The Norm of a Complex Banach Lattice

J.M.A.M. van Neerven¹

Department of Mathematics TU Delft P.O. Box 5031, 2600 GA Delft The Netherlands J.vanNeerven@twi.tudelft.nl

In this note we study the problem how the complexification of a real Banach space can be normed in such a way that it becomes a complex Banach space from the point of view of the theory of cross-norms on tensor products on Banach spaces. In particular we show that the norm of a complex Banach lattice can be interpretated in terms of the *l*-tensor product of real Banach lattices.

1991 Mathematics Subject Classification: 46B42, 46M05

Keywords & phrases: Complexification of Banach space, cross-norm, Banach lattice, *l*-tensor product, cone absolutely summing operator, operator ideal.

0. Introduction

Let X be a real Banach space and let $X_{\mathbb{C}}$ be its complexification. There are various ways to introduce a norm on $X_{\mathbb{C}}$ which makes it into a complex Banach space. In this note we study this problem systematically by means of cross-norms. The main idea is the following. Regarding $X_{\mathbb{C}}$ as the tensor product $X \otimes \mathbb{C}$ and identifying the realification $(X_{\mathbb{C}})_{\mathbb{R}}$ of $X_{\mathbb{C}}$ with $X \otimes \mathbb{R}^2$ (both tensor products are with respect to \mathbb{R}), we show that every 'reasonable' norm making $X_{\mathbb{C}}$ into a complex Banach space is induced by a complex-homogenous cross-norm on $X \otimes \mathbb{R}^2$ and conversely. Thus the study of complex norms of $X_{\mathbb{C}}$ is reduced to that of cross-norms on $X \otimes \mathbb{R}^2$.

This is applied to Banach lattices as follows. The complexification $E_{\mathbb{C}}$ of a real Banach lattice E is a complex Banach lattice in the norm ||z|| := || |z| ||, where |z|is the complex modulus of an element $z \in E_{\mathbb{C}}$, which is defined in Section 2 below. We show that this norm is induced by the *l*-norm on $E \otimes \mathbb{R}^2$. This is the cross-norm induced on $E \otimes \mathbb{R}^2$ by the operator ideal $\mathcal{L}^l(E^*; \mathbb{R}^2)$ of cone absolutely summing operators.

It is interesting to observe at this point that there exist complex Banach spaces which cannot be obtained as the complexification of a real Banach space. The existence of such a space was proved by Bourgain [B] using probabilistic arguments; the first explicit example was constructed by Kalton [K].

¹ This work was carried out while the author was affiliated at the Centre for Mathematics and Computer Science (CWI) in Amsterdam.

1. The complexification of a real Banach space

Let X be a real vector space. The *complexification* of X is the complex vector space $X_{\mathbb{C}} := X \otimes \mathbb{C}$, with scalar multiplication defined by $\alpha(x \otimes \beta) := x \otimes \alpha\beta$ $(\alpha, \beta \in \mathbb{C})$. Here and in the rest of this note, tensor products are *real*.

Let Y be a complex vector space, with scalar multiplication $\mu : Y \times \mathbb{C} \to Y$. Let μ' be the restriction of μ to $Y \times \mathbb{R}$. The *realification* of Y is the real vector space $Y_{\mathbb{R}} := Y$ with scalar multiplication μ' . Thus as a set, Y and $Y_{\mathbb{R}}$ are the same. If X is a real vector space, then $(X_{\mathbb{C}})_{\mathbb{R}}$ can be identified with $X \otimes \mathbb{R}^2$ by the natural map

$$x \otimes (a+bi) \mapsto (x \otimes (a,b)).$$

In turn, $X \otimes \mathbb{R}^2$ can be identified with $X \times X$ by the natural map

$$x \otimes (a, b) \mapsto (ax, bx).$$

We will use the somewhat informal notation x+iy for the element $x \otimes 1+y \otimes i \in X_{\mathbb{C}}$ and (x, y) for the element $x \otimes (1, 0) + y \otimes (0, 1) \in X \otimes \mathbb{R}^2 = (X_{\mathbb{C}})_{\mathbb{R}}$.

Following [R], a norm $\|\cdot\|_{\mathbb{C}}$ on $X_{\mathbb{C}}$ will be called *admissible* if for all $x, y \in X$ we have

$$\max(\|x\|, \|y\|) \le \|x + iy\|_{\mathbb{C}} \le \|x\| + \|y\|$$

Two admissible norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ are of special interest. They are defined by

$$\|x + iy\|_{\infty} := \sup_{0 \leq \theta \leq 2\pi} \|x \cos \theta + y \sin \theta\|$$
$$\|x + iy\|_1 := \inf \sum_r |a_r + b_r i| \|x_r\|,$$

where the infimum is taken over all finite sequences $(a_r, b_r, x_r) \in \mathbb{R} \times \mathbb{R} \times X$ such that $\sum_r a_r x_r = x$ and $\sum_r b_r x_r = y$.

The following two propositions, taken from [R], summarise some properties of admissible norms. The notation $\langle \cdot, \cdot \rangle$ is used for the pairing between the dual space X^* and X.

Proposition 1.1.

- (i) If a norm $\|\cdot\|_{\mathbb{C}}$ satisfies $\max(\|x\|, \|y\|) \leq \|x + iy\|_{\mathbb{C}}$, then it is admissible if and only if $\|x\|_{\mathbb{C}} = \|x\|$ holds for all $x \in X$.
- (ii) The norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ are admissible. Moreover, if $\|\cdot\|_{\mathbb{C}}$ is any admissible norm on $X_{\mathbb{C}}$, then $\|\cdot\|_{\infty} \leq \|\cdot\|_{\mathbb{C}} \leq \|\cdot\|_1$;

(iv) $||x + iy||_{\infty} = \sup\{(\langle x^*, x \rangle^2 + \langle x^*, y \rangle^2)^{\frac{1}{2}} : x^* \in X^*, ||x^*|| \leq 1\}.$

The pairing

$$\langle x^* + iy^*, x + iy \rangle := \langle x^*, x \rangle - \langle y^*, y \rangle + i(\langle x^*, y \rangle + \langle y^*, x \rangle)$$

defines a natural vector space isomorphism $\psi : (X^*)_{\mathbb{C}} \to (X_{\mathbb{C}})^*$. If $\|\cdot\|$ is an admissible norm on $X_{\mathbb{C}}$, then ψ induces a norm on $(X^*)_{\mathbb{C}}$, for which we have the following. **Proposition 1.2.** The norm which is induced on $(X^*)_{\mathbb{C}}$ by ψ is admissible again.

The norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ are dual to each other in the sense that ψ gives rise to isometrical isomorphisms $(X_{\mathbb{C}}, \|\cdot\|_1)^* = ((X^*)_{\mathbb{C}}, \|\cdot\|_{\infty})$ and $(X_{\mathbb{C}}, \|\cdot\|_{\infty})^* = ((X^*)_{\mathbb{C}}, \|\cdot\|_1)$.

Next we summarise some properties of cross-norms. For proofs and more information we refer to [DU]. Let X and Y be real Banach spaces. A norm $\|\cdot\|_{\otimes}$ on $X \otimes Y$ is said to be a *reasonable cross norm* (briefly, a *cross-norm*), if for all $x \in X, y \in Y, x^* \in X^*$ and $y^* \in Y^*$ we have

- (i) $||x \otimes y||_{\otimes} = ||x|| ||y||;$
- (ii) $||x^* \otimes y^*||_{\otimes} = ||x^*|| ||y^*||.$

Here $||x^* \otimes y^*||_{\otimes}$ is the norm of $x^* \otimes y^*$ regarded as the element of $(X \otimes Y, || \cdot ||_{\otimes})^*$ defined by

$$\langle x^*\otimes y^*,x\otimes y
angle:=\langle x^*,x
angle\langle y^*,y
angle$$

Two cross-norms $\|\cdot\|_{\varepsilon}$ and $\|\cdot\|_{\pi}$ are of special interest. They are defined by

$$\|u\|_{\varepsilon} := \sup\{|\langle x^* \otimes y^*, u\rangle| : \|x^*\| \le 1, \|y^*\| \le 1\}; \\ \|u\|_{\pi} := \inf\sum_n \|x_n\| \|y_n\|,$$

where the infimum is taken over all finite sequences $(x_n, y_n) \in X \times X$ such that u is representable as $u = \sum_n x_n \otimes y_n$. The following proposition is taken from [DU, Chapter 8].

Proposition 1.3. Let $\|\cdot\|$ and $\|\cdot\|_{\otimes}$ be a norm resp. a cross-norm on $X \otimes Y$.

- (i) If for all x, y, x^* and y^* we have $||x \otimes y|| \leq ||x|| ||y||$ and $||x^* \otimes y^*|| \leq ||x^*|| ||y^*||$, then $|| \cdot ||$ is a cross-norm;
- (ii) $\|\cdot\|_{\varepsilon} \leq \|\cdot\|_{\otimes} \leq \|\cdot\|_{\pi};$
- (iii) The norm on $X^* \otimes Y^*$, regarding it as a subspace of $(X \otimes Y, \|\cdot\|_{\otimes})^*$, is a cross-norm again. In this way the norms $\|\cdot\|_{\varepsilon}$ and $\|\cdot\|_{\pi}$ are dual to each other.

We will now prove a theorem which relates admissible norms on $X_{\mathbb{C}}$ to crossnorms on its realification $X \otimes \mathbb{R}^2$. First note that since $X_{\mathbb{C}}$ and $(X_{\mathbb{C}})_{\mathbb{R}}$ have the same underlying set, a norm on $X_{\mathbb{C}}$ induces a norm on $X \otimes \mathbb{R}^2$. Conversely, a norm on $X \otimes \mathbb{R}^2$ induces a norm on $X_{\mathbb{C}}$ if and only if for all $x, y \in X$ and $a, b \in \mathbb{R}$ we have

$$\|(ax - by, bx + ay)\| = (a^2 + b^2)^{\frac{1}{2}} \|(x, y)\|.$$
(*)

This is because in $X_{\mathbb{C}}$ this equation reads

$$||(a+bi)(x+iy)|| = |a+bi| ||x+iy||.$$

Let us call a norm on $X \otimes \mathbb{R}^2$ satisfying (*) a *complex-homogeneous* norm.

Theorem 1.4. A norm on $X_{\mathbb{C}}$ is admissible if and only if it is induced by a complexhomogeneous cross-norm on $X \otimes \mathbb{R}^2$. *Proof:* Let $\|\cdot\|_{\otimes}$ be a complex-homogeneous cross-norm on $X \otimes \mathbb{R}^2$. We must show that the norm $\|\cdot\|_{\mathbb{C}}$ on $X_{\mathbb{C}}$ given by $\|x + iy\|_{\mathbb{C}} := \|(x, y)\|_{\otimes}$ is admissible. Since by convention $(x, y) = x \otimes (1, 0) + y \otimes (0, 1)$ we have

$$||x + iy||_{\mathbb{C}} = ||(x, y)||_{\otimes} \leq ||x|| ||(1, 0)|| + ||y|| ||(0, 1)|| = ||x|| + ||y||.$$

Also, by Proposition 1.3 (ii),

$$\begin{aligned} \|x+iy\|_{\mathbb{C}} &= \|(x,y)\|_{\otimes} \geqslant \|(x,y)\|_{\varepsilon} = \sup\left\{|a\langle x^*,x\rangle + b\langle x^*,y\rangle| : \|x^*\| \leqslant 1, |(a,b)| \leqslant 1\right\} \\ &\geqslant \sup\left\{|\langle x^*,x\rangle| : \|x^*\| \leqslant 1\right\} = \|x\|. \end{aligned}$$

The inequality $||x + iy||_{\mathbb{C}} \ge ||y||$ is proved similarly.

Conversely, let $\|\cdot\|_{\mathbb{C}}$ be admissible. Then the induced norm $\|\cdot\|_{\otimes}$ on $X \otimes \mathbb{R}^2$ is complex-homogeneous, and we have by Proposition 1.1 (i)

$$||x \otimes (a,b)||_{\otimes} = ||(ax,bx)||_{\otimes} = ||(a+bi)x||_{\mathbb{C}} = |a+bi| ||x||_{\mathbb{C}} = |a+bi| ||x||.$$

Also,

$$\begin{split} \|x^* \otimes (a,b)\|_{\otimes} &= \sup \{ |a\langle x^*, x\rangle + b\langle x^*, y\rangle| : \|(x,y)\|_{\otimes} = 1 \} \\ &= \sup \{ |a\langle x^*, x\rangle + b\langle x^*, y\rangle| : \|x + iy\|_{\mathbb{C}} = 1 \} \\ &= \sup \{ |\operatorname{Re}\langle (a - bi)x^*, x + iy\rangle| : \|x + iy)\|_{\mathbb{C}} = 1 \} \\ &\leq \|(a - bi)x^*\|_{\mathbb{C}} = |a - bi| \ \|x^*\|_{\mathbb{C}} = |a - bi| \ \|x^*\| \\ &= |a + bi| \ \|x^*\|. \end{split}$$

Here we used the fact that the dual norm of $\|\cdot\|_{\mathbb{C}}$ is admissible in tandem with Proposition 1.1 (i). Thus we have shown that $\|x^* \otimes (a, b)\|_{\otimes} \leq \|x^*\| \|(a, b)\|$. Therefore by Proposition 1.3 (i) the norm $\|\cdot\|_{\otimes}$ is a cross-norm.

By now, the following theorem should not come as a surprise.

Theorem 1.5. $\|\cdot\|_{\varepsilon}$ induces $\|\cdot\|_{\infty}$ and $\|\cdot\|_{\pi}$ induces $\|\cdot\|_{1}$.

Proof: Let us prove the first assertion.

$$\begin{aligned} \|(x,y)\|_{\varepsilon} &= \sup_{\|x^*\|=1} \sup_{\|(a,b)\|=1} |a\langle x^*, x\rangle + b\langle x^*, y\rangle| \\ &= \sup_{\|x^*\|=1} \sup_{0 \le \theta \le 2\pi} |\langle x^*, x\rangle \cos \theta + \langle x^*, y\rangle \sin \theta| \\ &= \sup_{\|x^*\|=1} (\langle x^*, x\rangle^2 + \langle x^*, y\rangle^2)^{\frac{1}{2}} \\ &= \|x + iy\|_{\infty}. \end{aligned}$$

The proof of the other statement is also quite formal and omitted.

Of course, we could also prove the above theorem by showing the $\|\cdot\|_{\pi}$ - and the $\|\cdot\|_{\varepsilon}$ -norms to be complex-homogeneous.

We close this section with some easy examples.

Example 1.6. $C_0(\Omega; \mathbb{C}) = (C_0(\Omega; \mathbb{R})_{\mathbb{C}}, \|\cdot\|_{\infty})$ and $L^1(\mu; \mathbb{C}) = (L^1(\mu; \mathbb{R})_{\mathbb{C}}, \|\cdot\|_1)$. Indeed, since $C_0(\Omega; \mathbb{R}^2) = (C_0(\Omega; \mathbb{R}) \otimes \mathbb{R}^2, \|\cdot\|_{\varepsilon})$ and $L^1(\mu; \mathbb{R}^2) = (L^1(\mu; \mathbb{R}) \otimes \mathbb{R}^2, \|\cdot\|_{\pi})$ (cf. [DU]), this follows from Theorem 1.5.

Example 1.7. Let *H* be a real Hilbert space. On the complexification $H_{\mathbb{C}} = H \otimes_{\mathbb{C}} \mathbb{R}^2$ there is a natural inner product $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ given by

$$\langle x_0 + ix_1, y_0 + iy_1 \rangle := \langle x_0, y_0 \rangle + \langle x_1, y_1 \rangle + i(\langle x_1, y_0 \rangle - \langle x_0, y_1 \rangle) + i(\langle x_1, y_0 \rangle - \langle x_0, y_0 \rangle) + i(\langle$$

This inner product turns $H_{\mathbb{C}}$ into a complex Hilbert space with (admissible) norm

$$||x_0 + ix_1|| = (||x_0|| + ||x_1||)^2$$

On the other hand, if H and G are real Hilbert spaces, on the tensor product $H \otimes G$ we can define the inner product

$$\langle x_0 \otimes y_0, x_1 \otimes y_1 \rangle = \langle x_0, x_1 \rangle \langle y_0, y_1 \rangle,$$

and consequently the completion $H \otimes G$ of $H \otimes G$ is a real Hilbert space. In the particular case $G = \mathbb{R}^2$, the norm on $H \otimes \mathbb{R}^2$ is given by

$$||x_0 \otimes (1,0) + x_1 \otimes (0,1)||^2 := (||x_0||^2 + ||x_1||^2)^{\frac{1}{2}}$$

Therefore, the identity map on H induces a natural isometrical isomorphism

$$(H_{\mathbb{C}})_{\mathbb{R}} \simeq H \tilde{\otimes} \mathbb{R}^2.$$

Example 1.8. Let X be a real Banach space. The identity map on $\mathcal{L}(X)$ induces a natural algebraic isomorphism $(\mathcal{L}(X))_{\mathbb{C}} \simeq \mathcal{L}(X_{\mathbb{C}})$. Suppose we are given a complex norm on $X_{\mathbb{C}}$ which turns it into a complex Banach space. Let $\|\cdot\|$ denote the associated complex-homogenous cross-norm on $X \otimes \mathbb{R}^2$. The elements of the algebraic tensor product $\mathcal{L}(X) \otimes \mathbb{R}^2$ act in a natural way as bounded linear opertors on $X \otimes \mathbb{R}^2$ by

$$(T_0 \otimes (1,0) + T_1 \otimes (0,1)) (x_0 \otimes (1,0) + x_1 \otimes (0,1)) := ((T_0 x_0 - T_1 x_1) \otimes (1,0)) + ((T_0 x_1 + T_1 x_0) \otimes (0,1))$$

The idea behind this is that we regard (1,0) as 'multiplication by 1', i.e. the identity operator on \mathbb{R}^2 , and (0,1) as 'multiplication by *i*', i.e. the operator $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ on \mathbb{R}^2 . The norm $\|\cdot\|$ on $\mathcal{L}(X) \otimes \mathbb{R}^2$ induced by $\mathcal{L}(X \otimes \mathbb{R}^2, \|\cdot\|)$ is easily checked to be complex-homogenous, and satisfies

 $\max\{\|T_0\|, \|T_1\|\} \leq \|T_0 \otimes (1,0) + T_1 \otimes (0,1)\| \leq \|T_0\| + \|T_1\|.$ On the other hand, giving $(\mathcal{L}(X))_{\mathbb{C}}$ the norm of $\mathcal{L}(X_{\mathbb{C}})$, we have

$$\begin{aligned} \|T_0 + iT_1\| &= \sup\{|\langle (T_0 + iT_1)(x_0 + ix_1)\rangle|: \|x_0 + ix_1\| \leq 1\} \\ &= \sup\{|\langle T_0x_0 - T_1x_1 + i(T_0x_1 + T_1x_0)\rangle|: \|x_0 + ix_1\| \leq 1\} \\ &= \sup\{|\langle (T_0x_0 - T_1x_1) \otimes (1, 0) + (T_0x_1 + T_1x_0) \otimes (0, 1)\rangle|: \\ &\|x_0 \otimes (1, 0) + x_1 \otimes (0, 1)\| \leq 1\} \end{aligned}$$

$$= \|T_0 \otimes (1,0) + T_1 \otimes (0,1)\|_{\mathcal{L}(X \otimes \mathbb{R}^2, \|\cdot\|)}.$$

Thus, the norm on $(\mathcal{L}(X))_{\mathbb{C}}$ is admissible and we have a natural isometrical isomorphism

$$((\mathcal{L}(X))_{\mathbb{C}})_{\mathbb{R}} \simeq (\mathcal{L}(X) \otimes \mathbb{R}^2, \|\cdot\|).$$

Example 1.9. Let A be a *real* commutative C*-algebra, i.e. a real commutative Banach algebra such that $||x^2|| = ||x||^2$ for all $x \in A$. On the complexification $A_{\mathbb{C}}$, which is a commutative algebra under the multiplication (a+ib)(c+id) = (ac-bd) + i(ac+bd), the norm

$$||a+ib||_{\mathbb{C}} := ||a^2+b^2||^{\frac{1}{2}}$$

defines an algebra norm which coincides with the original norm on the real part A. Commutativity is used to prove the triangle inequality. Moreover, with the natural involution on $A_{\mathbb{C}}$, $(a + ib)^* = a - ib$, we have

$$||(a+ib)^*(a+ib)|| = ||a^2+b^2|| = ||a+ib||^2,$$

so $A_{\mathbb{C}}$ is a complex commutative C^* -algebra. Therefore, A is isomorphic to a space $C_0(\Omega)$ with Ω locally compact Hausdorff, and to a space C(K), K compact Hausdorff, if A has a unit. It follows that A is isomorphic to the real part of these spaces, i.e. to the space of real-valued continuous functions on Ω or K.

Let us now show how the norm $\|\cdot\|$ arises in a natural way from a complexhomogenous cross-norm on $A \otimes \mathbb{R}^2$. Given two complex C^* -algebras A_0 and A_1 acting on Hilbert spaces H_0 and H_1 , respectively, the algebraic tensor product acts in a natural way on $H_0 \otimes H_1$ by the formula

$$(a_0 \otimes a_1)(h_0 \otimes h_1) = a_0(h_0) a_1(h_1).$$

The operator norm on $\mathcal{L}(H_0 \otimes H_1)$ turns the completion of $A_0 \otimes A_1$ into a complex C^* -algebra $A_0 \otimes_{\sigma} A_1$, the spatial tensor product of A_0 and A_1 . In the case of two abstract complex C^* -algebras, one can do the same via faithful representations; the spatial tensor product so obtained is independent of the choice of the representations. If A_0 and A_1 are real commutative C^* -algebras, we complexify as above and consider $A_0 \otimes A_1$ as a real-linear subspace of $(A_0)_{\mathbb{C}} \otimes_{\sigma} (A_1)_{\mathbb{C}}$. Then we define the spatial tensor product $A_0 \otimes_{\sigma} A_1$ as the closure of $A_0 \otimes A_1$ in $(A_0)_{\mathbb{C}} \otimes_{\sigma} (A_1)_{\mathbb{C}}$. In this way, one can check that for real commutative C^* -algebras we have the isomorphism

$$(A_{\mathbb{C}})_{\mathbb{R}} \simeq A \tilde{\otimes}_{\sigma} \mathbb{R}^2.$$

We do not know whether a similar argument can be given for arbitrary real C^* -algebras; in fact, it is not obvious how to define these in the right way.

2. The norm of a complex Banach lattice

In this section, we turn to a somewhat less trivial illustration of our ideas and show how to obtain the norm of a complex Banach lattice from a cross-norm of real Banach lattices. Let E be a real Banach lattice. We will define an admissible norm on $E_{\mathbb{C}}$ as follows. For $z = x + iy \in E_{\mathbb{C}}$ define

$$|z| := \sup_{0 \le \theta \le 2\pi} |x \cos \theta + y \sin \theta|.$$

This supremum exists in E, and we define

||z|| := || |z| ||.

The complex Banach space $E_{\mathbb{C}}$ with this structure is called a *complex Banach space*. For more details, we refer to [LZ] and [S]. In fact one can show [MW] that $|\cdot|$ is the *unique* extension of the modulus function of E to a function $E_{\mathbb{C}} \to E_+$ satisfying $|\alpha z| = |\alpha| |z|, (\alpha \in \mathbb{C})$ (complex-homogenity) and $|z_1 + z_2| \leq |z_1| + |z_2|$ (subadditivity). Thus one can talk about $E_{\mathbb{C}}$ as the complex Banach lattice associated to E. The function $|\cdot|$ on $E_{\mathbb{C}}$ will be called the *modulus function* of $E_{\mathbb{C}}$.

The following result is due to de Schipper [Sch] and Schaefer [S].

Proposition 2.1. Let $E_{\mathbb{C}}$ be a complex Banach lattice. Under the natural identification $\psi : (E^*)_{\mathbb{C}} \simeq (E_{\mathbb{C}})^*$, the Banach space $(E_{\mathbb{C}})^*$ is a complex Banach lattice again.

Since the norm of a complex Banach lattice $E_{\mathbb{C}}$ is admissible, Theorem 1.4 shows that it must be induced by a cross-norm on $E \otimes_{\mathbb{R}} \mathbb{R}^2$. The rest of this section is devoted to identifying this cross-norm as the *l*-norm. First we recall its definition.

Let E be a real Banach lattice and Y a real Banach space.

Definition 2.2. An operator $T \in \mathcal{L}(E; Y)$ is cone absolutely summing (c.a.s) if

$$||T||_l := \sup\left\{\sum_{n=1}^N ||Tx_n|| : (x_n)_n \subset E_+ \text{ finite, } \left\|\sum_n x_n\right\| = 1\right\} < \infty.$$

The subspace of $\mathcal{L}(E;Y)$ of all c.a.s. operators is denoted by $\mathcal{L}^{l}(E;Y)$. Each $u = \sum_{n} x_{n} \otimes y_{n} \in E \otimes Y$ defines an operator $T_{u} \in \mathcal{L}^{l}(E^{*};Y)$ by

$$T_u x^* := \sum_n \langle x^*, x_n \rangle y_n.$$

In particular, for $Y = \mathbb{R}^2$ this reduces to

$$T_{(x,y)}x^* = (\langle x^*, x \rangle, \langle x^*, y \rangle).$$

On $E \otimes \mathbb{R}^2$ we define a norm by

$$||(x,y)||_l := ||T_{(x,y)}||_l.$$

Lemma 2.3. The norm $\|\cdot\|_l$ is a complex-homogeneous cross-norm on $E \otimes_{\mathbb{R}} \mathbb{R}^2$.

Proof: That it is a cross-norm is proved in [S]. We check that $\|\cdot\|_l$ is complex-homogeneous. We have

$$\begin{split} \|(ax - by, bx + ay)\|_{l} &= \sup\left\{\sum_{n} (\langle x_{n}^{*}, ax - by \rangle^{2} + \langle x_{n}^{*}, bx - ay \rangle^{2})^{\frac{1}{2}}\right\} \\ &= \sup\left\{\sum_{n} |\langle x_{n}^{*}, ax - by \rangle + i \langle x_{n}^{*}, bx + ay \rangle|\right\} \\ &= \sup\left\{\sum_{n} |(a + bi)(\langle x_{n}^{*}, x \rangle + i \langle x_{n}^{*}, y \rangle)|\right\} \\ &= |a + bi| \cdot \sup\left\{\sum_{n} (\langle x_{n}^{*}, x \rangle^{2} + \langle x_{n}^{*}, y \rangle^{2})^{\frac{1}{2}}\right\} \\ &= (a^{2} + b^{2})^{\frac{1}{2}} \|(x, y)\|_{l}. \end{split}$$

By Theorem 1.4, $\|\cdot\|_l$ induces a norm, also denoted by $\|\cdot\|_l$, on $E_{\mathbb{C}}$. This norm is self-dual in the following sense.

Lemma 2.4. The natural vector space isomorphism $\psi : (E^*)_{\mathbb{C}} \simeq (E_{\mathbb{C}})^*$ induces an isometrical isomorphism $((E^*)_{\mathbb{C}}, \|\cdot\|_l) \simeq ((E_{\mathbb{C}}, \|\cdot\|_l)^*$.

Proof: First we recall [S] that there is a natural isometrical isomorphism

$$(E \otimes \mathbb{R}^2, \|\cdot\|_l)^* \simeq \mathcal{L}^l(E; \mathbb{R}^2).$$

Using this, the fact that $||x + iy||_l = ||x - iy||_l$ and Goldstine's theorem we see that

$$\begin{aligned} |x^* + iy^*||_{((E^*)_{\mathbb{C}}, \|\cdot\|_l)} &= \|(x^*, y^*)\|_{(X^* \otimes_{\mathbb{R}} \mathbb{R}^2, \|\cdot\|_l)} \\ &= \sup \left\{ \sum_n (\langle x^{**}_n, x^* \rangle^2 + \langle x^{**}_n, y^* \rangle^2)^{\frac{1}{2}} : (x^{**}_n) \subset E^{**}_+ \text{ finite}, \left\| \sum_n x^{**}_n \right\| = 1 \right\} \\ &= \sup \left\{ \sum_n (\langle x^*, x_n \rangle^2 + \langle y^*, x_n \rangle^2)^{\frac{1}{2}} : (x_n) \subset E_+ \text{ finite}, \left\| \sum_n x_n \right\| = 1 \right\} \\ &= \|T_{(x^*, y^*)}\|_{\mathcal{L}^l(E, \mathbb{R}^2)} \\ &= \|(x^*, y^*)\|_{(E \otimes \mathbb{R}^2, \|\cdot\|_l)^*} \\ &= \sup_{\|(x, y)\|_l = 1} |\langle x^*, x \rangle + \langle y^*, y \rangle| \\ &= \sup_{\|x - iy\|_l = 1} |\operatorname{Re}\langle x^* + iy^*, x - iy \rangle| \\ &= \|x^* + iy^*\|_{(E_{\mathbb{C}}, \|\cdot\|_l)^*}. \end{aligned}$$

Lemma 2.5. Let *E* be a real Banach lattice and let $z^* = x^* + iy^*$ be an element of the complex Banach lattice $(E^*)_{\mathbb{C}}$. Then $||z^*||_l = ||z^*||$.

Proof: The proof uses the following two facts [S, p. 234-5]: Firstly, for $0 \le x \in E$ we have

$$\langle |z^*|, x \rangle = \sup_{|z| \leq x} |\langle z^*, z \rangle| \leq \sup |\sum_n \langle z^*, \alpha_n x_n \rangle|,$$

where the second supremum is over all finite sequences $(\alpha_n, x_n) \in \mathbb{C} \times E_+$ such that $|\alpha_n| \leq 1$ and $\sum_n x_n = x$. Secondly,

$$\left|\sum_{n} \langle z^*, \alpha_n x_n \rangle\right| \leqslant \sum_{n} |\alpha_n| |\langle z^*, x_n \rangle| \leqslant \langle |z^*|, x \rangle.$$

Combining these facts, noting that the supremum is taken by $|\alpha_n| = 1$, and by taking the supremum of all $0 \leq x \in E$ of norm one, we find that

$$|| |z^*| || = \sup\left\{\sum_n |\langle z^*, x_n \rangle| : (x_n) \subset E_+ \text{ finite, } \left\|\sum_n x_n\right\| = 1\right\} = ||z^*||_l.$$

Note that we used Goldstine's theorem in the last identity. Since the norm on $(E^*)_{\mathbb{C}}$ satisfies $|||z^*|| = ||z^*||$, it follows that $||z^*|| = ||z^*||_l$.

Theorem 2.6. The norm of a complex Banach lattice $E_{\mathbb{C}}$ agrees with its *l*-norm.

Proof: The dual norms on $(E^*)_{\mathbb{C}}$ of $\|\cdot\|$ and $\|\cdot\|_l$ are again $\|\cdot\|$ and $\|\cdot\|_l$ (Proposition 2.1 and Lemma 2.4), and since they agree (Lemma 2.5), again by 2.1 and 2.4 it follows that $\|\cdot\|$ and $\|\cdot\|_l$ agree on $(E^{**})_{\mathbb{C}}$. Hence, letting $j: E_{\mathbb{C}} \to (E^{**})_{\mathbb{C}}$ be the natural map, we see that for all $z \in E_{\mathbb{C}}$,

$$||z|| = ||jz|| = ||jz||_l = ||z||_l.$$

3. References

- [B] J. BOURGAIN, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Am. Math. Soc. **96** (1986), 221-226.
- [DU] J. DIESTEL AND J.J. UHL, Vector measures, Math. Surveys nr. 15, Amer. Math. Soc., Providence, R. I. (1977).
 - [K] N.J. KALTON, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull. **38** (1995), 218-222.

- [LZ] W.A.J. LUXEMBURG AND A.C. ZAANEN, The linear modulus of an order bounded linear transformation I, Indag. Math. **33** (1971), 422-434.
- [MW] G. MITTELMEYER AND M. WOLFF, Uber den Absolutbetrag auf komplexen Vektorverbänden, Math. Z. **137** (1974), 87-92.
 - [R] A.F. RUSTON, Fredholm theory in Banach spaces, Cambridge U.P., Cambridge (1986).
 - [S] H.H. SCHAEFER, Banach Lattices and Positive Operators, Springer Verlag, Berlin-Heidelberg-New York (1974).
- [Sch] W.J. DE SCHIPPER, A note on the modulus of an order bounded linear operator between complex Banach lattices, Indag. Math. **35** (1973), 355-367.