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ON INDIVIDUAL STABILITY OF C0−SEMIGROUPS

J.M.A.M. VAN NEERVEN

Abstract. Let {T (t)}t>0 be a C0−semigroup with generator A on a Banach
space X. Let x0 ∈ X be a fixed element. We prove the following individual
stability results.

(i) Suppose X is an ordered Banach space with weakly normal closed cone
C and assume there exists t0 > 0 such that T (t)x0 ∈ C for all t > t0. If
the local resolvent λ 7→ (λ−A)−1x0 admits a bounded analytic extension
to the right half-plane {Re λ > 0}, then for all µ ∈ %(A) and x∗ ∈ X∗
we have

lim
t→∞

˙
T (t)(µ − A)−1x0, x

∗¸ = 0.

(ii) Suppose E is a rearrangement invariant Banach function space over
[0,∞) with order continuous norm. If x∗0 ∈ X∗ is an element such
that t 7→ 〈T (t)x0 , x∗0〉 defines an element of E, then for all µ ∈ %(A) and
β > 1 we have

lim
t→∞

˙
T (t)(µ −A)−βx0, x

∗
0

¸
= 0.

For an n× n matrix A, the linear differential equation

(1)
u′(t) = Au(t) (t > 0)

u(0) = u0

is solved by u(t) = T (t)u0, where T (t) := etA. The classical Lyapunov theorem
asserts that {T (t)}t>0 decays at exponential rate to 0 if and only if all eigenvalues
of A are located in the open left halfplane. The importance of this result resides
in the fact that it enables one to derive a priori information about the asymptotic
behaviour of the solutions of (1) from the spectral properties of A.

If A is the infinitesimal generator of a C0−semigroup {T (t)}t>0 of bounded
linear operators on an infinite-dimensional Hilbert space, it may happen that the
semigroup is unstable although

s(A) := sup{Reλ : λ ∈ σ(A)} < 0.

The first example of such a semigroup was given by Zabczyk [16]. As it turns out,
in contrast to the finite-dimensional case we have to take into account the growth of
the resolvent operators R(λ,A) = (λ−A)−1. Indeed, if C+ := {λ ∈ C : Reλ > 0}
belongs to the resolvent set %(A) and

(2) sup
λ∈C+

‖R(λ,A)‖ <∞,
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then there exist constants ω > 0 and M > 1 such that

‖T (t)‖ 6Me−ωt, ∀t > 0.

This was proved by Gearhart [5] for contraction semigroups, whereas the general
case is due to Herbst [6] and Prüss [11].

For C0−semigroups on an infinite-dimensional Banach space, the Gearhart-
Herbst-Prüss theorem fails. The following counterexample, due to Arendt [1], is
particularly concise. Let 1 6 p < q <∞ and consider the C0−semigroup {T (t)}t>0

on Lp(1,∞) ∩ Lq(1,∞) defined by

(T (t)f)(s) = e
t
q f(set), t > 0, s ∈ (1,∞).

Then (2) holds, but ‖T (t)‖ > 1 for all t > 0.
This time the problem can be attributed to the failure of the Plancherel theorem

for Banach space-valued functions. Using the notion of Fourier type, Wrobel and
Weis [14] recently obtained a generalization of the Gearhart-Herbst-Prüss theorem
for Banach spaces with Fourier type p ∈ [1, 2]. As a corollary to the Wrobel-
Weis theorem we have the following result, valid for arbitrary C0−semigroups on a
Banach space: if (2) holds, then there exist constants ω > 0 and M > 1 such that
for all x ∈ D(A) we have

(3) ‖T (t)x‖ 6Me−ωt‖x‖D(A), ∀t > 0.

Here ‖x‖D(A) = ‖x‖ + ‖Ax‖ denotes the graph norm. For an overview of these
results we refer to the monograph [10].

In [9], the following generalization of (3) to individual orbits was obtained. If
x0 ∈ X is an element whose local resolvent λ 7→ R(λ,A)x0 admits a bounded
analytic extension to C+, then for all µ ∈ %(A) there exists a constant M > 0 such
that

(4) ‖T (t)R(µ,A)x0‖ 6M(1 + t), ∀t > 0.

By a simple resolvent expansion argument, if (2) holds and (4) holds for all x0 ∈ X ,
then (3) holds for all x ∈ D(A). A generalization of (4) to the context of Laplace
transforms of arbitrary exponentially bounded vector-valued functions was obtained
subsequently by Batty and Blake [3].

The estimate in (4) raises the natural question whether linear growth is optimal.
This has been the object of some investigations, the main results of which we
summarize next.

In [7] it is shown that if X has Fourier type p ∈ (1, 2], then bounded analytic
extendability of the local resolvent implies

lim
t→∞

‖T (t)R(µ,A)x0‖ = 0.

In the same paper an example is given which shows that this result is false for
arbitrary Banach spaces. In this example, however, we do have

lim
t→∞
〈T (t)R(µ,A)x0, x

∗〉 = 0, ∀x∗ ∈ X∗,

thereby leaving open the possibility that bounded analytic extendability of the local
resolvent always implies boundedness of T (·)R(µ,A)x0 or even its weak convergence
to 0.

In [4], it is shown that if T is a C0−semigroup on an ordered normal Banach
space X with cone C, and x0 ∈ C is such that T (t)x0 ∈ C for all t > 0 and the
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local resolvent λ 7→ R(λ,A)x0 has a bounded analytic extension to C+, then for all
µ ∈ %(A) there exists a constant M > 1 such that

(5) ‖T (t)R(µ,A)x0‖ 6M(1 + ln t), ∀t > 0.

We shall now give a surprisingly simple proof that in the situation of (5) we
actually have weak convergence to 0:

lim
t→∞
〈T (t)R(µ,A)x0, x

∗〉 = 0, ∀x∗ ∈ X∗.

In particular, by the uniform boundedness theorem this implies that

sup
t>0
‖T (t)R(µ,A)x0‖ <∞.

Recall that the abscissa of improper convergence of the Laplace transform of a
function f ∈ L1

loc[0,∞) is defined as the infimum ω(f) of all ω ∈ R such that the
integral

Lf(λ) :=

∫ ∞

0

e−λtf(t) dt

converges as an improper integral for all λ ∈ C with Reλ > ω. The Laplace
transform Lf is analytic in the open half-plane {Reλ > ω(f)}. The Pringsheim-
Landau theorem [13, Theorem II.5b], [10, Theorem 1.3.4], asserts that for positive
f , the function Lf cannot be extended analytically to a neighbourhood of the point
ω(f).

Lemma 1. Let 0 6 f ∈ L1
loc[0,∞) be a function whose Laplace transform admits

an analytic extension F to C+ satisfying supλ∈C+
|F (λ)| 6 M for some constant

M > 0. Then f ∈ L1[0,∞) and ‖f‖L1[0,∞) 6M.

Proof. By the Pringsheim-Landau theorem, ω(f) 6 0. Hence by analytic continu-
ation, for all Reλ > 0 we have

∫ ∞

0

e−λtf(t) dt = F (λ).

Noting that |F (λ)| 6 M for all Reλ > 0, upon letting λ ↓ 0 from the Monotone
Convergence theorem we obtain

∫ ∞

0

f(t) dt = lim
λ↓0

∫ ∞

0

e−λtf(t) dt 6 M.

We will say that a function g ∈ L1
loc[0,∞) is asymptotically positive if there exists

a function 0 6 h ∈ L1[0,∞) such that g + h > 0 a.e.

Theorem 2. Let T be a C0−semigroup on a Banach space X. Let x0 ∈ X and
x∗0 ∈ X∗ be such that the following two conditions are satisfied:

(i) t 7→ 〈T (t)x0, x
∗
0〉 is asymptotically positive;

(ii) λ 7→ 〈R(λ,A)x0, x
∗
0〉 admits a bounded analytic extension to C+.

Then for all µ ∈ C with Reµ > max{ω0(T), 0} we have

lim
t→∞
〈T (t)R(µ,A)x0, x

∗
0〉 = 0.
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Proof. Choose 0 6 h ∈ L1[0,∞) such that f(t) := 〈T (t)x0, x
∗
0〉+h(t) > 0 for almost

all t > 0. Then Lf(λ) = 〈R(λ,A)x0, x
∗
0〉 + Lh(λ) for Reλ large enough, and Lf

admits a bounded analytic extension to C+. Hence by Lemma 1, f ∈ L1[0,∞) and
therefore also 〈T (·)x0, x

∗
0〉 ∈ L1[0,∞). Now let Reµ > max{ω0(T), 0}. Then,

|〈T (t)R(µ,A)x0, x
∗
0〉| 6

∫ ∞

0

e−Reµs|〈T (t+ s)x0, x
∗
0〉| ds 6

∫ ∞

t

|〈T (s)x0, x
∗
0〉| ds.

Since the right hand side tends to 0 as t→∞, this proves the theorem.

Recall that if X is an ordered Banach space with weakly normal closed cone C,
cf. [12, V.3], then every real x∗ ∈ X∗ admits a decomposition x∗ = x∗+ − x∗− with
〈x, x∗+〉 > 0 and 〈x, x∗−〉 > 0 for all x ∈ C. Examples of such spaces are:

• Banach lattices with the cone of positive elements;
• C∗-algebras with the cone positive selfadjoint elements.

Theorem 3. Let T be a C0−semigroup on an ordered Banach space X with weakly
normal closed cone C. Let x0 ∈ X be such that:

(i) There exists t0 > 0 such that T (t)x0 ∈ C for t > t0;
(ii) λ 7→ R(λ,A)x0 admits a bounded analytic extension to C+.

Then for all µ ∈ %(A) and x∗ ∈ X∗ we have

lim
t→∞
〈T (t)R(µ,A)x0, x

∗〉 = 0.

Proof. Let x∗ ∈ X∗ be fixed. By decomposing x∗ if necessary into real and imag-
inary parts and representing each of these as the difference of two elements that
are positive on C, we may assume that 〈x, x∗〉 > 0 for all x ∈ C. In particular,
〈T (t)x0, x

∗〉 > 0 for all t > t0. It follows that the function 〈T (·)x0, x
∗〉 is asymptoti-

cally positive, and therefore by Theorem 2, for all µ ∈ C with Reµ > max{ω0(T), 0}
we have

lim
t→∞
〈T (t)R(µ,A)x0, x

∗〉 = 0.

For general µ ∈ %(A), choose an arbitrary µ0 ∈ C with µ0 > max{ω0(T), 0} and
apply the resolvent identity to conclude that

lim
t→∞
〈T (t)R(µ,A)x0, x

∗〉
= lim

t→∞
〈T (t)R(µ0, A)x0, x

∗〉+ (µ0 − µ) lim
t→∞
〈T (t)R(µ0, A)x0, R(µ,A∗)x∗〉 = 0.

In the course of the proof of Theorem 2 it was shown that from

(6)

∫ ∞

0

|〈T (t)x0, x
∗〉| dt <∞

it follows that
lim
t→∞
〈T (t)R(µ0, A)x0, x

∗〉 = 0.

We will give several extensions of this simple observation, where the rôle of L1[0,∞)
is replaced by certain Banach function spaces over [0,∞).

Let us first observe, however, that from (6) it does not necessarily follow that
limt→∞〈T (t)x0, x

∗〉 = 0. In fact, there exist unbounded C0−semigroups for which
∫ ∞

0

|〈T (t)x, x∗〉| dt <∞, ∀x ∈ X, x∗ ∈ X∗;
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see e.g., [10]. Then by the uniform boundedness theorem, there exist x0 ∈ X and
x∗0 ∈ X∗ such that t 7→ 〈T (t)x0, x

∗
0〉 is unbounded.

In what follows we need some terminology concerning Banach function spaces.
We refer to [8] and [15] for an explanation of the terminology we are using.

A Banach function space E has order continuous norm if every net in E that
decreases to 0 is convergent to 0. Every separable Banach function space has order
continuous norm. If E is a rearrangement invariant Banach function space over
[0,∞), then E has order continuous norm if and only if the simple functions are
dense and

lim
t↓0

φE(t) = 0,

where the fundamental function of E is defined as

φE(t) := ‖χHt‖E, t > 0;

here Ht is any measurable subset of [0,∞) of measure t and χHt is its indicator
function.

Lemma 4. If E is a rearrangement invariant Banach function space over [0,∞)
with order continuous norm, then the semigroup S of left shifts on E,

S(t)f(s) = f(s+ t), f ∈ E, s, t ∈ [0,∞),

is a C0−contraction semigroup which is strongly stable, i.e.

lim
t→∞

‖S(t)f‖E = 0, ∀f ∈ E.

Proof. It is a trivial consequence of the rearrangement invariance that each operator
S(t) is a contraction.

In order to prove strong continuity of S we note that from limt↓0 φE(t) = 0 it
follows that limt↓0 ‖S(t)f − f‖E = 0 for simple functions f . These functions being
dense in E, the strong continuity of S follows by a density argument.

It remains to prove strong stability. Let f ∈ E be fixed. By considering positive
and negative parts separately, we may assume that f > 0. By rearrangement
invariance, ‖S(t)f‖E = ‖f · χ[t,∞)‖E. Since f · χ[t,∞) ↓ 0 as t → ∞, the order
continuity of the norm implies

lim
t→∞

‖S(t)f‖E = lim
t→∞

‖f · χ[t,∞)‖E = 0.

In what follows, T is a C0−semigroup with generator A on a Banach space X ,
Y is another Banach space and P ∈ L(X,Y ) is a bounded linear operator. For
instance, Y could be the scalar field and P = x∗0 an element of X∗.

Lemma 5. Let E be a rearrangement invariant Banach function space over
[0,∞) with order continuous norm. If x0 ∈ X is an element such that

t 7→ ‖PT (t)x0‖
belongs to E, then for all β > 0 and µ ∈ C with Reµ > max{ω0(T), 0} the function

t 7→ ‖PT (µ−A)−βx0‖
belongs to E.
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Proof. Case 1. First we prove the lemma for β = 1.
Define f(t) := ‖PT (t)R(µ,A)x0‖. For almost all t ∈ [0,∞) we have

(7)

‖PT (t)R(µ,A)x0‖ 6
∫ ∞

0

e−Reµs‖PT (t+ s)x0‖ ds

=

∫ ∞

0

e−ReµsS(s)f(t) ds = R(Reµ,B)f(t),

where B denotes the generator of the left shift semigroup S in E. It follows that
‖PT (·)R(µ,A)x0‖ ∈ E.

Case 2. Next let β ∈ (0, 1). With the above notation,
∫ ∞

0

s−β‖R(Reµ+ s,B)f‖E ds 6
∫ ∞

0

s−β(Reµ+ s)−1‖f‖E ds <∞.

This estimate shows that the integral
∫∞

0 s−βR(Reµ+s,B)f ds exists as a Bochner
integral in E. Using the identity

(µ−A)−βx0 =
sinπβ

π

∫ ∞

0

s−βR(µ+ s, A)x0 ds

and (7), for almost all t we have

‖PT (t)(µ−A)−βx0‖ 6
sinπβ

π

∫ ∞

0

s−β‖PT (t)R(µ+ s, A)x0‖ ds

6 sinπβ

π

∫ ∞

0

s−βR(Reµ+ s,B)f(t) ds.

Hence,

‖PT (·)(µ−A)−βx0‖ 6
sinπβ

π

∫ ∞

0

s−βR(Reµ+ s,B)f ds

almost everywhere, and therefore ‖PT (·)(µ−A)−βx0‖ ∈ E.
Case 3. If β > 1 we write β = m + γ with m ∈ N and γ ∈ [0, 1) and apply the

Cases 1 and 2.

Let E be a Banach function space over [0,∞). The associate space of E, notation
E′, consists of all measurable functions f on [0,∞) such that

‖f‖E′ := sup

{∫ ∞

0

|f(t)g(t)| dt : g ∈ E, ‖g‖E 6 1

}

is finite.
We say that E is monotone complete if for all nonnegative measurable functions

f and all sequences 0 6 f1 6 f2 6 . . . ↑ f in E with supn ‖fn‖E < ∞ it follows
that f ∈ E. It is well known [15, Theorem 15.71.3] that E is monotone complete
if and only if E = E′′ with equivalent norms. Lemma 5 remains true if the order
continuity of the norm is replaced by monotone completeness. Instead of a dom-
ination argument we now integrate against functions from the associate space E ′;
estimates similar to the ones we did above then show that ‖PT (·)(µ − A)−βx0‖
defines an element of E′′, and hence of E. We will not need this result and leave
the details to the reader.

Theorem 6. Let E be a rearrangement invariant Banach function space over
[0,∞) with order continuous norm. If x0 ∈ X is a fixed element for which the
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function t 7→ ‖PT (t)x0‖ belongs to E, then for all β > 1 and µ ∈ C with Reµ >
max{ω0(T), 0} we have

lim
t→∞

‖PT (t)(µ−A)−βx0‖ = 0.

Proof. Fix µ ∈ C with Reµ > max{ω0(T), 0}. In view of Lemma 5 it is enough to
prove the theorem for β = 1.

It is an easy consequence of the rearrangement invariance of E ′ that the function
s 7→ e−Reµs defines an element of E′; cf. [10, Lemma 4.6.1]. Therefore,

‖PT (t)R(µ,A)x0‖ 6
∫ ∞

0

e−Reµs‖PT (t+ s)x0‖ ds

6
∥∥e−Reµ(·)∥∥

E′

∥∥ ‖PT (t+ ·)x0‖
∥∥
E
.

The right hand side tends to 0 as t→∞ by Lemma 4.

If E is rearrangement invariant, then E ′ is rearrangement invariant as well, and
we have

(8) φE(t)φE′(t) = t, t > 0.

We shall use this identity to give an improvement of Theorem 6 under a growth
assumption on φE(t).

Theorem 7. Let E be a rearrangement invariant Banach function space over
[0,∞) with order continuous norm, and assume that there exists an α ∈ [0, 1) such
that

lim inf
t↓0

φE(t)

tα
> 0.

If x0 ∈ X is a fixed element for which the function t 7→ ‖PT (t)x0‖ belongs to E,
then for all β > α and all µ ∈ C with Reµ > max{ω0(T), 0} we have

lim
t→∞

‖PT (t)(µ−A)−βx0‖ = 0.

Proof. For β > 1 this has already been proved, so we shall assume that α < β < 1.
For t > 0 we have

PT (t)(µ−A)−βx0 = PT (t)

(
sinπβ

π

∫ ∞

0

s−βR(µ+ s, A)x0 ds

)

=
sinπβ

π

∫ ∞

0

s−β
∫ ∞

0

e−(µ+s)rPT (t+ r)x0 dr ds.

By [10, Lemma 4.6.1],
∥∥∥∥
∫ ∞

0

e−(µ+s)rPT (t+ r)x0 dr

∥∥∥∥ 6 c φE′
(
(Reµ+ s)−1

) ∥∥ ‖PT (t+ ·)x0‖
∥∥
E
,

where c := (1− e−1)−1. Using (8) and the assumption on α, for s large enough we
have

φE′
(
(Reµ+ s)−1

)
=

1

(Reµ+ s)φE ((Reµ+ s)−1)
6 K(Reµ+ s)α−1

for some finite constant K > 0. In view of 0 6 α < β < 1, this implies

Cµ :=

∫ ∞

0

s−β(Reµ+ s)α−1 ds <∞.



8 J.M.A.M. VAN NEERVEN

Combining this estimate with the above one, this yields

‖PT (t)(µ−A)−βx0‖

6 c sinπβ

π

∫ ∞

0

s−βφE′
(
(Reµ+ s)−1

)
ds ·

∥∥ ‖PT (t+ ·)x0‖
∥∥
E

6 cCµK sinπβ

π

∥∥ ‖PT (t+ ·)x0‖
∥∥
E
,

By Lemma 4, the right hand side tends to 0 as t→∞.

For all p ∈ [1,∞), the space E = Lp[0,∞) is a rearrangement Banach function

space with order continuous norm. Moreover, φE(t) = t
1
p for all t > 0. From

Theorem 7 we obtain:

Corollary 8. Let P ∈ L(X,Y ) be a bounded linear operator. If x0 ∈ E is a fixed
element such that ∫ ∞

0

‖PT (t)x0‖p dt <∞

for some p ∈ (1,∞), then for all β > 1
p and all µ ∈ C with Reµ > max{ω0(T), 0}

we have
lim
t→∞

‖PT (t)(µ−A)−βx0‖ = 0.

For p ∈ (1, 2], a global version of this result was obtained in [7] as a consequence
of the Hausdorff-Young inequality for the Fourier transform and an approximation
argument.

If E is a rearrangement invariant Banach function space over [0,∞) with the
property that limt→∞ φE(t) =∞, and if 〈T (·)x, x∗〉 ∈ E for all x ∈ X and x∗ ∈ X∗,
then the resolvent R(λ,A) admits a bounded analytic extension to C+ [10, Theorem
4.6.2]; this provides a link between Theorems 6 and 7 on the one hand and Theorem
2 on the other. The proof of this result, however, is global in nature, and in contrast
to the more direct method adopted here, it does not lead to individual stability
results.

Added in proof: After this paper had been submitted for publication, Charles
Batty found an example which shows that linear growth in (4) is optimal [2]. In this
example, {T (t)}t>0 is a positive C0−semigroup on a Banach lattice X . It follows
that the eventual positivity condition in Theorem 3 cannot be omitted.
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