, Section 7].

In contrast to the Gaussian case, where one expression for the norm
suffices for all 1 < p, q < ∞, in the Poisson case 6 different expressions are
obtained depending on the mutual positions of the numbers p, q, and 2. This
also suggests that the problem of determining sharp two-sided bounds for
elementary adapted processes with values in a general UMD space X seems
to be a very challenging one.

Noting that X = Lq(O) has martingale type q∧2 and martingale cotype
q ∨ 2, Theorems 8.3 and 8.4 are applicable as well; for q 6= 2 the bound ob-
tained from these theorems are weaker that the ones obtained from Theorem
8.6.
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[10] Z. Brzeźniak. Some remarks on Itô and Stratonovich integration in 2-smooth
Banach spaces. In Probabilistic methods in fluids, pages 48–69. World Sci.
Publishing, River Edge, NJ, 2003.
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