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0. Introduction

Let X be a real Banach space and let X¢ be its complexification. There are
various ways to introduce a norm on X¢ which makes it into a complex Banach space.
In this note we study this problem systematically by means of cross-norms. The main
idea is the following. Regarding X¢ as the tensor product X ® C and identifying the
realification (X¢)r of X¢ with X ® R? (both tensor products are with respect to
R), we show that every ‘reasonable’ norm making X¢ into a complex Banach space
is induced by a complex-homogenous cross-norm on X ® R 2 and conversely. Thus the
study of complex norms of X¢ is reduced to that of cross-norms on X ® R 2.

This is applied to Banach lattices as follows. The complexification E¢ of a real
Banach lattice E is a complex Banach lattice in the norm ||z|| := || |z| ||, where |z]
is the complex modulus of an element z € E¢, which is defined in Section 2 below.
We show that this norm is induced by the [-norm on £ ® R2. This is the cross-norm
induced on F ® R? by the operator ideal £!/(E*;R?) of cone absolutely summing
operators.

It is interesting to observe at this point that there exist complex Banach spaces
which cannot be obtained as the complexification of a real Banach space. The existence
of such a space was proved by Bourgain [B] using probabilistic arguments; the first
explicit example was constructed by Kalton [K].

L' This work was carried out while the author was affiliated at the Centre for Math-
ematics and Computer Science (CWI) in Amsterdam.
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1. The complexification of a real Banach space

Let X be a real vector space. The complexification of X is the complex vector
space X¢ := X ® C, with scalar multiplication defined by a(x ® 8) = z ® af
(o, B € C). Here and in the rest of this note, tensor products are real.

Let Y be a complex vector space, with scalar multiplication p: Y x C — Y. Let
1/ be the restriction of u to Y x R. The realification of Y is the real vector space
Yr := Y with scalar multiplication p’. Thus as a set, Y and Y are the same. If X is
a real vector space, then (X¢)r can be identified with X ® R? by the natural map

x® (a+bi)— (xR (a,b)).
In turn, X ® R2 can be identified with X x X by the natural map
z® (a,b) — (az,bx).
We will use the somewhat informal notation z+iy for the element x®1+y®1i € X¢
and (z,y) for the element * ® (1,0) +y ® (0,1) € X @ R? = (X¢ )r -

Following [R], a norm || - [[c on X¢ will be called admissible if for all z,y € X we
have

max (||z[], [lyll) < llz +dyllc < [l + [yl

Two admissible norms | - [ and || - ||; are of special interest. They are defined by

| 4+ iylloo := sup ||z cos@®+ ysind|,

0<0<2n

|z + iyl = nf Y Jar +byi] [,
T

where the infimum is taken over all finite sequences (a., b, x,) € R x R x X such that
Y op0rx, =2 and Y bz, =y.
The following two propositions, taken from [R], summarise some properties of

admissible norms. The notation (-,-) is used for the pairing between the dual space
X* and X.

Proposition 1.1.

(i) If a norm || - ||c satisfies max(||z||, ||y||) < ||z + iy||c, then it is admissible if and
only if ||z||c = ||z|| holds for all x € X.

(ii) The norms || - || and || - ||z are admissible. Moreover, if || - ||c is any admissible
norm on Xc, then || - floo < |- flc <[ l1;

(iv) &+ iylleo = sup{ ((z*, 2)% + (z*,9)?)? : 2* € X*, ||| < 1}.
The pairing
(2" +iy*, x +iy) == (2%, 2) — (¥, y) + ({2, y) + (¥", 2))

defines a natural vector space isomorphism 9 : (X*)c — (X¢)*. If ||-|| is an admissible
norm on X¢, then ¢ induces a norm on (X*)c, for which we have the following.



Proposition 1.2. The norm which is induced on (X*)¢ by 1 is admissible again.

The norms || - ||oc and || - ||; are dual to each other in the sense that 1 gives
rise to isometrical isomorphisms (X¢, || - [[1)* = (X*)c, |« [loo) and (Xc, || - [loo)* =
(X%, 1)

Next we summarise some properties of cross-norms. For proofs and more informa-
tion we refer to [DU]. Let X and Y be real Banach spaces. A norm ||-||g on X®Y is said
to be a reasonable cross norm (briefly, a cross-norm), if for all z € X,y € Y, 2* € X*
and y* € Y* we have

() llz @ ylo = 2| Iyl

(i) =" @ y*lle = [l | [ly*|-

Here [|z* ® y*||g is the norm of z* ® y* regarded as the element of (X @ Y, || - [|g)*
defined by

(" @y’ zey) = ")y, y)
Two cross-norms || - || and || - || are of special interest. They are defined by
lulle := sup{[(z" @ y", w)| : "I < 1, ly"| < 1};

lullx := inf Y~ aal| lynll,
n

where the infimum is taken over all finite sequences (z,,y,) € X x X such that u
is representable as u = )z, ® y,. The following proposition is taken from [DU,
Chapter 8|.

Proposition 1.3. Let ||| and || - ||g be a norm resp. a cross-norm on X @ Y.
(i) If for all x,y,z* and y* we have [z @ y|| < [lz|| |lyll and [lz* @ y*[| < [[=*[| [ly*[],
then || - || is a cross-norm;
(i) |- lle < [+ lle <~ [l3
(iii) The norm on X*®Y*, regarding it as a subspace of (X QY ||-||g)*, is a cross-norm
again. In this way the norms || - || and || - || are dual to each other.

We will now prove a theorem which relates admissible norms on X¢ to cross-
norms on its realification X ® R 2. First note that since X¢ and (X¢)r have the same
underlying set, a norm on X¢ induces a norm on X ® R2. Conversely, a norm on
X ® R? induces a norm on X¢ if and only if for all z,y € X and a,b € R we have

I(az = by, bx + ay)|| = (a® + %) ||(z, y)|- (*)
This is because in X¢ this equation reads
[(a 4 bi)(z + iy)|| = |a + bi] [z + 1y

Let us call a norm on X ® R 2 satisfying (x) a complez-homogeneous norm.

Theorem 1.4. A norm on X¢ is admissible if and only if it is induced by a complex-
homogeneous cross-norm on X @ R 2.
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Proof: Let || - ||g be a complex-homogeneous cross-norm on X ® R2. We must show
that the norm || - ||c on X¢ given by ||z + iy|/c := ||(z,v)| g is admissible. Since by
convention (z,y) =z ® (1,0) + y ® (0, 1) we have

Iz +iyllc = [[(z,9)lle < [zl [(L,0)I+ [[yll (0, )] = [lz]| + |yl
Also, by Proposition 1.3 (ii),

o+ iylle = @ p)le > @)l = sup{Jale, 2) + ba*,y)] : 2" < 1,](a,b)] < 1}
> sup{ (e, )| : " || < 1} = .

The inequality ||z + iy||c = ||y|| is proved similarly.
Conversely, let || - [[c be admissible. Then the induced norm | - || on X ® R? is
complex-homogeneous, and we have by Proposition 1.1 (i)

lz @ (a,b)[[e = [[(az, bz)||e = [[(a + bi)zllc = a+bi] lz]lc = |a+ bi] ||=[.

Also,
lz* @ (a,b)lle = sup{lafz”, z) + bla™, )| : (z,y)lle =1}
= sup{|a(z”,z) + b{z", y)| : |z +iylc =1}
= sup{|Re((a — bi)z*,z + iy)| : ||z + iy)|lc =1}
< i@ = bi)z™lc = la = bif [|"|lc = la —bi] |7
= |a + bi| ||=*].
Here we used the fact that the dual norm of || - ||c is admissible in tandem with
Proposition 1.1 (i). Thus we have shown that ||z*® (a,b)||e < [|z*| ||(a, b)||. Therefore
by Proposition 1.3 (i) the norm || - ||g is a cross-norm. "

By now, the following theorem should not come as a surprise.
Theorem 1.5. ||| induces || - ||~ and || - ||x induces || - ||1.

Proof: Let us prove the first assertion.
Iz, y)lle = sup sup [a(z", z) +b{z", y)
[z [I=11l(a,b)|I=1

= sup sup [{x*,x)cosfh+ (x*,y)sinb)|
[[z*||=10<0<27

= sup ((z%,2)% + (z%,y)%)2

|z =1
= [lz + iylloo-
The proof of the other statement is also quite formal and omitted. ]
Of course, we could also prove the above theorem by showing the || - || - and the

| - ||e-norms to be complex-homogeneous.
We close this section with some easy examples.
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Example 1.6.  Co(2C) = (Co(4R)c, || -[loo) and L (1C) = (L' (w; R)e, || 1)

Indeed, since Co(Q;R?) = (Co(ER) @ R2 || - ||o) and LY(u;R?) = (LY (s R) ®
R2 |- lx) ( [DU]), this follows from Theorem 1.5.
Example 1.7. Let H be a real Hilbert space. On the complexification He =
H ®c R? there is a natural inner product (-,-)c given by

(o + i1, yo + iy1) == (zo,Yo) + (z1,41) + i({z1, Y0) — (T, Y1)
This inner product turns Hc into a complex Hilbert space with (admissible) norm
lzo + da1[| = ([lzoll + [lz1]]).
On the other hand, if H and G are real Hilbert spaces, on the tensor product H ® G
we can define the inner product
(20 @ Yo, 21 ® Y1) = (0, 1) (Yo, Y1),

and consequently the completion H®G of H ® G is a real Hilbert space. In the
particular case G = R?2, the norm on H®R ? is given by

lz0 @ (1,0) + 21 ® (0, 1)[|* := ([|zo ]| + |21 [|*)?-
Therefore, the identity map on H induces a natural isometrical isomorphism
(He)r ~ HOR 2.
Example 1.8. Let X be a real Banach space. The identity map on £(X) induces
a natural algebraic isomorphism (£(X))c ~ £(X¢ ). Suppose we are given a complex
norm on X¢ which turns it into a complex Banach space. Let ||-|| denote the associated

complex-homogenous cross-norm on X ® R2. The elements of the algebraic tensor
product £(X) ® R? act in a natural way as bounded linear opertors on X ® R? by

= ((T()ZL'O — Tll'l) &® (1, 0)) + ((T(){lfl + Tlflf()) &® (0, 1))
The idea behind this is that we regard (1,0) as ‘multiplication by 1’ i.e. the

1 0
on R2. The norm || - || on £(X)® R ? induced by £(X @ R2, || - ||) is easily checked to
be complex-homogenous, and satisfies

max{||To||, |71} < [[To ® (1,0) + T3 ® (0, || < [[Tol| + |71 -
On the other hand, giving (£(X))c the norm of £(X¢), we have
[T0 + i1 || = sup{[((To + iT1) (2o + iz1))| + |lwo + iza ]| < 1}
= sup{|[(Toxo — Thz1 + i(Tox1 + Thxo))| : ||zo + x| < 1}
= sup{[{(Tozo — T1z1) ® (1,0) + (Tox1 + T12z9) ® (0.1)
[zo ® (1,0) + 21 @ (
= |ITo ® (1,0) + T1 ® (0, 1)[| c(xor2,).|)-

Thus, the norm on (£(X))c is admissible and we have a natural isometrical isomor-
phism

identity operator on R 2, and (0, 1) as ‘multiplication by 4’, i.e. the operator (0 -1 )

)|
0, D[l <1}

(L(X)e)r = (LX) @R ).
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Example 1.9. Let A be a real commutative C*-algebra, i.e. a real commutative
Banach algebra such that ||z2|| = ||z||? for all z € A. On the complexification Ac,
which is a commutative algebra under the multiplication (a +ib)(c+id) = (ac —bd) +
i(ac + bd), the norm

la+ibllc = ||la® + b?||2

defines an algebra norm which coincides with the original norm on the real part A.
Commutativity is used to prove the triangle inequality. Moreover, with the natural
involution on Ac, (a + ib)* = a — ib, we have

I(a +ib)*(a+ib)|| = [la® + b*|| = [la +b]]%,

so Ac is a complex commutative C*-algebra. Therefore, A is isomorphic to a space
Co(02) with Q locally compact Hausdorff, and to a space C(K), K compact Hausdorff,
if A has a unit. It follows that A is isomorphic to the real part of these spaces, i.e. to
the space of real-valued continuous functions on 2 or K.

Let us now show how the norm | - || arises in a natural way from a complex-
homogenous cross-norm on A®@R 2. Given two complex C*-algebras Ay and A; acting
on Hilbert spaces Hy and H;, respectively, the algebraic tensor product acts in a
natural way on Hy ® H; by the formula

(ao X al)(ho X hl) = ao(ho) al(hl).

The operator norm on £L(Hy®H;) turns the completion of Ag ® A; into a complex
C*-algebra Ag®y, A1, the spatial tensor product of Ay and A;. In the case of two
abstract complex C*-algebras, one can do the same via faithful representations; the
spatial tensor product so obtained is independent of the choice of the representations.
If Ap and A; are real commutative C*-algebras, we complexify as above and consider
Ag® A; as a real-linear subspace of (4g)c ®4(A1)c. Then we define the spatial tensor
product Ag®,A; as the closure of Ag ® A1 in (Ag)c @y (A1)c. In this way, one can
check that for real commutative C'*-algebras we have the isomorphism

(Ac)r ~ A&, R2.

We do not know whether a similar argument can be given for arbitrary real C*-
algebras; in fact, it is not obvious how to define these in the right way.

2. The norm of a complex Banach lattice

In this section, we turn to a somewhat less trivial illustration of our ideas and
show how to obtain the norm of a complex Banach lattice from a cross-norm of real
Banach lattices.
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Let E be a real Banach lattice. We will define an admissible norm on E¢ as
follows. For z = x + iy € E¢ define

|z| := sup |zcosf+ ysinb)|.
0<0<2n

This supremum exists in £, and we define
20 =1 2] []-

The complex Banach space E¢ with this structure is called a complex Banach space.
For more details, we refer to [LZ] and [S]. In fact one can show [MW] that |- | is
the unique extension of the modulus function of F to a function E¢x — E. satisfying
laz] = |a| |z], (a € C) (complex-homogenity) and |z1 + 22| < |21|+|22| (subadditivity).
Thus one can talk about E¢ as the complex Banach lattice associated to E. The
function | - | on E¢ will be called the modulus function of E¢ .

The following result is due to de Schipper [Sch] and Schaefer [S].

Proposition 2.1. Let Ec be a complex Banach lattice. Under the natural iden-
tification v : (E*)c ~ (Ec)*, the Banach space (Ec )* is a complex Banach lattice
again.

Since the norm of a complex Banach lattice E¢ is admissible, Theorem 1.4 shows
that it must be induced by a cross-norm on E ®r R?2. The rest of this section is
devoted to identifying this cross-norm as the [-norm. First we recall its definition.

Let E be a real Banach lattice and Y a real Banach space.

Definition 2.2.  An operator T' € L(E;Y) is cone absolutely summing (c.a.s) if

:1} < 0.

The subspace of L(E;Y) of all c.a.s. operators is denoted by £!(E;Y). Each
u=>y T, ®y, € EQY defines an operator T,, € L'(E*;Y) by

N
IT||; := sup {Z Tzl : (20)n C B, finite, Han
n=1 n

T,x" = Z(w*,xn)yn.

n

In particular, for Y = R ? this reduces to
T(x,y)x* = (<£L'*,{E>, (x*,y))
On E ® R? we define a norm by

Gz )l = T e

Lemma 2.3. The norm || -|; is a complex-homogeneous cross-norm on E ®g R?2.
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Proof: That it is a cross-norm is proved in [S]. We check that || - ||; is complex-
homogeneous. We have

l(az — by, bz + ay)||; = sup {Z((wi‘w ax —by)* + (a;,, br — ay)®)? }

_Sup{2| .T ,ar — —|—i<aj;‘;,b$+ay>|}
= sup {Z |(CL+ b@)(<x;,$> + Z<$Z,y>)|}

= la+ bi| - sup {Z(@Zﬁf + (25, 9)%) }

= (a® +0%)2|(z, )l

N=

By Theorem 1.4, || - ||; induces a norm, also denoted by || - ||;, on Ec. This norm
is self-dual in the following sense.

Lemma 2.4. The natural vector space isomorphism 1 : (E*)¢c ~ (E¢)* induces an
isometrical isomorphism ((E*)c, || - [|;) ~ ((Ec, || - [|;)*-

Proof: First we recall [S] that there is a natural isometrical isomorphism
(BR[| -|l)* ~ LY(E;R?).
Using this, the fact that ||x + iy||; = ||« — iy|; and Goldstine’s theorem we see that

12" +iy* e 0 = 1@y ) xeer2, 0

* ok

= sup {Z(@;:*,m? (5, y")2)E : (ak") € EX* finite, el = 1}

:sup{2(<x*,xn>2+<y*,xn>2) : ite, :1}

=

(xn,) C E finite Han

— ||T(I*, *

LU(ER?2)
= [[(=", y") | morz,|-,)"
= sup |(z",z) + (y",y)]

[I(z,y) [l =1
= sup |Re(z" +iy",z —iy)|
lz—iy|l:=1

= 2" +iy" | (me )10+ -
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Lemma 2.5. Let E be a real Banach lattice and let z* = x* 4+ iy* be an element of
the complex Banach lattice (E*)c. Then ||z*||; = ||z*]|.

Proof: The proof uses the following two facts [S, p. 234-5]: Firstly, for 0 < z € E we
have

(|z*|,z) = sup |(z", 2) sup‘z 25, any)

| |\$

where the second supremum is over all finite sequences (au,,x,) € C x E, such that
lan| <1and ) x, = x. Secondly,

)g 25, anty)
n

Z\anl (2" )| < (127], ).

Combining these facts, noting that the supremum is taken by |a,,| = 1, and by taking
the supremum of all 0 < x € F of norm one, we find that
} = [[2*|i-

Note that we used Goldstine’s theorem in the last identity. Since the norm on (E*)c
satisfies || |z*| || = [|z*]|, it follows that [|z*| = [|z*]|;. u

| 2] || = SUP{Z‘ 25, xp)| ¢ (x,) C Ey finite,

Theorem 2.6. The norm of a complex Banach lattice E¢ agrees with its [-norm.

Proof: The dual norms on (E*)¢ of ||| and || - ||; are again || - || and || - ||; (Proposition
2.1 and Lemma 2.4), and since they agree (Lemma 2.5), again by 2.1 and 2.4 it follows
that || - || and || - ||; agree on (E**)c. Hence, letting j : Ec — (E**)c be the natural

map, we see that for all z € F¢,

121l = N5zl = llgzlle = [I2]]:-
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