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Abstract. Let G be a locally compact abelian group. A function ω : G → [1,∞) is
said to be a weight if it is locally bounded, Borel measurable and submultiplicative. We
call a weight ω on G semi-bounded if there exists a constant K and a subsemigroup S
with S − S = G, such that

ω(s) ≤ K and lim
n→∞

logω(−ns)√
n

= 0

for all s ∈ S. Using functional analytic methods we show that all Beurling algebras L1
ω(G)

whose defining weight ω is semi-bounded satisfy Ditkin’s condition.
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0. Introduction

Let A be a commutative Banach algebra and denote by ∆(A) its Gelfand space. A is
called regular if for every closed subset E ⊂ ∆(A) and every point M /∈ E there exists an
element f ∈ A such that f̆ ≡ 0 on E and f̆(M) 6= 0, where f̆ is the Gelfand transform
of f. We say that A satisfies Ditkin’s condition at M ∈ ∆(A) if for each f ∈ A with
f̆(M) = 0 there exists a sequence (fn) ⊂ A such that f̆n ≡ 0 in a neighbourhood Vn of
M and ffn → f in the norm of A. Further, A satisfies Ditkin’s condition at infinity if the
subalgebra of all f ∈ A whose Gelfand transform f̆ has compact support is norm dense in
A. The algebra A is called a Ditkin algebra if it satisfies Ditkin’s condition at every point
of ∆(A) and at infinity.

The significance of the Ditkin condition resides in a well-known result of Ditkin and
Shilov that for a semisimple regular Ditkin algebra A each closed subset of ∆(A) with
scattered boundary is a set of spectral synthesis (see [Ka, p.225], [Lo, p.86] and [Di]).
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Only recently, Bade and Dales [BD, Theorem 2.3] found a connection between the Ditkin
condition and automatic continuity of epimorphisms on commutative Banach algebras.

The group algebra L1(G) of a locally compact abelian (LCA) group G is a Ditkin
algebra, this is a standard result in Harmonic Analysis. Apart from this example however,
only relatively few subalgebras of L1(G) are known to satisfy Ditkin’s condition, e.g.

• the Segal algebras [Re2, pp. 92-93];

• the Beurling algebras L1(Rn;ωα) and L1(Zn;ωα), where 0 ≤ α < 1 and ωα(t1, ..., tn)
:= (

∑n
j=1 t

2
j)
α/2 (see [Re1, p. 132 and p.137]);

• the Beurling algebras L1
α(Qv

l ), where Qv
l is the v−times product of the group Ql of

l−adic numbers and α ≥ 0 (see [Re1, pp. 134-136]);

• the Beurling algebras L1(R;ω) and L1(Z;ω), where the weight ω is uniformly bounded

on [0,+∞) and limn→+∞ n−
1
2 logω(−n) = 0 (see [Za, Cor. 3.5]).

For all these algebras the Ditkin condition has been verified by classical methods involving
the construction of functions with certain special properties. In this paper, we will extend
this list by introducing axiomatically a class of subalgebras of L1(G) whose members turn
out to be Ditkin algebras. This class contains the Segal algebras and many Beurling
algebras that were not previously known to satisfy Ditkin’s condition. Our approach is
novel and based on functional analytic methods.

The paper is organized as follows. In Section 1 we recall some facts from the spectral
theory of non-quasianalytic group representations. In Section 2 we prove our main results.

1. Spectral Theory of Non-Quasianalytic Representations of LCA Groups

In this section we briefly recall some well-known facts concerning measure algebras,
Beurling algebras, and spectral theory of representations of LCA groups on a Banach
space. We refer to [HR], [Lo], [Ka] or [Be] for the basic theory of LCA groups and Banach
algebras.

LetG be a LCA group with unit element e. A weight ω onG is a function ω : G→ [1,∞)
which is locally bounded, Borel measurable and submultiplicative in the sense that

ω(s+ t) ≤ ω(s)ω(t) for all s, t ∈ G.

Let M(G) be the measure algebra of all bounded, regular Borel measures on G, with
convolution as multiplication. For a weight ω on G, the subalgebra Mω(G) is defined as

Mω(G) := {µ ∈M(G) : ‖µ‖ω :=

∫

G
ω(t) d|µ|(t) <∞}
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and the Beurling algebra L1
ω(G) is defined as

L1
ω(G) := {f ∈ L1(G) : ‖f‖ω :=

∫

G
|f(t)|ω(t) dt <∞}.

It follows from Lebesgue’s decomposition theorem that L1
ω(G) is identical to the absolutely

continuous part of Mω(G) and thus L1
ω(G) is an ideal of Mω(G). It is shown by Domar

[Do, Theorem 2.11] that L1
ω(G) is a regular Banach algebra if and only if the weight ω is

non-quasianalytic (n.q.a.), i.e.,

∞∑

n=1

log ω(nt)

n2
<∞ for all t ∈ G.

This generalizes a theorem of Beurling [Beu, Theorem V B] for G = R. It follows that if
ω is a n.q.a. weight on G, then the ideal

Kω(G) := {f ∈ L1
ω(G) : f̂ has compact support}

is norm dense in L1
ω(G). Here, as usual, f̂ is the Fourier transform of f ∈ L1

ω(G),

f̂(γ) :=

∫

G
γ(t)f(t) dt for all γ ∈ Ĝ,

where Ĝ is the dual group of G.

Let X be a (complex) Banach space. We denote by L(X) the Banach space of all
bounded linear operators on X. A continuous algebra homomorphism Φ : Mω(G)→ L(X)
is called a non-quasianalytic representation if the defining weight ω is non-quasianalytic
and Φ maps the unit of Mω(G) to the identity operator IX on X. A systematic theory of
n.q.a. representations has been developed recently by one of the authors [Hu]. Here, we
collect some results from this theory needed for our present purposes.

Let Φ : Mω(G)→ L(X) be a n.q.a. representation. The set

IΦ := {f ∈ L1
ω(G) : Φf = 0}

is a closed ideal in L1
ω(G). The spectrum Sp(Φ) of Φ is defined as the hull h(IΦ) of IΦ, i.e.

Sp(Φ) := h(IΦ) = {γ ∈ Ĝ : f̂(γ) = 0 for all f ∈ IΦ}.

For a closed subset Λ ⊂ Ĝ we denote by jω(Λ) and kω(Λ) the following ideals in L1
ω(G):

jω(Λ) := {f ∈ L1
ω(G) : f̂ vanishes on a neighbourhood of Λ}

and
kω(Λ) := {f ∈ L1

ω(G) : f̂ vanishes on Λ}.
If ω is bounded, then the subscript ω will be omitted and the ideals are taken in L1(G).

A n.q.a. representation Φ : Mω(G)→ L(X) is called non-degenerate if the kernel

X0 := {x ∈ X : Φf (x) = 0 for all f ∈ L1
ω(G)}
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is trivial, i.e., X0 = {0}.

Theorem 1.1 [Hu, Cor.1.2.7 and Cor.1.3.17]. Let Φ : Mω(G) → L(X) be a non-
degenerate n.q.a. representation. Then the following assertions hold:

(i) For all f ∈ jω(Sp(Φ)) one has Φf = 0.

(ii) For all t ∈ G one has
σ(Φt) = {γ(t) : γ ∈ Sp(Φ)},

where Φt is the image of the Dirac measure δt under Φ and σ(Φt) is the spectrum of
the operator Φt.

The second assertion is referred to as “Spectral Mapping Theorem”; it extends a result
of D’Antoni-Longo-Zsidó [DLZ] for bounded representations.

We call a strongly continuous group representation T : G → L(X) non-quasianalytic
if there exists a n.q.a. weight ω on G such that

‖Tt‖ ≤ ω(t) for all t ∈ G;

cf. [Wo]. For a strongly continuous n.q.a. group representation T : G → L(X) we define
the spectrum Sp(T ) of T as the set of all γ ∈ Ĝ for which there exists a net {xα} of
norm-one vectors in X such that

‖Tt(xα)− γ(t)xα‖ → 0

uniformly for t in compact subsets of G. The following functional calculus enables us to
compute the spectrum of T from an appropriate n.q.a. representation.

Theorem 1.2 [Hu, Prop.1.3.3]. Let T : G → L(X) be a strongly continuous n.q.a.
group representation and let ω be a n.q.a. weight such that ‖Tt‖ ≤ ω(t) for all t ∈ G.
Then, for each µ ∈Mω(G) there exists an operator Φµ ∈ L(X) such that

〈ρ,Φµ(x)〉 =

∫

G
〈ρ, Tt(x)〉 dµ(t) for all x ∈ X, ρ ∈ X∗.

The map µ 7→ Φµ defines a norm−decreasing algebra homomorphism Φ from Mω(G) into
L(X) which extends T in the sense that Φt = Tt for all t ∈ G. Moreover, the spectrum
Sp(Φ) of Φ coincides with the spectrum Sp(T ) of T.

Thus the spectral theory for n.q.a. group representations is an extension of Arveson’s
spectral theory for uniformly bounded group representations [Ar]. It easily follows from
Theorem 1.2 that the functional calculus Φ of a strongly continuous n.q.a. group repre-
sentation T is non-degenerate. Thus by Theorem 1.1 (ii), the spectrum of T is non-empty
if the underlying Banach space X is non-trivial. This fact is used in the proof of our main
results below.
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2. The Ditkin Condition for Certain Subalgebras of L1(G)

Let G be a LCA group. The right translation representation R of G on L1(G) given
by

Rtf(·) := f(· − t), t ∈ G,
is a strongly continuous representation and satisfies ‖Rt‖ ≤ 1 for all t ∈ G. Defining
Rµf := f ∗ µ, R extends to a norm-decreasing algebra homomorphism from M(G) to
L(X), which will also be denoted by R.

Definition 2.1. A weight ω on the LCA group G is called semi-bounded if there
exists a constant K and a subsemigroup S ⊆ G with S − S = G, such that

ω(s) ≤ K and lim
n→+∞

log ω(−ns)√
n

= 0 for all s ∈ S.

By definition, a semi-bounded weight is always non-quasianalytic.

Definition 2.2. Let G be a LCA group and let R be the right translation repre-
sentation of G on L1(G). Let S(G) denote the class of all Banach subalgebras A ⊂ L1(G)
satisfying the following properties:

(i) A is norm dense in L1(G) and the injection A ↪→ L1(G) is continuous.
(ii) A is translation-invariant, i.e., RtA ⊆ A for each t ∈ G.
(iii) For each f ∈ A the mapping G 3 t 7→ Rtf ∈ A is continuous.
(iv) There exists a semi-bounded weight ω on G such that ‖Rt‖A ≤ ω(t) for all t ∈ G.
(v) The intersection A∩ L1

ω(G) is norm dense in both L1
ω(G) and A.

Example 2.3. (1) A subalgebra A of L1(G) is called a Segal algebra (see [Re2], [Se])
if it satisfies the above properties (i)-(iii) and the following stronger version of (iv):

‖Rt‖A = 1 for all t ∈ G.

This trivially implies property (v). Consequently, all Segal algebras belong to the class
S(G). The following are examples of Segal algebras (see [Re1], [Re2], [LLW]):

• The Wiener algebra

W (R) := {f ∈ Cb(R) : ‖f‖ :=
∑

n∈Z

sup
x∈[n,n+1]

|f(x)| <∞}.

• L1(G) ∩ Lp(G) with the norm ‖f‖ := ‖f‖1 + ‖f‖p, 1 ≤ p <∞.

• Ap(G) := {f ∈ L1(G) : f̂ ∈ Lp(Ĝ)} with the norm ‖f‖ := ‖f‖1 + ‖f̂‖p, 1 ≤ p <∞.
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(2) A Beurling algebra L1
ω(G) belongs to the class S(G) if and only if the defining weight

ω is semi-bounded. To give a concrete example, let d := (d1, ..., dn), where 0 ≤ dj < 1/2,

and let ωd be the weight on Rn given by

ωd(t1, ..., tn) :=

{
1, t1, ..., tn ≥ 0;

exp(
∑n

j=1 |tj |dj ), otherwise.

The weight ωd is semi-bounded with constant K := 1 and generating subsemigroup

S := {(t1, ..., tn) ∈ Rn : t1, ..., tn ≥ 0}.

Let A be in the class S(G), with corresponding semi-bounded weight ω. The first three
properties in Definition 2.2 imply that the right translation representation {Rt : t ∈ G} is
a strongly continuous group representation of G on A satisfying

‖Rt‖A ≤ ω(t) for all t ∈ G.

It follows from Theorem 1.2 that R extends to a n.q.a. representation of Mω(G) on A,
which will also be denoted by R. For this representation we have

Rµf = f ∗ µ for all µ ∈Mω(G), f ∈ A.

Therefore, for all µ ∈Mω(G) and f ∈ A,

(∗) ‖f ∗ µ‖A = ‖Rµf‖A =
∥∥∥
∫
GRtf dµ(t)

∥∥∥
A

≤
∫
G ‖f‖A · ω(t) d|µ|(t) = ‖µ‖ω · ‖f‖A.

In particular, the extended algebra homomorphism R : Mω(G)→ L(A) is contractive.

Proposition 2.4. Let A be a Banach algebra in the class S(G).

(i) For the Gelfand space of A we have ∆(A) = Ĝ.

(ii) A is regular and semisimple.

(iii) The set {f ∈ A : f̂ has compact support} is dense in A.

(iv) A closed subspace of A is an ideal if and only if it is translation-invariant.

(v) f ∈ f ∗ A for each f ∈ A, i.e., A possesses approximate units.

Proof. Choose a semi-bounded weight ω corresponding to A as in Definition 2.2.
Let f ∈ L1

ω(G) ∩ A and denote by f (n) be the n−fold convolution product of f. Then,
f (n) ∈ L1

ω(G) ∩A and f (n+1) = Rnff for all n. Therefore, by (∗)

‖f (n+1)‖A = ‖Rf(n)f‖A ≤ ‖f (n)‖ω · ‖f‖A.

6



Since
lim
n→∞

‖f (n)‖1/nω = r(f) := sup
γ∈Ĝ
|f̂(γ)|,

we see that
lim
n→∞

‖f (n)‖1/nA = r(f).

Let ψ ∈ ∆(A). It follows that for all f ∈ L1
ω(G) ∩A,

|ψ(f)| ≤ lim
n→∞

‖f (n)‖1/nA = r(f).

By Definition 2.2 (v), L1
ω(G)∩A is norm dense in L1

ω(G), and hence also in L1(G). Thus,
the above inequality implies that ψ extends to an element in ∆(L1(G)) = Ĝ. This proves
the inclusion ∆(A) ⊆ Ĝ. The converse inclusion is obvious.

Recalling that the Gelfand tranform for L1(G) is just the Fourier transform, the
semisimplicity in (ii) follows from the uniqueness theorem for the Fourier transform. To
prove regularity, let γ ∈ Ĝ and Λ ⊂ Ĝ with γ 6∈ Λ. By the regularity of L1

ω(G) we can find
f ∈ L1

ω(G) such that f̂(γ) = 1 and f̂|Λ ≡ 0. Since A is dense in L1(G) there exists g ∈ A
such that ĝ(γ) = 1. Consider h := f ∗ g. Then, h = Rfg ∈ A, ĥ(γ) = 1 and ĥ|Λ ≡ 0. This
implies the regularity of A.

For the proof of (iii) we note that the ideal Kω(G) consisting of all f ∈ L1
ω(G) whose

Fourier transform f̂ has compact support is norm dense in L1
ω(G) (see Section 1). We have

Kω(G) ∗ A ⊆ A and the support of the Fourier transform of each function in Kω(G) ∗ A
is compact. Therefore, it suffices to show that Kω(G) ∗ A is dense in A. To this end, let
F ∈ (Kω(G) ∗ A)⊥. Then by the denseness of Kω(G) in L1

ω(G) we have 〈F, f ∗ g〉 = 0 for
all f ∈ L1

ω(G) and g ∈ A. Hence,

0 = 〈F, f ∗ g〉 = 〈F,Rfg〉 =

∫

G
〈F,Rtg〉f(t) dt for all f ∈ L1

ω(G), g ∈ A.

It follows from the strong continuity of R that that 〈F,Rtg〉 = 0 for all t ∈ G and g ∈ A.
This implies that F = 0.

To prove (iv) let I be a translation invariant closed subspace of A. Let f ∈ I. Then
Rtf ∈ I for all t ∈ G. Thus for all g ∈ L1

ω(G) ∩A

f ∗ g = Rgf =

∫

G
g(t)Rtf dt ∈ I.

Since L1
ω(G) ∩A is norm dense in A, it follows that f ∗ g ∈ I for all g ∈ A and hence I is

a closed ideal of A. For the converse, let I be a closed ideal of A. By (v) (which will be
shown below) A has approximate units. Hence for given f ∈ I there exist gn ∈ A such
that ‖f − f ∗ gn‖A → 0 as n→∞. If t ∈ G then

Rtf = lim
n→∞

Rt(f ∗ gn) = lim
n→∞

f ∗ (R−tgn).

Since R−tgn ∈ A and I is a closed ideal, we have Rt(f) ∈ I.
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To prove (v) let f ∈ A and fix ε > 0. By Definition 2.2 (iii) there exists a neighbourhood
V of the unit e ∈ G such that the Haar measure |V | of V is finite and

‖Rtf − f‖A < ε for all t ∈ V.

Let g := 1
|V |χV ∈ L1

ω(G). Note that

g ∗ f − f = Rgf − f =
1

|V |

∫

V
(Rtf − f) dt.

We have

‖g ∗ f − f‖A ≤
1

|V |

∫

V
‖Rtf − f‖A dt < ε.

By Definition 2.2 (v) we can find h ∈ L1
ω(G) ∩ A such that ‖g − h‖ω < ε. From (∗) it

follows that
‖(g − h) ∗ f‖A = ‖Rg−hf‖A ≤ ‖f‖A · ‖g − h‖ω .

Thus for h ∗ f ∈ A we have

‖h ∗ f − f‖A ≤ ‖g ∗ f − f‖A + ‖(g − h) ∗ f‖A < ε(1 + ‖f‖A).

This implies (v). �

Proposition 2.4 (iii) implies that an algebra A in the class S(G) satisfies Ditkin’s
condition at infinity. Next we will show that it satisfies Ditkin’s condition at every point
γ ∈ Ĝ = ∆(A). For this we need some auxiliary results. First we recall that there exist
left invariant means on l∞(S) whenever S is an abelian semigroup [Da, p.109, Theorem
4]. A left invariant mean on l∞(S) is a bounded linear functional φ ∈ (l∞(S))∗ such that

(i) φ(f) ≥ 0 for all f ≥ 0;
(ii) φ(1) = 1, where 1 is the constant one function;
(iii) φ(f(·+ s)) = φ(f) for all f ∈ l∞(S) and s ∈ S.

Lemma 2.5. Let A be a Banach algebra in the class S(G). Let B, C be two closed
ideals of A with C ⊂ B. If γ ∈ Ĝ and ψ ∈ (B/C)∗ satisfy

ψ([Rtf ]) = γ(t)ψ([f ])

for all t ∈ G and [f ] ∈ B/C, where [f ] denotes the equivalence class f + C in B/C, then
ψ([f ]) = 0 for all f ∈ B ∩ k({γ}).

Proof. Let K be the constant and S be the subsemigroup corresponding to the semi-
bounded weight ω given by Definition 2.2. By the Hahn-Banach theorem we can extend
ψ to an element of ψ ∈ (A/C)∗. Let φ be an invariant mean on l∞(S). Since

sup{‖Rs‖A : s ∈ S} ≤ K <∞

by Definition 2.2 (iv), for each f ∈ A the function

F (f ; s) := γ(s)−1ψ([Rsf ]), s ∈ S,
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is in l∞(S) and thus
Ψ(f) := φ(F (f ; ·)), f ∈ A,

defines a linear functional on A with ‖Ψ‖ ≤ K‖ψ‖. For s, t ∈ S and f ∈ A we have

F (Rsf ; t) = γ(s) · (γ(s+ t)−1ψ([Rs+tf ])) = γ(s)F (f ; s+ t).

It follows that
Ψ(Rsf) = γ(s)φ(F (f ; ·+ s)) = γ(s)Ψ(f),

where in the last equality we use the left invariance of φ. In other words, R∗sΨ = γ(s)Ψ
for all s ∈ S. Applying R∗−s to both sides we also have R∗−sΨ = γ(−s)Ψ, and therefore
R∗tΨ = γ(t)Ψ for all t ∈ G, since S − S = G. Thus

Ψ(Rtf) = γ(t)Ψ(f) for all t ∈ G, f ∈ A.

For g ∈ L1
ω(G) ∩A and f ∈ A this implies

Ψ(g ∗ f) = Ψ(Rgf) =

∫

G
Ψ(Rtf)g(t) dt

=

∫

G
γ(t)Ψ(f)g(t) dt = ĝ(γ)Ψ(f).

By Definition 2.2 (v), L1
ω(G) ∩A is norm dense in A. Therefore,

Ψ(g ∗ f) = ĝ(γ)Ψ(f) for all g, f ∈ A.

Let g ∈ k({γ}) ∩ B. Then, Ψ(g ∗ f) = 0 for all f ∈ A. By Proposition 2.4 (v), g is in the
norm closure of g ∗ A. Hence Ψ(g) = 0. Our assumptions on γ and ψ imply

F (g; s) = γ(s)−1ψ([Rsg]) = ψ([g])

for all s ∈ S. Thus
0 = Ψ(g) = φ(F (g; ·)) = ψ([g]),

which completes the proof. �

Next we recall an extension of Gelfand’s theorem due to Atzmon [At]: If T ∈ L(X) is
invertible and satisfies

sup
n≥1
‖T n‖ <∞, lim

n→+∞
log+ ‖T−n‖√

n
= 0,

then σ(T ) = {z0} implies T = z0IX .

Lemma 2.6. Let ω be a semi-bounded weight on the LCA group G and let T : G →
L(X) be a strongly continuous group representation such that ‖Tt‖ ≤ ω(t) for all t ∈ G.
If γ ∈ Sp(T ) is an isolated point, then there exists 0 6= x∗ ∈ X∗ such that

T ∗t x
∗ = γ(t)x∗ for all t ∈ G.

9



Proof. Let T : Mω(G) → L(X) be the extension of the given group representation
T. Let f0 ∈ L1

ω(G) be such that f̂0(γ) = 1 and suppf̂0 is disjoint from Sp(T ) \ {γ}. Then
f0 − f0 ∗ f0 ∈ jω(Sp(T )) and thus by Theorem 1.1 (i),

0 = Tf0−f0∗f0 = Tf0 − (Tf0)2.

Hence, the operator P := Tf0 is a projection and for the spectrum of the subspace repre-
sentation T |PX we have

Sp(T |PX) = {γ}.
¿From the Spectral Mapping Theorem 1.1 (ii) applied to T |PX we conclude that

σ(Tt|PX) = {γ(t)} for all t ∈ G.

Let K be the constant and S be the subsemigroup corresponding to ω. Then, for s ∈ S
we have

‖Tns|PX‖ ≤ K and log+ ‖T−ns|PX‖ = o(
√
n)

as n→ +∞. Applying Atzmon’s theorem to the operators Ts|PX we find

TsP = γ(s)P.

Since S − S = G, this identity holds for all s ∈ G. It follows that

T ∗t P
∗ = γ(t)P ∗ for all t ∈ G.

Choose y∗ ∈ X∗ such that x∗ := P ∗y∗ 6= 0. Then

T ∗t x
∗ = γ(t)x∗ for all t ∈ G.

�

A slightly more general result is proved in [Hu, Theorem 3.1.8].

Our main result now reads as follows.

Theorem 2.7. Let A be a Banach algebra in the class S(G). Let Λ ⊂ Ĝ be a closed
subset whose boundary ∂Λ is scattered. Assume f ∈ k(Λ) ∩A. Then,

f ∈ f ∗ (j(Λ) ∩A).

As a consequence, Λ is a spectral set for the Banach algebra A in the sense that

k(Λ) ∩A = j(Λ) ∩A,

and A is a Ditkin algebra.

Proof. Consider
B := f ∗ A and C := f ∗ (j(Λ) ∩A).

Then B and C are translation-invariant ideals of A with C ⊆ B. By Proposition 2.4 (v) we
have f ∈ B. We will show f ∈ C by proving that B = C.
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Consider the quotient space X := B/C. Let ω be a semi-bounded weight as in Definition
2.2. The translation representation R of G on A derives a strongly continuous group
representation Q of G on X by

Qt[g] := [Rtg], g ∈ B, t ∈ G;

here we write [g] for the class g + C. Clearly,

‖Qt‖X ≤ ‖Rt‖A ≤ ω(t), t ∈ G.

Furthermore,
Qµ[g] = [µ ∗ g], g ∈ B, µ ∈Mω(G).

We will show that X = {0} by checking that Q has empty spectrum.

Assume for a contradiction that X 6= {0} and thus Sp(Q) 6= ∅. To compute the
spectrum of Q we note that Qg = 0 for all g ∈ jω(Λ). It follows that

Sp(Q) ⊆ h(jω(Λ)) = Λ.

We want to show that Sp(Q) is contained in the boundary ∂Λ. To see this, let γ be an
interior point in Λ. Then, by the regularity of L1

ω(G), we can find a function gγ ∈ L1
ω(G)

such that ĝγ(γ) = 1 and suppĝγ ⊆ Λ \ ∂Λ. Since f̂ vanishes on Λ, we have f̂ · ĝγ = 0 and
thus f ∗ gγ = 0 by the uniqueness of the Fourier transform. Therefore, Rgγf = f ∗ gγ = 0
and thus Qgγ [f ] = [Rgγf ] = 0. This implies γ /∈ Sp(Q) and hence

Sp(Q) ⊆ ∂Λ.

Therefore Sp(Q) is a non-empty scattered set, since ∂Λ is scattered by assumption. Let
γ0 be an isolated point in Sp(Q). Applying Lemma 2.6 to Q we find 0 6= ψ ∈ X ∗ such that
Q∗tψ = γ0(t)ψ for all t ∈ G, i.e.,

ψ(Qt[g]) = γ0(t)ψ([g])

for all t ∈ G and [g] ∈ X. Lemma 2.5 yields

ψ([g]) = 0 for all g ∈ k({γ0}) ∩ B.

Note that f ∗ h ∈ k({γ0}) ∩ (f ∗ A) ⊆ k({γ0}) ∩ B for all h ∈ A. Thus ψ([f ∗ h]) = 0 for
all h ∈ A and hence ψ = 0, a contradiction.

This proves the first assertion. It follows that A satisfies Ditkin’s condition at every
point γ ∈ Ĝ. As we have seen before, A also satisfies Ditkin’s condition at infinity. Hence,
A is a Ditkin algebra. �

Corollary 2.8. Let ω be a semi-bounded weight on the LCA group G. Then the
Beurling algebra L1

ω(G) is a Ditkin algebra.

It is shown in [Re2, pp. 92-93] that all Segal algebras are Ditkin algebras. Since each
Segal algebra on G belongs to the class S(G) (see Example 2.3), our Theorem 2.7 gives a
functional analytic proof of this result.
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Our final result is an application of [BD, Theorem 2.3] to algebras in S(G).

Proposition 2.9. Let A be a Banach algebra in the class S(G) and I be a closed
ideal in A. Then each epimorphism from a Banach algebra onto A/I is automatically
continuous. As a result, the algebra A/I has a unique complete norm.

Note that non-semisimple quotients arise when A = L1(G) where G is a non-discrete
LCA group and I = j(Λ) for some non-spectral set Λ ⊂ Ĝ. The existence of such ideals
follows from Malliavin’s theorem [Ma]. In this situation Johnson’s uniqueness theorem for
semisimple Banach algebras cannot be applied.
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