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0. Introduction

Let X be a real Banach space and let XC be its complexification. There are
various ways to introduce a norm on XC which makes it into a complex Banach space.
In this note we study this problem systematically by means of cross-norms. The main
idea is the following. Regarding XC as the tensor product X ⊗C and identifying the
realification (XC )R of XC with X ⊗ R 2 (both tensor products are with respect to
R ), we show that every ‘reasonable’ norm making XC into a complex Banach space
is induced by a complex-homogenous cross-norm on X⊗R 2 and conversely. Thus the
study of complex norms of XC is reduced to that of cross-norms on X ⊗ R 2.

This is applied to Banach lattices as follows. The complexification EC of a real
Banach lattice E is a complex Banach lattice in the norm ‖z‖ := ‖ |z| ‖, where |z|
is the complex modulus of an element z ∈ EC , which is defined in Section 2 below.
We show that this norm is induced by the l-norm on E ⊗ R 2. This is the cross-norm
induced on E ⊗ R 2 by the operator ideal Ll(E∗;R 2) of cone absolutely summing
operators.

It is interesting to observe at this point that there exist complex Banach spaces
which cannot be obtained as the complexification of a real Banach space. The existence
of such a space was proved by Bourgain [B] using probabilistic arguments; the first
explicit example was constructed by Kalton [K].

1 This work was carried out while the author was affiliated at the Centre for Math-
ematics and Computer Science (CWI) in Amsterdam.
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1. The complexification of a real Banach space

Let X be a real vector space. The complexification of X is the complex vector
space XC := X ⊗ C , with scalar multiplication defined by α(x ⊗ β) := x ⊗ αβ
(α, β ∈ C ). Here and in the rest of this note, tensor products are real.

Let Y be a complex vector space, with scalar multiplication µ : Y ×C → Y . Let
µ′ be the restriction of µ to Y × R . The realification of Y is the real vector space
YR := Y with scalar multiplication µ′. Thus as a set, Y and YR are the same. If X is
a real vector space, then (XC )R can be identified with X ⊗ R 2 by the natural map

x⊗ (a+ bi) 7→ (x⊗ (a, b)).

In turn, X ⊗ R 2 can be identified with X ×X by the natural map

x⊗ (a, b) 7→ (ax, bx).

We will use the somewhat informal notation x+iy for the element x⊗1+y⊗i ∈ XC
and (x, y) for the element x⊗ (1, 0) + y ⊗ (0, 1) ∈ X ⊗ R 2 = (XC )R .

Following [R], a norm ‖ · ‖C on XC will be called admissible if for all x, y ∈ X we
have

max
(
‖x‖, ‖y‖

)
6 ‖x+ iy‖C 6 ‖x‖+ ‖y‖.

Two admissible norms ‖ · ‖∞ and ‖ · ‖1 are of special interest. They are defined by

‖x+ iy‖∞ := sup
06θ62π

‖x cos θ + y sin θ‖,

‖x+ iy‖1 := inf
∑

r

|ar + bri| ‖xr‖,

where the infimum is taken over all finite sequences (ar, br, xr) ∈ R ×R ×X such that∑
r arxr = x and

∑
r brxr = y.

The following two propositions, taken from [R], summarise some properties of
admissible norms. The notation 〈·, ·〉 is used for the pairing between the dual space
X∗ and X.

Proposition 1.1.
(i) If a norm ‖ · ‖C satisfies max(‖x‖, ‖y‖) 6 ‖x+ iy‖C , then it is admissible if and

only if ‖x‖C = ‖x‖ holds for all x ∈ X.
(ii) The norms ‖ · ‖∞ and ‖ · ‖1 are admissible. Moreover, if ‖ · ‖C is any admissible

norm on XC , then ‖ · ‖∞ 6 ‖ · ‖C 6 ‖ · ‖1;

(iv) ‖x+ iy‖∞ = sup
{(
〈x∗, x〉2 + 〈x∗, y〉2

) 1
2 : x∗ ∈ X∗, ‖x∗‖ 6 1

}
.

The pairing

〈x∗ + iy∗, x+ iy〉 := 〈x∗, x〉 − 〈y∗, y〉+ i(〈x∗, y〉+ 〈y∗, x〉)

defines a natural vector space isomorphism ψ : (X∗)C → (XC )∗. If ‖·‖ is an admissible
norm on XC , then ψ induces a norm on (X∗)C , for which we have the following.
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Proposition 1.2. The norm which is induced on (X∗)C by ψ is admissible again.

The norms ‖ · ‖∞ and ‖ · ‖1 are dual to each other in the sense that ψ gives
rise to isometrical isomorphisms (XC , ‖ · ‖1)∗ = ((X∗)C , ‖ · ‖∞) and (XC , ‖ · ‖∞)∗ =
((X∗)C , ‖ · ‖1).

Next we summarise some properties of cross-norms. For proofs and more informa-
tion we refer to [DU]. LetX and Y be real Banach spaces. A norm ‖·‖⊗ onX⊗Y is said
to be a reasonable cross norm (briefly, a cross-norm), if for all x ∈ X, y ∈ Y, x∗ ∈ X∗
and y∗ ∈ Y ∗ we have

(i) ‖x⊗ y‖⊗ = ‖x‖ ‖y‖;
(ii) ‖x∗ ⊗ y∗‖⊗ = ‖x∗‖ ‖y∗‖.

Here ‖x∗ ⊗ y∗‖⊗ is the norm of x∗ ⊗ y∗ regarded as the element of (X ⊗ Y, ‖ · ‖⊗)∗

defined by
〈x∗ ⊗ y∗, x⊗ y〉 := 〈x∗, x〉〈y∗, y〉.

Two cross-norms ‖ · ‖ε and ‖ · ‖π are of special interest. They are defined by

‖u‖ε := sup
{
|〈x∗ ⊗ y∗, u〉| : ‖x∗‖ 6 1, ‖y∗‖ 6 1

}
;

‖u‖π := inf
∑

n

‖xn‖ ‖yn‖,

where the infimum is taken over all finite sequences (xn, yn) ∈ X × X such that u
is representable as u =

∑
n xn ⊗ yn. The following proposition is taken from [DU,

Chapter 8].

Proposition 1.3. Let ‖ · ‖ and ‖ · ‖⊗ be a norm resp. a cross-norm on X ⊗ Y .
(i) If for all x, y, x∗ and y∗ we have ‖x⊗ y‖ 6 ‖x‖ ‖y‖ and ‖x∗ ⊗ y∗‖ 6 ‖x∗‖ ‖y∗‖,

then ‖ · ‖ is a cross-norm;
(ii) ‖ · ‖ε 6 ‖ · ‖⊗ 6 ‖ · ‖π;

(iii) The norm on X∗⊗Y ∗, regarding it as a subspace of (X⊗Y, ‖·‖⊗)∗, is a cross-norm
again. In this way the norms ‖ · ‖ε and ‖ · ‖π are dual to each other.

We will now prove a theorem which relates admissible norms on XC to cross-
norms on its realification X⊗R 2. First note that since XC and (XC )R have the same
underlying set, a norm on XC induces a norm on X ⊗ R 2. Conversely, a norm on
X ⊗ R 2 induces a norm on XC if and only if for all x, y ∈ X and a, b ∈ R we have

‖(ax− by, bx+ ay)‖ = (a2 + b2)
1
2 ‖(x, y)‖. (∗)

This is because in XC this equation reads

‖(a+ bi)(x+ iy)‖ = |a+ bi| ‖x+ iy‖.

Let us call a norm on X ⊗ R 2 satisfying (∗) a complex-homogeneous norm.

Theorem 1.4. A norm on XC is admissible if and only if it is induced by a complex-
homogeneous cross-norm on X ⊗ R 2.
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Proof: Let ‖ · ‖⊗ be a complex-homogeneous cross-norm on X ⊗ R 2. We must show
that the norm ‖ · ‖C on XC given by ‖x + iy‖C := ‖(x, y)‖⊗ is admissible. Since by
convention (x, y) = x⊗ (1, 0) + y ⊗ (0, 1) we have

‖x+ iy‖C = ‖(x, y)‖⊗ 6 ‖x‖ ‖(1, 0)‖+ ‖y‖ ‖(0, 1)‖ = ‖x‖+ ‖y‖.

Also, by Proposition 1.3 (ii),

‖x+ iy‖C = ‖(x, y)‖⊗ > ‖(x, y)‖ε = sup
{
|a〈x∗, x〉+ b〈x∗, y〉| : ‖x∗‖ 6 1, |(a, b)| 6 1

}

> sup
{
|〈x∗, x〉| : ‖x∗‖ 6 1

}
= ‖x‖.

The inequality ‖x+ iy‖C > ‖y‖ is proved similarly.
Conversely, let ‖ · ‖C be admissible. Then the induced norm ‖ · ‖⊗ on X ⊗ R 2 is

complex-homogeneous, and we have by Proposition 1.1 (i)

‖x⊗ (a, b)‖⊗ = ‖(ax, bx)‖⊗ = ‖(a+ bi)x‖C = |a+ bi| ‖x‖C = |a+ bi| ‖x‖.

Also,
‖x∗ ⊗ (a, b)‖⊗ = sup

{
|a〈x∗, x〉+ b〈x∗, y〉| : ‖(x, y)‖⊗ = 1

}

= sup
{
|a〈x∗, x〉+ b〈x∗, y〉| : ‖x+ iy‖C = 1

}

= sup
{
|Re〈(a− bi)x∗, x+ iy〉| : ‖x+ iy)‖C = 1

}

6 ‖(a− bi)x∗‖C = |a− bi| ‖x∗‖C = |a− bi| ‖x∗‖
= |a+ bi| ‖x∗‖.

Here we used the fact that the dual norm of ‖ · ‖C is admissible in tandem with
Proposition 1.1 (i). Thus we have shown that ‖x∗⊗(a, b)‖⊗ 6 ‖x∗‖ ‖(a, b)‖. Therefore
by Proposition 1.3 (i) the norm ‖ · ‖⊗ is a cross-norm.

By now, the following theorem should not come as a surprise.

Theorem 1.5. ‖ · ‖ε induces ‖ · ‖∞ and ‖ · ‖π induces ‖ · ‖1.

Proof: Let us prove the first assertion.

‖(x, y)‖ε = sup
‖x∗‖=1

sup
‖(a,b)‖=1

|a〈x∗, x〉+ b〈x∗, y〉|

= sup
‖x∗‖=1

sup
06θ62π

|〈x∗, x〉 cos θ + 〈x∗, y〉 sin θ|

= sup
‖x∗‖=1

(〈x∗, x〉2 + 〈x∗, y〉2)
1
2

= ‖x+ iy‖∞.

The proof of the other statement is also quite formal and omitted.

Of course, we could also prove the above theorem by showing the ‖ · ‖π- and the
‖ · ‖ε-norms to be complex-homogeneous.

We close this section with some easy examples.
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Example 1.6. C0(Ω;C ) = (C0(Ω;R )C , ‖ · ‖∞) and L1(µ;C ) = (L1(µ;R )C , ‖ · ‖1).
Indeed, since C0(Ω;R 2) = (C0(Ω;R )⊗ R 2, ‖ · ‖ε) and L1(µ;R 2) = (L1(µ;R )⊗

R 2, ‖ · ‖π) (cf. [DU]), this follows from Theorem 1.5.

Example 1.7. Let H be a real Hilbert space. On the complexification HC =
H ⊗C R 2 there is a natural inner product 〈·, ·〉C given by

〈x0 + ix1, y0 + iy1〉 := 〈x0, y0〉+ 〈x1, y1〉+ i(〈x1, y0〉 − 〈x0, y1〉).
This inner product turns HC into a complex Hilbert space with (admissible) norm

‖x0 + ix1‖ = (‖x0‖+ ‖x1‖)2.

On the other hand, if H and G are real Hilbert spaces, on the tensor product H ⊗G
we can define the inner product

〈x0 ⊗ y0, x1 ⊗ y1〉 = 〈x0, x1〉〈y0, y1〉,
and consequently the completion H⊗̃G of H ⊗ G is a real Hilbert space. In the
particular case G = R 2, the norm on H⊗̃R 2 is given by

‖x0 ⊗ (1, 0) + x1 ⊗ (0, 1)‖2 := (‖x0‖2 + ‖x1‖2)
1
2 .

Therefore, the identity map on H induces a natural isometrical isomorphism

(HC )R ' H⊗̃R 2.

Example 1.8. Let X be a real Banach space. The identity map on L(X) induces
a natural algebraic isomorphism (L(X))C ' L(XC ). Suppose we are given a complex
norm on XC which turns it into a complex Banach space. Let ‖·‖ denote the associated
complex-homogenous cross-norm on X ⊗ R 2. The elements of the algebraic tensor
product L(X)⊗ R 2 act in a natural way as bounded linear opertors on X ⊗ R 2 by(

T0 ⊗ (1, 0)+T1 ⊗ (0, 1)
)(
x0 ⊗ (1, 0) + x1 ⊗ (0, 1)

)

:=
(
(T0x0 − T1x1)⊗ (1, 0)

)
+
(
(T0x1 + T1x0)⊗ (0, 1)

)
.

The idea behind this is that we regard (1, 0) as ‘multiplication by 1’, i.e. the

identity operator on R 2, and (0, 1) as ‘multiplication by i’, i.e. the operator

(
0 −1
1 0

)

on R 2. The norm ‖ · ‖ on L(X)⊗R 2 induced by L(X ⊗R 2, ‖ · ‖) is easily checked to
be complex-homogenous, and satisfies

max{‖T0‖, ‖T1‖} 6 ‖T0 ⊗ (1, 0) + T1 ⊗ (0, 1)‖ 6 ‖T0‖+ ‖T1‖.
On the other hand, giving (L(X))C the norm of L(XC ), we have

‖T0 + iT1‖ = sup{|〈(T0 + iT1)(x0 + ix1)〉| : ‖x0 + ix1‖ 6 1}
= sup{|〈T0x0 − T1x1 + i(T0x1 + T1x0)〉| : ‖x0 + ix1‖ 6 1}
= sup{|〈(T0x0 − T1x1)⊗ (1, 0) + (T0x1 + T1x0)⊗ (0.1)〉| :

‖x0 ⊗ (1, 0) + x1 ⊗ (0, 1)‖ 6 1}
= ‖T0 ⊗ (1, 0) + T1 ⊗ (0, 1)‖L(X⊗R 2,‖·‖).

Thus, the norm on (L(X))C is admissible and we have a natural isometrical isomor-
phism

((L(X))C )R ' (L(X)⊗ R 2, ‖ · ‖).
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Example 1.9. Let A be a real commutative C∗-algebra, i.e. a real commutative
Banach algebra such that ‖x2‖ = ‖x‖2 for all x ∈ A. On the complexification AC ,
which is a commutative algebra under the multiplication (a+ ib)(c+ id) = (ac− bd) +
i(ac+ bd), the norm

‖a+ ib‖C := ‖a2 + b2‖ 1
2

defines an algebra norm which coincides with the original norm on the real part A.
Commutativity is used to prove the triangle inequality. Moreover, with the natural
involution on AC , (a+ ib)∗ = a− ib, we have

‖(a+ ib)∗(a+ ib)‖ = ‖a2 + b2‖ = ‖a+ ib‖2,

so AC is a complex commutative C∗-algebra. Therefore, A is isomorphic to a space
C0(Ω) with Ω locally compact Hausdorff, and to a space C(K), K compact Hausdorff,
if A has a unit. It follows that A is isomorphic to the real part of these spaces, i.e. to
the space of real-valued continuous functions on Ω or K.

Let us now show how the norm ‖ · ‖ arises in a natural way from a complex-
homogenous cross-norm on A⊗R 2. Given two complex C∗-algebras A0 and A1 acting
on Hilbert spaces H0 and H1, respectively, the algebraic tensor product acts in a
natural way on H0 ⊗H1 by the formula

(a0 ⊗ a1)(h0 ⊗ h1) = a0(h0) a1(h1).

The operator norm on L(H0⊗̃H1) turns the completion of A0 ⊗ A1 into a complex
C∗-algebra A0⊗̃σA1, the spatial tensor product of A0 and A1. In the case of two
abstract complex C∗-algebras, one can do the same via faithful representations; the
spatial tensor product so obtained is independent of the choice of the representations.
If A0 and A1 are real commutative C∗-algebras, we complexify as above and consider
A0⊗A1 as a real-linear subspace of (A0)C ⊗̃σ(A1)C . Then we define the spatial tensor
product A0⊗̃σA1 as the closure of A0 ⊗ A1 in (A0)C ⊗̃σ(A1)C . In this way, one can
check that for real commutative C∗-algebras we have the isomorphism

(AC )R ' A⊗̃σR 2.

We do not know whether a similar argument can be given for arbitrary real C∗-
algebras; in fact, it is not obvious how to define these in the right way.

2. The norm of a complex Banach lattice

In this section, we turn to a somewhat less trivial illustration of our ideas and
show how to obtain the norm of a complex Banach lattice from a cross-norm of real
Banach lattices.
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Let E be a real Banach lattice. We will define an admissible norm on EC as
follows. For z = x+ iy ∈ EC define

|z| := sup
06θ62π

|x cos θ + y sin θ|.

This supremum exists in E, and we define

‖z‖ := ‖ |z| ‖.

The complex Banach space EC with this structure is called a complex Banach space.
For more details, we refer to [LZ] and [S]. In fact one can show [MW] that | · | is
the unique extension of the modulus function of E to a function EC → E+ satisfying
|αz| = |α| |z|, (α ∈ C ) (complex-homogenity) and |z1+z2| 6 |z1|+|z2| (subadditivity).
Thus one can talk about EC as the complex Banach lattice associated to E. The
function | · | on EC will be called the modulus function of EC .

The following result is due to de Schipper [Sch] and Schaefer [S].

Proposition 2.1. Let EC be a complex Banach lattice. Under the natural iden-
tification ψ : (E∗)C ' (EC )∗, the Banach space (EC )∗ is a complex Banach lattice
again.

Since the norm of a complex Banach lattice EC is admissible, Theorem 1.4 shows
that it must be induced by a cross-norm on E ⊗R R 2. The rest of this section is
devoted to identifying this cross-norm as the l-norm. First we recall its definition.

Let E be a real Banach lattice and Y a real Banach space.

Definition 2.2. An operator T ∈ L(E;Y ) is cone absolutely summing (c.a.s) if

‖T‖l := sup

{
N∑

n=1

‖Txn‖ : (xn)n ⊂ E+ finite,
∥∥∥
∑

n

xn

∥∥∥ = 1

}
<∞.

The subspace of L(E;Y ) of all c.a.s. operators is denoted by Ll(E;Y ). Each
u =

∑
n xn ⊗ yn ∈ E ⊗ Y defines an operator Tu ∈ Ll(E∗;Y ) by

Tux
∗ :=

∑

n

〈x∗, xn〉yn.

In particular, for Y = R 2 this reduces to

T(x,y)x
∗ = (〈x∗, x〉, 〈x∗, y〉).

On E ⊗ R 2 we define a norm by

‖(x, y)‖l := ‖T(x,y)‖l.

Lemma 2.3. The norm ‖ · ‖l is a complex-homogeneous cross-norm on E ⊗R R 2.
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Proof: That it is a cross-norm is proved in [S]. We check that ‖ · ‖l is complex-
homogeneous. We have

‖(ax− by, bx+ ay)‖l = sup

{∑

n

(〈x∗n, ax− by〉2 + 〈x∗n, bx− ay〉2)
1
2

}

= sup

{∑

n

|〈x∗n, ax− by〉+ i〈x∗n, bx+ ay〉|
}

= sup

{∑

n

|(a+ bi)(〈x∗n, x〉+ i〈x∗n, y〉)|
}

= |a+ bi| · sup

{∑

n

(〈x∗n, x〉2 + 〈x∗n, y〉2)
1
2

}

= (a2 + b2)
1
2 ‖(x, y)‖l.

By Theorem 1.4, ‖ · ‖l induces a norm, also denoted by ‖ · ‖l, on EC . This norm
is self-dual in the following sense.

Lemma 2.4. The natural vector space isomorphism ψ : (E∗)C ' (EC )∗ induces an
isometrical isomorphism ((E∗)C , ‖ · ‖l) ' ((EC , ‖ · ‖l)∗.
Proof: First we recall [S] that there is a natural isometrical isomorphism

(E ⊗ R 2, ‖ · ‖l)∗ ' Ll(E;R 2).

Using this, the fact that ‖x+ iy‖l = ‖x− iy‖l and Goldstine’s theorem we see that

‖x∗ + iy∗‖((E∗)C ,‖·‖l) = ‖(x∗, y∗)‖(X∗⊗R R 2,‖·‖l)

= sup

{∑

n

(〈x∗n∗, x∗〉2 + 〈x∗n∗, y∗〉2)
1
2 : (x∗n

∗) ⊂ E∗+∗ finite,
∥∥∥
∑

n

x∗n
∗
∥∥∥ = 1

}

= sup

{∑

n

(〈x∗, xn〉2 + 〈y∗, xn〉2)
1
2 : (xn) ⊂ E+ finite,

∥∥∥
∑

n

xn

∥∥∥ = 1

}

= ‖T(x∗,y∗)‖Ll(E,R 2)

= ‖(x∗, y∗)‖(E⊗R 2,‖·‖l)∗

= sup
‖(x,y)‖l=1

|〈x∗, x〉+ 〈y∗, y〉|

= sup
‖x−iy‖l=1

|Re〈x∗ + iy∗, x− iy〉|

= ‖x∗ + iy∗‖(EC ,‖·‖l)∗ .
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Lemma 2.5. Let E be a real Banach lattice and let z∗ = x∗ + iy∗ be an element of
the complex Banach lattice (E∗)C . Then ‖z∗‖l = ‖z∗‖.
Proof: The proof uses the following two facts [S, p. 234-5]: Firstly, for 0 6 x ∈ E we
have

〈|z∗|, x〉 = sup
|z|6x

|〈z∗, z〉| 6 sup
∣∣∑

n

〈z∗, αnxn〉
∣∣,

where the second supremum is over all finite sequences (αn, xn) ∈ C × E+ such that
|αn| 6 1 and

∑
n xn = x. Secondly,

∣∣∣
∑

n

〈z∗, αnxn〉
∣∣∣ 6

∑

n

|αn| |〈z∗, xn〉| 6 〈|z∗|, x〉.

Combining these facts, noting that the supremum is taken by |αn| = 1, and by taking
the supremum of all 0 6 x ∈ E of norm one, we find that

‖ |z∗| ‖ = sup

{∑

n

|〈z∗, xn〉| : (xn) ⊂ E+ finite,
∥∥∥
∑

n

xn

∥∥∥ = 1

}
= ‖z∗‖l.

Note that we used Goldstine’s theorem in the last identity. Since the norm on (E∗)C
satisfies ‖ |z∗| ‖ = ‖z∗‖, it follows that ‖z∗‖ = ‖z∗‖l.

Theorem 2.6. The norm of a complex Banach lattice EC agrees with its l-norm.

Proof: The dual norms on (E∗)C of ‖ · ‖ and ‖ · ‖l are again ‖ · ‖ and ‖ · ‖l (Proposition
2.1 and Lemma 2.4), and since they agree (Lemma 2.5), again by 2.1 and 2.4 it follows
that ‖ · ‖ and ‖ · ‖l agree on (E∗∗)C . Hence, letting j : EC → (E∗∗)C be the natural
map, we see that for all z ∈ EC ,

‖z‖ = ‖jz‖ = ‖jz‖l = ‖z‖l.
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