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0. Introduction

Let E be a real Banach space and let µ = {µt}t>0 be a one-parameter family of
probability measures defined on the σ−algebra Σ generated by the cylindrical subsets
of E, i.e. sets V of the form

V = {x ∈ E : (〈x, x∗1〉, . . . 〈x, x∗n〉) ∈ B},

1 This research has been made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences.
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where x∗1, . . . x
∗
n ∈ E∗ and B ⊂ Rn is a Borel set. Let S = {S(t)}t>0 be a strongly

continuous semigroup of linear operators (briefly, a C0−semigroup) on E. The pair
(S, µ) is called a Mehler semigroup on E if on Σ we have

µt+s = (S(s)µt) ∗ µs, t, s > 0, (0.1)

where S(s)µt denotes the image measure of µt under S(s). Mehler semigroups were
introduced by Bogachev, Röckner, and Schmuland [BRS] in an axiomatic approach to
transition semigroups of non-symmetric Ornstein-Uhlenbeck processes.

If E is separable it is easy to see [BRS, Proposition 2.2] that (S, µ) is a Mehler
semigroup if and only if the so-called Mehler formula

P (t)f(x) :=

∫

E

f(S(t)x− y) dµt(y), t > 0, x ∈ E, (0.2)

defines a semigroup {P (t)}t>0 of bounded linear operators on Bb(E), the space of
bounded real-valued Borel functions on E. In the application to stochastic abstract
Cauchy problems, this semigroup can be interpreted as the transition semigroup of
the Ornstein-Uhlenbeck process solving the Cauchy problem. We refer to [BRS] for
more details.

A pair (S, µ), where S is a C0−semigroup on E and µ is a one-parameter family
of cylindrical probability measures on the field F generated by the cylindrical sets in
E, will be called a cylindrical Mehler semigroup on E if (0.1) holds on F . If for each
t > 0 there exists a bounded linear operator Qt ∈ L(E∗, E), the covariance of µt, such
that the Fourier transform of µt is given by

µ̂t(x
∗) = exp

(
−1

2
〈Qtx∗, x∗〉

)
, x∗ ∈ E∗, (0.3)

then (S, µ) will be called a Gaussian cylindrical Mehler semigroup.
For more information concerning C0−semigroups and cylindrical probability mea-

sures, the reader is referred to [Pa] and [VTC], where also unexplained terminology
may be found. A compresensive treatment of stochastic abstract Cauchy problems in
infinite-dimensional spaces is presented in [DZ].

There is a canonical way of constructing Gaussian cylindrical Mehler semigroups
as follows. An operator Q ∈ L(E∗, E) is called positive if 〈Qx∗, x∗〉 > 0 for all
x∗ ∈ E∗, and symmetric if 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗ ∈ E∗ and y∗ ∈ E∗. One
can show [Ne2] that s 7→ S(s)QS∗(s)x∗ is a strongly measurable function on [0,∞),
and therefore for t > 0 we may define positive symmetric operators Qt ∈ L(E∗, E) by

Qtx
∗ :=

∫ t

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗. (0.4)

By [VTC, Section IV.3.1], for each t > 0 there exists a unique Gaussian cylindrical
probability measure µt on F whose Fourier transform is given by (0.3). It is easy
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to check that (S, µ), where µ = {µt}t>0, is a cylindrical Mehler semigroup on E.
Gaussian cylindrical Mehler semigroups arising in this way will be called canonical.
Note that if (S, µ) is canonical, then

lim sup
t↓0

1

t
‖Qt‖ <∞. (0.5)

It turns out that if E is reflexive, (0.5) is also sufficient for a Gaussian cylindrical
Mehler semigroup to be canonical; this is the main result of Section 1. It improves
[BRS, Proposition 4.3], where it was proved that (S, µ) is canonical if E is a separable
Hilbert space and the functions t 7→ 〈Qtx∗, x∗〉 are differentiable at t = 0 for all
x∗ ∈ E∗.

We will further show how to construct non-canonical Gaussian cylindrical Mehler
semigroups verifying (0.5) in any non-reflexive Banach space with a Schauder basis.
Thus, the reflexivity condition in our representation theorem is close to being neces-
sary.

Let us now suppose that E is separable and that (S, µ) is a Gaussian Mehler
semigroup on E. Let the semigroup P = {P (t)}t>0 on Bb(E) be defined by (0.2). It
is easy to see that each operator P (t) maps BUC(E), the space of bounded uniformly
continuous real-valued functions on E, into itself. The restriction of P to BUC(E)
will be called the transition semigroup of (S, µ) and, by slight abuse of notation, will
also be denoted by P.

Under the additional assumptions that E is a Hilbert space and (S, µ) is canonial,
the following results are well-known:

(i) The transition semigroup P is pointwise continuous, uniformly on compact subsets
of E [Ce];

(ii) The transition semigroup P is strongly continuous if and only if for all t > 0 we
have S(t) = I, the identity operator on E [NZ].

For arbitrary Gaussian Mehler semigroups on a separable real Hilbert space E it is
known that P is pointwise continuous on BUC(E) (in fact, even on Cb(E), the space
of bounded continuous real-valued functions on E) [BRS, Lemma 2.1 and Proposition
4.1].

In Section 2 we will extend these results by showing that the transition semigroup
of a Gaussian Mehler semigroup on a separable real Banach space E is always pointwise
continuous, uniformly on compact subsets of E. The main step in the proof is to
show that the measure-valued function t 7→ µt is weakly continuous on [0,∞). This
was also the main step in [BRS, Lemma 2.1], but our proof is simpler in that it
avoids considerations involving the Sazonov topology. We will also show that strong
continuity of the transition semigroup is equivalent to S being the identity semigroup.

1. Canonical Gaussian cylindrical Mehler semigroups
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Let (S, µ) be a Gaussian cylindrical Mehler semigroup on a real Banach space E. In
this section we do not assume that E is separable.

By taking Fourier transforms in (0.1), for the covariance operators of the cylin-
drical measures µt we obtain the identity (cf. [BRS, Proposition 4.1])

Qt+s = Qs + S(s)QtS
∗(s), t, s > 0. (1.1)

Conversely, if {Qt}t>0 is a family of positive symmetric operators in L(E∗, E) sat-
isfying (1.1), and if µt are the Gaussian cylindrical probability measures on F with
covariances Qt, then (S, µ) is a Gaussian cylindrical Mehler semigroup.

In Theorem 1.2 below, we present sufficient conditions on a Gaussian cylindri-
cal Mehler semigroup (S, µ) to be canonical, i.e. to be induced by a single positive
symmetric operator Q ∈ L(E∗, E) through the formula (0.4). This result improves
[BRS, Proposition 4.3], where it was proved that (S, µ) is canonical if E is separable
Hilbert and the functions t 7→ 〈Qtx∗, x∗〉 are differentiable at t = 0 for all x∗ ∈ E∗. In
fact, under these assumptions the operator Q in (0.4) is uniquely determined by the
relation

〈Qx∗, x∗〉 =
d

dt
〈Qtx∗, x∗〉

∣∣
t=0

.

Notice that by polarization, differentiability at t = 0 of 〈Qtx∗, x∗〉 for all x∗ ∈ E∗

implies differentiability at t = 0 of 〈Qtx∗, y∗〉 for all x∗ ∈ E∗ and y∗ ∈ E∗. Then by
applying the uniform boundedness theorem twice one sees that (0.5) holds.

In our first theorem we call an operator Q ∈ L(E,E∗) positive, resp. symmetric, if for
all x ∈ E and y ∈ E we have 〈Qx, y〉 = 〈Qy, x〉, resp. 〈Qx, x〉 > 0.

Theorem 1.1. Let {S(t)}t>0 be a C0−semigroup on a real Banach space E, and
let {Qt}t>0 be a family of positive symmetric operators in L(E,E∗) such that Qt+s =
Qs+S∗(s)QtS(s) for all t > 0 and s > 0. Then the following assertions are equivalent:

(i) lim sup
t↓0

1

t
‖Qt‖ <∞;

(ii) There exists a positive symmetric operator Q ∈ L(E,E∗) such that

Qtx =

∫ t

0

S∗(s)QS(s)x ds, ∀ t > 0, x ∈ E.

In this situation, Q is the unique operator with these properties.

Remark - The integral is to be understood is the weak∗–sense.

Proof: We only need to prove the implication (i)⇒(ii), the converse implication being
trivial. For x ∈ E and y ∈ E, we define f(x,y) : [0,∞)→ R by

f(x,y)(t) := 〈Qtx, y〉, t > 0.

For all t > 0, x ∈ E, and y ∈ E we have

1

h
(f(x,y)(t+ h)− f(x,y)(t)) =

1

h
〈QhS(t)x, S(t)y〉 h > 0,
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which shows that f(x,y) is locally Lipschitz on [0,∞).
Fix x ∈ E and y ∈ E, let (qn)n∈N be an enumeration of Q>0, and let N (x, y) be

the complement in [0,∞) of the set of all t > 0 for which the right derivative

D+f(S(qn)x,y)(t) := lim
h↓0

1

h
(〈Qt+hS(qn)x, y〉 − 〈QtS(qn)x, y〉)

exists for all n ∈ N . Since locally Lipschitz functions are differentiable almost every-
where, N (x, y) is a null set. A 3ε−argument shows that [0,∞)\N (x, y) is precisely
the set of all t > 0 for which the right derivative D+f(S(r)x,y)(t) exists for all r > 0.
For t 6∈ N (x, y) and s > 0 we have, for all r > 0,

lim
h↓0

1

h
(〈Qt+s+hS(r)x,y〉 − 〈Qt+sS(r)x, y〉)

= lim
h↓0

1

h
〈S∗(t+ s)QhS(t+ s+ r)x, y〉

= lim
h↓0

1

h
〈S∗(s)(Qt+h −Qt)S(s+ r)x, y〉

= D+f(S(s+r)x,S(s)y)(t).

This implies t+ s 6∈ N (x, y) and

D+f(S(r)x,y)(t+ s) = D+f(S(s+r)x,S(s)y)(t), r > 0.

Thus, t 6∈ N (x, y) implies N (x, y) ∩ [t,∞) = ∅. Since N (x, y) is null it follows that
N (x, y) ⊂ {0}. This being true for all x ∈ E and y ∈ E we conclude that t 7→ 〈Qtx, y〉
is differentiable from the right on (0,∞) for all x ∈ E and y ∈ E.

Let F denote the linear span in E of the set {S(t)x : t > 0, x ∈ E}. Note that F is

dense in E. For x ∈ F and y ∈ F , say x :=
∑N
j=1 ajS(tj)xj and y :=

∑N ′

j=1 bjS(τj)yj ,
we have

lim
h↓0

1

h
〈Qhx, y〉 = lim

h↓0
1

h

N∑

j=1

N ′∑

k=1

ajbk〈S∗(δ)QhS(δ)S(tj − δ)xj , S(τk − δ)yk〉

=
N∑

j=1

N ′∑

k=1

ajbkD
+f(S(tj−δ)xj ,S(τk−δ)yk)(δ),

where δ := min{t1, ..., tN , τ1, ..., τN ′} > 0. Moreover,

lim
h↓0

1

h
|〈Qhx, y〉| 6M‖x‖ ‖y‖,

where M := lim supt↓0
1
t ‖Qt‖. By a 3ε−argument, this estimate implies that the limit

limh↓0 1
h 〈Qhx, y〉 exists for all x ∈ E and y ∈ E. Given a fixed x ∈ E we now define

Qx ∈ E∗ by

〈Qx, y〉 := lim
h↓0

1

h
〈Qhx, y〉, y ∈ E.
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It is clear that Q ∈ L(E,E∗), and Q is positive and symmetric. By dominated
convergence and the continuity of s 7→ 〈Qsx, y〉 we finally have, for all t > 0, x ∈ E,
and y ∈ E,

∫ t

0

〈S∗(s)QS(s)x, y〉 ds = lim
h↓0

1

h

∫ t

0

〈QhS(s)x, S(s)y〉 ds

= lim
h↓0

1

h

∫ t

0

〈Qs+hx−Qsx, y〉 ds

= lim
h↓0

1

h

(∫ t+h

t

〈Qsx, y〉 ds−
∫ h

0

〈Qsx, y〉 ds
)

= 〈Qtx, y〉.

Uniqueness of Q follows from the identity

〈Qx, y〉 = lim
s↓0

(
d

dt

∣∣∣
t=s
〈Qtx, y〉

)
.

By a standard result from semigroup theory [Pa, Corollary 1.10.6], the adjoint semi-
group S∗ on E∗ of a C0−semigroup S on a reflexive Banach space E is strongly
continuous, and we may apply Theorem 1.1 to S∗. This leads to the following result,
which, when rephrased in terms of Gaussian cylindrical Mehler semigroups, shows that
in reflexive spaces (0.5) is a sufficient condition for canonicity.

Theorem 1.2. Let {S(t)}t>0 be a C0−semigroup on a reflexive real Banach space
E, and let {Qt}t>0 be a family of positive symmetric operators in L(E∗, E) such that
Qt+s = Qs + S(s)QtS

∗(s) for all t > 0 and s > 0. Then the following assertions are
equivalent:

(i) lim sup
t↓0

1

t
‖Qt‖ <∞;

(ii) There exists a positive symmetric operator Q ∈ L(E∗, E) such that

Qtx =

∫ t

0

S(s)QS∗(s)x∗ ds, ∀ t > 0, x∗ ∈ E∗.

In this situation, Q is the unique operator with these properties.

This following example shows that the reflexivity assumption in Theorem 1.2 is close
to being necessary, in the sense that the theorem fails in every non-reflexive Banach
space E with a Schauder basis.

Example 1.3. Let E be a non-reflexive real Banach space with a Schauder basis.
By a theorem of Zippin [Zi], E has a (possibly different) Schauder basis (ξn)n>1 of
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norm one vectors which is not boundedly complete. This means that there exists a
bounded scalar sequence (αn)n>1 such that the sequence (xn)n>1 defined by

xn :=

n∑

j=1

αjξj

is bounded in E but fails to converge in E. Let x∗0
∗ ∈ E∗∗ be a weak∗–limit point of

(xn)n>1, regarded as a sequence in E∗∗. Note that x∗0
∗ 6∈ E. To see this, assume for a

moment that x∗0
∗ ∈ E. Since (ξn)n>1 is a Schauder basis in E we have an expansion

x∗0
∗ =

∑∞
j=1 βjξj . Denoting by (ξ∗n)n>1 the sequence of coordinate functionals in E∗,

for all j > 1 we have 〈x∗0∗, ξ∗j 〉 = βj . On the other hand, by definition of x∗0
∗, for each

j > 1 we can find a subsequence (xnk)k>1 such that

〈x∗0∗, ξ∗j 〉 = lim
k→∞

〈xnk , ξ∗j 〉 = αj .

It follows that αj = βj for all j > 1, and therefore

x∗0
∗ =

∞∑

j=1

βjξj =

∞∑

j=1

αjξj = lim
n→∞

xn,

a contradiction.
Define Q ∈ L(E∗, E∗∗) by

Qx∗ := 〈x∗, x∗0∗〉x∗0∗.

Note that 〈Qx∗, x∗〉 > 0 and 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗ ∈ E∗ and y∗ ∈ E∗. By
[Ne1, Theorem 1.5.2],

S(t)ξn := e−n
3tξn, t > 0, n > 1,

defines a C0−semigroup on E.
For x∗ ∈ E∗ and t > 0 we now define

Qtx
∗ :=

∞∑

n=1

∞∑

k=1

αkαn〈ξn, x∗〉
k3 + n3

(
1− e−(k3+n3)t

)
ξk.

This double sum is absolutely convergent in E. In this way we obtain a bounded
linear operator Qt ∈ L(E∗, E) and by dominated convergence it is immediate that Qt
is sequentially continuous from the weak∗-topology to the weak topology. Denoting
as before the n−th coordinate functional in E∗ by ξ∗n, for finite sums x∗ =

∑N
n=1 bnξ

∗
n

and y∗ =
∑N
n=1 cnξ

∗
n we have the representation

〈Qtx∗, y∗〉 =
N∑

n=1

N∑

m=1

bncm

∫ t

0

〈QS∗(s)ξ∗n, S∗(s)ξ∗m〉 ds =

∫ t

0

〈QS∗(s)x∗, S∗(s)y∗〉 ds.

(1.2)
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Hence the properties of Q imply that for such x∗ and y∗ we have:

(i) 〈Qtx∗, x∗〉 > 0,
(ii) 〈Qtx∗, y∗〉 = 〈Qty∗, x∗〉,

(iii) Qt+sx
∗ = Qsx

∗ + S(s)QtS
∗(s)x∗ for all t, s > 0,

(iv) For all δ > 0 and t ∈ [0, δ] we have |〈Qtx∗, y∗〉| 6 tM2
δ ‖Q‖ ‖x∗‖ ‖y∗‖, where

Mδ = supt∈[0,δ] ‖S(t)‖.
By weak∗–to–weak sequential continuity it follows from (i) and (ii) that Q is positive
and symmetric and from (iii) that (1.1) holds. Thus if µt is the Gaussian cylindrical
measure on E with covariance operator Qt, it follows that the pair (S, µ) is a Gaussian
cylindrical Mehler semigroup on E, where µ = {µt}t>0. Denoting by πn the projection
in E onto the first n coordinates, (iv) implies that

lim sup
t↓0

1

t
‖Qt‖ 6M2N2‖Q‖,

where M = lim supδ↓0Mδ and N = lim supn→∞ ‖πn‖. This shows that (0.5) holds.
Now suppose the family {Qt}t>0 is generated, in the sense of (0.4), by a positive

symmetric operator Q̃ ∈ L(E∗, E). Regarding Q̃ as an E∗∗−valued operator, (1.2)
and the uniqueness part of Theorem 1.1 imply that Q = Q̃. It follows that Q is
E−valued, a contradiction. Therefore (S, µ) is not canonical.

The following simple example shows that the limes superior conditions in Theorems
1.1 and 1.2 are not already implied by the other assumptions, even in the case where
E is a separable Hilbert space.

Example 1.4. For each n > 1 let Sn denote the nilpotent shift semigroup on
Hn := L2(0, 1

n
), i.e.

Sn(t)f(s) :=

{
f(s− t) if s > t,
0, otherwise,

t > 0, s ∈ (0, 1
n ).

For each n > 1 and t > 0 let Q
(n)
t ∈ L(Hn) be the positive symmetric operator defined

by

Q
(n)
t h :=

√
n

∫ t

0

Sn(s)S∗n(s)h ds, h ∈ Hn.

Since Sn(t) = 0 for t > 1
n we have ‖Q(n)

t ‖ 6 1/
√
n for all t > 0. Moreover, by

considering the indicator function of small enough subintervals of (0, 1
n

) it is easy

to see that ‖Q(n)
t ‖ = t

√
n for t ∈ (0, 1

n ). By the first estimate, on the direct sum

H := ⊕n>1Hn the operator Qt := ⊕n>1Q
(n)
t is a well-defined contraction. Clearly,

Q
(n)
t+s = Q

(n)
s + Sn(s)Q

(n)
t S∗n(s) for all n > 1, s > 0, and t > 0. Therefore on H we

have Qt+s = Qs + S(s)QtS
∗(s) for all s > 0 and t > 0, where S(t) := ⊕n>1Sn(t). On

the other hand, if t ∈ [ 1
N
, 1
N+1

) then

1

t
‖Qt‖ >

1

t
‖Q(N+1)

t ‖ =
√
N + 1 >

√
1 +

1

t
,

which shows that lim supt↓0
1
t
‖Qt‖ =∞.
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2. Continuity of the transition semigroup

Let E be a separable real Banach space and (S, µ) a Gaussian Mehler semigroup on
E. Let P = {P (t)}t>0 denote its transition semigroup acting on BUC(E). In this
section we will show that P is pointwise continuous, uniformly on compact subsets of
E. Our approach is based upon Anderson’s inequality, which we recall first.

Proposition 2.1 [An]. Let X and Y be two Rn−valued centered Gaussian random
variables and assume that for all x ∈ Rn we have

E (〈Y, x〉2) 6 E (〈X, x〉2).

Then, for any convex set C ⊂ Rn,

P {Y 6∈ C} 6 2P {X 6∈ C}.
This result has the following simple consequence (cf. [LT, pp. 73-74]): if E is a
separable real Banach space and if Xn (n > 1) and X are E−valued centered Gaussian
random variables such that for all x∗ ∈ E∗ and n > 1 we have

E (〈Xn, x
∗〉2) 6 E (〈X, x∗〉2),

then the sequence (Xn)n>1 is tight.
The following lemma shows that P is pointwise continuous on the subspace of

bounded continuous cylindrical functions on E. Its proof is a simple application of
Lévy’s continuity theorem and is presented, for canonical Gaussian Mehler semigroups,
in [Ne2]; the argument carries over verbatim to the present situation.

Lemma 2.2. Let f̃ : Rn → R be a bounded continuous function, let x∗1, ..., x
∗
n ∈ E∗,

and define f : E → R by

f(x) := f̃(〈x, x∗1〉, ..., 〈x, x∗n〉), x ∈ E.
Then for all x ∈ E we have limt↓0 P (t)f(x)− f(x) = 0.

After these preparations we can prove:

Proposition 2.3. limt↓0 µt = δ0 (the Dirac measure at 0) weakly.

Proof: Let tn ↓ 0; we claim that the sequence (µtn) is tight. To see this, note that for
all x∗ ∈ E∗ and n > 1 we have, using (1.1) (cf. [Ne2, Section 7]),

Eµtn (〈 · , x∗〉2) = 〈Qtnx∗, x∗〉 6 〈Qt1x∗, x∗〉 = Eµt1 (〈 · , x∗〉2).

Therefore tightness follows from Anderson’s inequality.
Extract a subsequence tnk ↓ 0 such that (µtnk ) is weakly convergent. If f is

a bounded continuous cylindrical function on E, then by Lemma 2.2 applied to the
function g(y) := f(−y),

lim
k→∞

∫

E

f(y) dµtnk (y) = lim
k→∞

P (tnk)g(0) = g(0) = f(0) = δ0(f).

Since the bounded continuous cylindrical functions separate the points of the set
M1(E) of Borel probability measures on E, it follows that limt↓0 µtnk = δ0 weakly.

We have shown that every sequence tn ↓ 0 contains a subsequence tnk ↓ 0 such
that limt↓0 µtnk = δ0 weakly. This proves the proposition.
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Remark - The same argument can be used to show that the function t 7→ µt is contin-
uous on [0,∞) with respect to the weak topology.

We are now prepared to state and prove the main result of this section:

Theorem 2.4. Let f ∈ BUC(E) be fixed. Then for all compact sets K ⊂ E we
have

lim
t↓0

(
sup
x∈K
|P (t)f(x)− f(x)|

)
= 0.

Proof: First we show that for every x ∈ E,

lim
t↓0
|P (t)f(x)− f(x)| = 0. (2.1)

Fix ε > 0 and x ∈ E arbitrary. Using the uniform continuity of f and the strong
continuity of S, we choose t0 > 0 small enough such that for all y ∈ E we have

sup
t∈[0,t0]

|f(S(t)x− y)− f(x− y)| 6 ε.

Define the function fx ∈ BUC(E) by fx(y) := f(x − y). The weak convergence
µt → δ0 then implies

lim sup
t↓0

|P (t)f(x)− f(x)| = lim sup
t↓0

∣∣∣∣
∫

E

f(S(t)x− y) dµt(y)− f(x)

∣∣∣∣

6 ε+ lim sup
t↓0

∣∣∣∣
∫

E

f(x− y) dµt(y)− f(x)

∣∣∣∣

= ε+ lim sup
t↓0

|〈fx, µt − δ0〉| = ε.

This proves (2.1). Next we note that the family {P (t)f : t ∈ [0, 1]} is uniformly
equicontinuous on E. Indeed, using the uniform continuity of f we may choose,
for any fixed ε > 0, a δ0 > 0 such that |f(u1) − f(u2)| 6 ε whenever u1, u2 ∈ E
satisfy ‖u1 − u2‖ < δ0. Then for all t ∈ [0, 1], all y ∈ E, and all v1, v2 ∈ E with
‖v1 − v2‖ < δ := δ0/ supt∈[0,1] ‖S(t)‖ we have ‖(S(t)v1 − y)− (S(t)v2 − y)‖ < δ0, and
hence

|P (t)f(v1)− P (t)f(v2)| 6
∫

E

|f(S(t)v1 − y)− f(S(t)v2 − y)| dµt(y) 6 ε.

This gives the equicontinuity. By the Arzela-Ascoli theorem, we conclude that the
set {(P (t)f)|K : t ∈ [0, 1]} is relatively compact in the space C(K). Hence every
sequence tn ↓ 0 contains a subsequence tnk ↓ 0 such that the sequence (P (tnk)f)|K
converges, uniformly on K, to some limit g ∈ C(K). The proof is complete once
we know that g = f |K . But this follows from (2.1): for all x ∈ K we have g(x) =
limk→∞ P (tnk)f(x) = f(x).
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Semigroups on BUC(E) which are pointwise continuous, uniformly on compact sub-
sets of E, have been studied from an abstract point of view in [Ce] and [CG].

Under a compactness assumption we have the following stronger continuity result:

Corollary 2.5. Let f ∈ BUC(E) and t0 > 0 be fixed. If S(t0) is a compact operator,
then for all bounded sets B ⊂ E we have

lim
h↓0

(
sup
x∈B
|P (t0 + h)f(x)− P (t0)f(x)|

)
= 0.

Proof: Given ε > 0 and a bounded set B ⊂ E, let K0 := S(t0)B and let K1 ⊂ E
be a compact set such that µt0(K1) > 1 − ε. Writing gh := P (h)f − f , we have
limh↓0 gh = 0 uniformly on the compact set {y0− y1 : y0 ∈ K0, y1 ∈ K1} by Theorem
2.4, and hence

lim
h↓0

(
sup
x∈B
|P (t0 + h)f(x)− P (t0)f(x)|

)

= lim
h↓0

(
sup
x∈B

∣∣∣∣
∫

E

gh(S(t0)x− y) dµt0(y)

∣∣∣∣
)

6 2ε ‖f‖+ lim
h↓0

(
sup
x∈B

∫

K1

gh(S(t0)x− y) dµt0(y)

)

= 2ε ‖f‖.

For canonical Gaussian Mehler semigroups on a Hilbert space E, the subspace of all
f ∈ BUC(E) on which P acts in a strongly continuous way was investigated in [DL].
The following corollary, which is a straightforward application of Theorem 2.4, extends
the criterion obtained there to gauusian Mehler semigroups in a Banach space setting.

Corollary 2.6. For a function f ∈ BUC(E) the following assertions are equivalent:

(i) lim
t↓0

(
sup
x∈E
|P (t)f(x)− f(x)|

)
= 0;

(ii) lim
t↓0

(
sup
x∈E
|f(S(t)x)− f(x)|

)
= 0.

This characterization of strong continuity was used in [NZ] to show that strong con-
tinuity of P on all of BUC(E), with E a separable real Hilbert space and (S, µ) is
canonical, implies that S(t) = I for all t > 0. This implies that Qt = tQ for some pos-
itive symmetric Q ∈ L(E) which is necessarily the covariance of a centered Gaussian
Borel measure µ on E. In fact we have µ(B) = µt(

√
tB) for all Borel sets B ⊂ E and

all t > 0. Thus we see that P is the Wiener semigroup corresponding to µ.
By virtue of Corollary 2.6, the proof in [NZ] extends to the more general setting

considered here and we obtain:

Corollary 2.7. If P is strongly continuous on BUC(E), then S(t) = I for all t > 0,
and there is a centered Gaussian Borel measure µ on E such that µ(B) = µt(

√
tB)

for all Borel sets B ⊂ E and all t > 0.
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