ON CLOSABILITY OF DIRECTIONAL GRADIENTS

B. GOLDYS, F. GOZZI, AND J.M.A.M. VAN NEERVEN

ABSTRACT. Let μ be a centred Gaussian measure on a separable real Banach space E, and let H be a Hilbert subspace of E. We provide necessary and sufficient conditions for closability in $L^p(E,\mu)$ of the gradient D_H in the direction of H. These conditions are further elaborated in case when the gradient D_H corresponds to a bilinear form associated with a certain nonsymmetric Ornstein-Uhlenbeck operator. Some natural examples of closability and nonclosability are presented.

1. INTRODUCTION

Let E be a separable real Banach space with norm $\|\cdot\|_E$ and let (i, H) be a Hilbert subspace of E, that is, H is a separable real Hilbert space and $i: H \hookrightarrow E$ is a continuous inclusion. Let μ be a Gaussian measure on E with the covariance operator C. In this paper we study the closability in $L^p(E, \mu)$ of the gradient operator D_H corresponding to differentiation in the direction of H.

If D_H is closable in $L^p(E,\mu)$, we can define the Sobolev space $W^{1,p}_H(E,\mu)$ as the domain of the closure $\overline{D_H}$ endowed with the graph norm

$$\|\phi\|_{1,p} = \left(\|\phi\|_{p}^{p} + \|\overline{D_{H}}\phi\|_{p}^{p}\right)^{1/p},$$

and the space $W^{1,p}_H(E,\mu)$ may be identified with a subspace of $L^p(E,\mu)$.

The question whether D_H is closable in $L^p(E,\mu)$ is of some importance in the theory of diffusion processes and associated second order parabolic PDE's in finite and infinite dimensions. In particular, if D_H is closable in $L^2(E,\mu)$ then, under some additional assumptions, a symmetric Dirichlet form can be associated to it and the corresponding symmetric diffusion process can be constructed, see [17] for a thorough exposition of this theory. By perturbations, this question is also important for the study of nonsymmetric diffusions, see for example [21] and [11]. Another application arises in the theory of optimal control of stochastic partial differential equations and it was in fact the main motivation of this paper, see [15] for details. Consider a controlled stochastic differential equation

$$\begin{cases} dX^{u}(t,x) = (AX^{u}(t,x) + a(X^{u}(t,x)) - u(t)) dt + dW_{H}(t), \\ X^{u}(0,x) = x \in E, \end{cases}$$

in a separable Hilbert space E, where u is a bounded control taking values in H and W is a standard cylindrical Wiener process with H being its reproducing kernel. A control u

²⁰⁰⁰ Mathematics Subject Classification. Primary: 35R15, 60H15; Secondary: 46G05, 58D25, 47D03.

Key words and phrases. Gaussian measure, gradient operator, closability, Ornstein-Uhlenbeck process, invariant measure, C_0 -semigroup.

This work was partially supported by the Small ARC Grant Scheme.

should be chosen so as to minimize the cost functional

$$J(T, x, u) = \mathbb{E}\left(\int_{0}^{T} \left(f\left(t, X^{u}(t, x)\right) + h(u(t)) \, dt + \phi\left(X^{u}(T, x)\right)\right)\right).$$

A well known approach to this problem is to show the existence and uniqueness of solutions to the Hamilton-Jacobi equation

(1.1)
$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = Lu(t,x) - F\left(D_H u(t,x)\right) + f(t,x),\\ u(0,x) = \phi(x), \end{cases}$$

where L is a generator of the linearized process Z obtained for a = u = 0 and F is the Hamiltonian of the system and then to use the Dynamic Programming Principle to identify the optimal control and the optimal cost. If we assume that there exists a nondegenerate invariant measure μ for Z then equation (1.1) can be studied in the space $L^2(E, \mu)$ and if D_H is closable then the existence and uniqueness of solutions to (1.1) follows from the Fixed Point Theorem, even for irregular data f and ϕ . This argument can be extended to other, non Gaussian cases, and again the closability of D_H is an important ingredient.

Despite the importance of the closability question it seems that there are not too many definitive results in the infinite-dimensional case. A very general necessary and sufficient condition may be found in [1], see also the discussion of this problem in Section II.3 of [17]. However, this condition is rather difficult to check in particular cases.

After some preliminaries in Section 2 we provide in Section 3 necessary and sufficient conditions for the closability of D_H in $L^p(E,\mu)$ for $p \in [1,\infty)$ and a formula for the divergence operator D_H^* . Let us note that the sufficient condition for closability and the formula for D_H^* is known to specialists, but not easily available in the literature in the formulation given here. The necessity of the condition seems to be new.

In Section 4 this condition is used to prove closability of D_H in case we have $H_C \subseteq H$ with dense inclusion, where H_C is a certain Hilbert space canonically associated with C; see Section 2. In this situation we also obtain necessary and sufficient conditions for compactness of the embedding $W_H^{1,2}(E,\mu) \hookrightarrow L^2(E,\mu)$.

In Section 5 we will be concerned with the case when the measure μ arises as an invariant measure of the Ornstein-Uhlenbeck process $\{Z(t)\}_{t\geq 0}$ solving a linear equation

(1.2)
$$\begin{cases} dZ(t) = AZ(t)dt + dW_H(t), \\ Z(0) = x \in E, \end{cases}$$

on E; here A is assumed to be the generator of a C_0 -semigroup $\{S(t)\}_{t\geq 0}$ on E and $\{W_H(t)\}_{t\geq 0}$ is a standard cylindrical Wiener process with Cameron-Martin space H.

Under appropriate assumptions, formulated in Section 5, equation (1.2) has a unique solution given by

(1.3)
$$Z(t,x) = S(t)x + \int_0^t S(t-s) \, dW_H(s).$$

The process $\{Z(t, x)\}_{t \ge 0}$ is Markovian, and if it has an invariant measure μ , then the transition semigroup

$$R(t)f(x) = \mathbb{E}f(Z(t,x))$$

defines a C_0 -semigroup of contractions on $L^p(E, \mu)$ for all $p \in [1, \infty)$. The symmetric bilinear form associated with the generator L of the semigroup $\{R(t)\}_{t \ge 0}$ in $L^2(E, \mu)$ is

given by the formula

$$\mathscr{E}(f,g) = \frac{1}{2} \int_{E} f(x) Lg(x) + g(x) Lf(x) \, d\mu(x) = -\frac{1}{2} \int_{E} \left[D_{H}f(x), D_{H}g(x) \right]_{H} d\mu(x).$$

Therefore the question whether the form \mathscr{E} is closable in $L^2(E,\mu)$, (see pp. 28-31 of [17] for details) is equivalent to the problem of closability of D_H in $L^2(E,\mu)$, hence in $L^p(E,\mu)$ by the result in Section 3.

In Section 6 we reformulate the general results in the important case when E is a Hilbert space.

Finally, in Section 7 we apply the general theory developed in previous sections to present some natural examples of closability and nonclosability of Ornstein-Uhlenbeck operators. In particular, we show that D_H is not closable if H is one-dimensional and A generates the semigroup of left shifts in $L^2(0, \infty)$, or if (1.2) is the abstract formulation of a finite dimensional stochastic equation with delays.

2. PRELIMINARIES

Let E be a separable real Banach space and let $C \in \mathscr{L}(E^*, E)$ be positive and symmetric, that is $\langle Cx^*, x^* \rangle \ge 0$ and $\langle Cx^*, y^* \rangle = \langle Cy^*, x^* \rangle$ for all $x^*, y^* \in E^*$. On the range of C, the formula

$$[Cx^*, Cy^*] := \langle Cx^*, y^* \rangle, \qquad x^*, y^* \in E^*,$$

defines an inner product. The completion of range C with respect to this inner product is denoted by H_C . This is a separable real Hilbert space, the *reproducing kernel Hilbert* space (RKHS) associated with C. The inclusion mapping from range C into E extends to a continuous inclusion, denoted by i_C , of H_C into E. Thus, (i_C, H_C) is a Hilbert subspace of E, and we have the operator identity

$$C = i_C \circ i_C^*.$$

The inner product of H_C will be denoted by $[\cdot, \cdot]_{H_C}$.

If μ is a centred Gaussian measure on E, then its covariance operator $C \in \mathscr{L}(E^*, E)$ is positive and symmetric, as may be seen from the identity

$$\int_E \langle x, x^* \rangle \langle x, y^* \rangle \ d\mu(x) = \langle Cx^*, y^* \rangle , \quad x^*, y^* \in E^*.$$

The mapping

$$\varphi: i_C^* x^* \mapsto \langle \cdot, x^* \rangle \in L^2(E, \mu)$$

is well defined and extends to an isometric isomorphism from H_C onto a closed linear subspace \mathscr{H}_C of $L^2(E,\mu)$. Instead of $\varphi(h)$ we shall write φ_h .

For $p \in [1,\infty)$ we denote by $L^p(E,\mu)$ the Banach space of *p*-integrable functions $f: E \to \mathbb{R}$ endowed with the norm

$$||f||_p = \left(\int_E ||f(x)||^p d\mu(x)\right)^{1/p}$$

For $f, g \in L^2(E, \mu)$ we write

$$[f,g] = \int_E f(x)g(x) \, d\mu(x).$$

If H is a real Hilbert space, then in a similar way we define the space $L^p(E, \mu; H)$ of H-valued p-integrable functions on E. We use the notation

$$\langle f,g \rangle_H = \int_E [f(x),g(x)]_H \, d\mu(x)$$

for the duality between $L^p(E, \mu; H)$ and $L^q(E, \mu; H)$, $\frac{1}{p} + \frac{1}{q} = 1$. For $f \in L^p(E, \mu; H)$ and $h \in H$ we write $[f, h]_H$ to denote the function whose value at the point $x \in E$ is $[f(x), h]_H$. The inner product of $L^2(E, \mu; H)$ is also denoted by $[\cdot, \cdot]_H$.

3. THE ABSTRACT RESULTS

As before we let E be a separable real Banach space and μ a centred Gaussian measure on E with covariance operator C. Let (i, H) be a Hilbert subspace of E.

Lemma 3.1. For each $x^* \in E^*$, the function $\langle \cdot, x^* \rangle$ is Fréchet differentiable in the direction of H. Its derivative $D_H \langle \cdot, x^* \rangle : E \to H$ is the constant function

$$D_H\langle \cdot, x^* \rangle = \mathbf{1} \otimes i^* x^*.$$

Proof. For all $x \in E$ and $h \in H$ we have, upon identifying h and ih,

$$\langle x+h, x^* \rangle - \langle x, x^* \rangle = \langle h, x^* \rangle = [h, i^* x^*]_H,$$

which shows that $(D_H \langle \cdot, x^* \rangle)(x) = i^* x^*$.

Let $p \in [1,\infty)$ be fixed. By $\mathscr{F}C_b^1(E)$ we denote the linear subspace of $L^p(E,\mu)$ consisting of all functions $\Phi: E \to \mathbb{R}$ of the form

(3.1)
$$\Phi(x) = \phi(\langle x, x_1^* \rangle, \dots, \langle x, x_k^* \rangle)$$

for certain $k \ge 1, x_1^*, \dots x_k^* \in E^*$ and $\phi \in C_b^1(\mathbb{R}^k)$, the space of continuously differentiable bounded functions on \mathbb{R}^k with bounded derivative. The space $\mathscr{F}C_b^1(E)$ is a dense subspace of $L^p(E, \mu)$; as a subspace of $L^{\infty}(E, \mu)$ it is weak*-dense.

If $\Phi \in \mathscr{F}C_b^1(E)$ is given by (3.1), then Φ is Fréchet differentiable in the direction of H with derivative

(3.2)
$$(D_H \Phi)(x) = \sum_{j=1}^k \frac{\partial \phi}{\partial x_j} (\langle x, x_1^* \rangle, \dots, \langle x, x_k^* \rangle) \otimes i^* x_j^*$$

Thus we can define a densely defined linear operator $(D_H, \mathscr{D}(D_H))$ from $L^p(E, \mu)$ into $L^p(E, \mu; H)$ with domain

$$\mathscr{D}(D_H) := \mathscr{F}C^1_b(E)$$

by putting

$$(D_H(\Phi))(x) := (D_H\Phi)(x), \qquad x \in E, \quad \Phi \in \mathscr{D}(D_H)$$

Let $Q \in \mathscr{L}(E^*, E)$ be defined by $Q := i \circ i^*$. Throughout this section we make the following

Assumption 3.2. ker $C \subseteq \ker Q$.

This assumption is for instance satisfied if μ is nondegenerate, in which case we have ker $C = \{0\}$.

We define a densely defined operator $(V, \mathscr{D}(V)) : H_C \to H$ by

$$\begin{split} \mathscr{D}(V) &:= \{i_C^* x^*: \; x^* \in E^*\}, \\ V(i_C^* x^*) &:= i^* x^*, \qquad i_C^* x^* \in \mathscr{D}(V). \end{split}$$

Thanks to Assumption 3.2 and the identities $i_C \circ i_C^* = C$ and $i \circ i^* = Q$, the operator V is well defined.

Lemma 3.3. For all $\Phi \in \mathscr{D}(D_H)$ and $h \in \mathscr{D}(V^*)$ we have

$$\int_E [D_H \Phi, h]_H \, d\mu = \int_E \Phi \, \varphi_{V^*h} \, d\mu$$

Proof. Let $x^* \in E^*$ be given. Upon identifying V^*h and $i_C(V^*h)$ we have

$$\partial_{V^*h} \langle \cdot, x^* \rangle(x) = \lim_{t \downarrow 0} \langle x + tV^*h, x^* \rangle - \langle x, x^* \rangle$$
$$= \langle V^*h, x^* \rangle = [V^*h, i_C^* x^*]_{H_C} = [i^* x^*, h]_H.$$

Let Φ be given by (3.1). Then,

$$\partial_{V^*h}\Phi(x) = \sum_{j=1}^k \frac{\partial\phi}{\partial x_j} \left(\langle x, x_1^* \rangle, \dots, \langle x, x_k^* \rangle \right) \partial_{V^*h} \langle \cdot, x_j^* \rangle(x)$$
$$= \sum_{j=1}^k \frac{\partial\phi}{\partial x_j} \left(\langle x, x_1^* \rangle, \dots, \langle x, x_k^* \rangle \right) [i^* x_j^*, h]_H = [D_H \Phi(x), h]_H.$$

Hence by [2, Theorem 5.1.8],

(3.3)
$$\int_E [D_H \Phi, h]_H \, d\mu = \int_E \partial_{V^*h} \Phi \, d\mu = \int_E \Phi \, \varphi_{V^*h} \, d\mu.$$

We will be interested in conditions under which $(D_H, \mathscr{D}(D_H))$ is closable as operator from $L^p(E, \mu)$ into $L^p(E, \mu; H)$. The following general criterion for closability can be found in many textbooks.

Proposition 3.4. Let X and Y be Banach spaces. A linear operator $(S, \mathscr{D}(S))$ from X into Y is closable if there exists a weak^{*}-densely defined linear operator $(T, \mathscr{D}(T))$ from Y^* into X^* which is adjoint to S in the sense that

$$\langle Sx, y^* \rangle = \langle x, Ty^* \rangle, \qquad x \in \mathscr{D}(S), \ y^* \in \mathscr{D}(T).$$

Conversely, if $(S, \mathscr{D}(S))$ is closable and densely defined, then its adjoint $(S^*, \mathscr{D}(S^*))$ is weak*-densely defined.

After these preparations we can prove the main result of this section.

Theorem 3.5. Let $1 \leq p < \infty$. The following assertions are equivalent:

- (1) The operator $(D_H, \mathscr{D}(D_H))$ is closable from $L^p(E, \mu)$ into $L^p(E, \mu; H)$;
- (2) The operator $(V, \mathscr{D}(V))$ is closable from H_C into H.

If these conditions hold, then $\mathscr{D}(D_H) \otimes \mathscr{D}(V^*) \subseteq \mathscr{D}(D_H^*)$ and

$$D_H^*(\Psi \otimes h) = \Psi \varphi_{V^*h} - [D_H \Psi, h]_H, \qquad \Psi \in \mathscr{D}(D_H), \ h \in D(V^*)$$

Proof. 1 \Rightarrow 2: Suppose $h_n \to 0$ in H_C , with $h_n \in \mathscr{D}(V)$ for all n, and $Vh_n \to g$ in H. We have to show that g = 0.

Write $h_n = i_C^* x_n^*$ with $x_n^* \in E^*$. Then

$$i^*x_n^* = Vh_n \to g$$
 in H

and

$$\langle \cdot, x_n^* \rangle = \varphi_{i_C^* x_n^*} = \varphi_{h_n} \to 0 \text{ in } L^2(E,\mu)$$

After passing to a subsequence if necessary, we may assume that $\lim_{n\to\infty} \langle x, x_n^* \rangle = 0$ for μ -almost all $x \in E$. Let $\phi \in C_b^1(\mathbb{R})$ satisfy $\phi(0) = 0$ and $\phi'(0) = 1$. Then for the function $\Phi_n := \phi(\langle \cdot, x_n^* \rangle) \in \mathscr{D}(D_H)$ we have

$$\lim_{n \to \infty} \Phi_n(x) = \lim_{n \to \infty} \phi(\langle x, x_n^* \rangle) = \phi(0) = 0 \quad \text{for μ-almost all $x \in E$},$$

and therefore

$$\lim_{n\to\infty}\Phi_n=0 \text{ in } L^p(E,\mu)$$

by dominated convergence. On the other hand,

$$D_H \Phi_n = \phi'(\langle \cdot, x_n^* \rangle) \otimes i^* x_n^*.$$

Hence,

$$\lim_{n \to \infty} \|D_H \Phi_n - \mathbf{1} \otimes g\|_{L^p(E,\mu;H)}^p = \lim_{n \to \infty} \int_E \|\phi'(\langle x, x_n^* \rangle) \otimes i^* x_n^* - g\|_H^p d\mu(x) = 0$$

by dominated convergence, where we used that $\lim_{n\to\infty} \phi'(\langle \cdot, x_n^* \rangle) = \phi'(0) = 1$ μ -a.e. and $\lim_{n\to\infty} i^* x_n^* = g$. But D_H being closable, this forces that g = 0. $2 \Rightarrow 1$: From (3.3) we deduce that for all $h \in \mathscr{D}(V^*)$ and $\Phi, \Psi \in \mathscr{D}(D_H)$,

(3.4)

$$\langle \Phi, \Psi \varphi_{V^*h} \rangle = \int_E \Phi \Psi \varphi_{V^*h} d\mu$$

$$= \int_E [D_H(\Phi \Psi), h]_H d\mu$$

$$= \int_E [(D_H \Phi) \Psi, h]_H d\mu + \int_E [\Phi D_H(\Psi), h]_H d\mu$$

$$= [D_H \Phi, \Psi \otimes h]_H + \langle \Phi, [D_H \Psi, h]_H \rangle.$$

Hence,

$$\langle D_H \Phi, \Psi \otimes h \rangle = \langle \Phi, \Psi \varphi_{V^*h} \rangle - \langle \Phi, [D_H \Psi, h]_H \rangle = \langle \Phi, T(\Psi \otimes h) \rangle$$

where

$$T(\Psi \otimes h) := \Psi \varphi_{V^*h} - [D_H \Psi, h]_H, \qquad \Psi \in \mathscr{D}(D_H), \ h \in D(V^*).$$

It follows that the operator $(T, \mathscr{D}(T))$, with domain $\mathscr{D}(T) = \mathscr{D}(D_H) \otimes \mathscr{D}(V^*)$, from $L^q(E, \mu; H)$ into $L^q(E, \mu)$ $(\frac{1}{p} + \frac{1}{q} = 1)$ is adjoint to $(D_H, \mathscr{D}(D_H))$. Since V is closable, $\mathscr{D}(V^*)$ is densely defined. Therefore the domain $\mathscr{D}(T)$ is weak*-

dense in $L^q(E, \mu; H)$. It follows from Proposition 3.4 that $(D_H, \mathscr{D}(D_H))$ is closable.

Example 3.6. It is well known that the directional derivative D_{H_C} , the so-called *Malliavin derivative* associated with μ , is closable. This follows immediately from the theorem by taking $H = H_C$, in which case we have V = I.

Example 3.7. Let $b \in E$, ||b|| = 1, be given and let H be the one-dimensional subspace of E spanned by b. Denoting the inclusion mapping of H into E by i, we have $i \circ i^* = b \otimes b$. Assuming that ker $C \subseteq \text{ker } Q$, we claim that D_H is closable if and only if $b \in H_C$ (in order to simplify notation we identify both H and H_C with linear subspaces of E). This will be used in Section 7.

To see this, first note that every densely defined linear operator on H is everywhere defined. Therefore by Proposition 3.4, D_H is closable if and only there exists a linear operator $V^*: H \to H_C$ with

$$[Vh,b]_H = [h,V^*b]_{H_C}, \qquad h \in H_C$$

If such V^* exists, then $V \circ i_C^* = i^*$ implies $(i_C \circ V^*)b = ib = b$. Hence $b = V^*b \in H_C$. Conversely, if $b \in H_C$, then $V^*b := b$ defines an operator from H into H_C which is adjoint to V.

We close this section by commenting on the rôle of $\mathscr{F}C_b^1(E)$ as the initial domain on which D_H is defined. Clearly, if D_H is closable on the domain $\mathscr{F}C_b^1(E)$, then D_H is also closable on any smaller domain, e.g. on $\mathscr{F}C_c^\infty(E)$. Moreover, by a modification of the arguments above, D_H is also closable on the domain $\mathscr{F}P(E)$ consisting of all cylindrical polynomials.

4. COMPACTNESS OF THE EMBEDDING
$$W_{H}^{1,2}(E,\mu) \hookrightarrow L^{2}(E,\mu)$$

Throughout this section we assume that Assumption 3.2 holds. We recall that this is for instance the case if μ is nondegenerate. We also fix $p \in [1, \infty)$.

In this section we will analyze the case where we have an inclusion $H_C \subseteq H$. In our first result, which is rather general, we identify H with a linear subspace of E.

Theorem 4.1. Suppose there exists a linear subspace Y of E^* such that C(Y) is dense in H. Then the operator $(D_H, \mathscr{D}(D_H))$ is closable from $L^p(E, \mu)$ into $L^p(E, \mu; H)$.

Proof. To check that $(V, \mathscr{D}(V))$ is closable we show that its adjoint is densely defined.

Let j denote the linear operator from Y into H given by $jx^* := Cx^*$ for $x^* \in Y$. Note that for all $x^* \in Y$ we have $ijx^* = Cx^*$. Hence for all $x^* \in Y$ and $y^* \in E^*$,

$$[jx^*, V(i_C^*y^*)]_H = [jx^*, i^*y^*]_H = \langle ijx^*, y^* \rangle = \langle Cx^*, y^* \rangle = [i_C^*x^*, i_C^*y^*]_{H_C}.$$

This shows that $j(Y) \subseteq \mathscr{D}(V^*)$ and

$$V^*(jx^*) = i_C^*x^*, \qquad x^* \in Y.$$

By assumption, j(Y) is dense in H, so V^* is densely defined.

It is well known (cf. [7, Appendix B]) that $H_C \subseteq H$ (as subsets of E) if and only if there exist a constant $K \ge 0$ such that

$$\langle Cx^*, x^* \rangle \leqslant K \langle Qx^*, x^* \rangle, \qquad x^* \in E^*,$$

or equivalently,

$$\|i_C^* x^*\|_{H_C}^2 \leqslant K \|i^* x^*\|_H^2, \qquad x^* \in E^*.$$

In this situation the map $V^{-1}: i^*x^* \mapsto i^*_C x^*$ is well defined and extends to a bounded linear operator, also denoted by V^{-1} , from H into H_C .

Corollary 4.2. Assume that $H_C \subseteq H$. The following assertions are equivalent:

- (1) The operator $(D_H, \mathscr{D}(D_H))$ is closable from $L^p(E, \mu)$ into $L^p(E, \mu; H)$;
- (2) H_C is dense in H.

Proof. Noting that the set $\{i_C^*x^* : x^* \in E^*\}$ is dense in H_C , the implication $2 \Rightarrow 1$ follows immediately from Theorem 4.1. It remains to prove that 1 implies 2. Let us denote the inclusion mapping $H_C \hookrightarrow H$ by j. For all $x^*, y^* \in E^*$ we have

$$\begin{split} [j(i_C^*x^*), i^*y^*]_H &= \langle (i \circ j)(i_C^*x^*), y^* \rangle \\ &= \langle i_C(i_C^*x^*), y^* \rangle \\ &= [i_C^*x^*, i_C^*y^*]_{H_C} \\ &= [i_C^*x^*, V^{-1}(i^*y^*)]_{H_C}. \end{split}$$

It follows that $j = (V^{-1})^*$. Let us suppose now that H_C is not dense in H. Then there exists $0 \neq g \in H$ such that $[jh, g]_H = 0$ for all $h \in H_C$. Choose a sequence (x_n^*) in E^* such that $\lim_{n\to\infty} i^* x_n^* = g$ in H. For all $h \in H_C$ we have

$$\lim_{n \to \infty} [h, i_C^* x_n^*]_{H_C} = \lim_{n \to \infty} [h, V^{-1}(i^* x_n^*)]_{H_C} = \lim_{n \to \infty} [jh, i^* x_n^*]_H = [jh, g]_H = 0.$$

This shows that $\lim_{n\to\infty} i_C^* x_n^* = 0$ weakly in H_C . By the Hahn-Banach theorem we may choose convex combinations y_n^* of the elements from the sequence (x_n^*) such that

$$\lim_{n \to \infty} i_C^* y_n^* = 0$$

strongly in H_C ; by choosing y_n^* in the convex hull of $\{x_k^*: k \ge n\}$ we further arrange that $\lim_{n\to\infty} i^* y_n^* = g$. But then

$$\lim_{n \to \infty} V(i_C^* y_n^*) = \lim_{n \to \infty} i^* y_n^* = g \neq 0,$$

and it follows that V is not closable.

Under the assumption that $H_C \subseteq H$ densely, the following result gives necessary and sufficient conditions for the embedding $W_H^{1,2}(E,\mu) \hookrightarrow L^2(E,\mu)$ to be compact:

Theorem 4.3. Let $H_C \subseteq H$ with dense inclusion. Then the following assertions are equivalent:

- The inclusion W_H^{1,2}(E, μ) → L²(E, μ) is compact;
 The inclusion H_C → H is compact;
 The operator V⁻¹ : H → H_C is compact.

Proof. $1 \Rightarrow 3$: If V^{-1} is not compact we can find a bounded sequence (h_n) in H such that $(V^{-1}h_n)$ fails to be totally bounded in H_C . Define $f_n = \varphi_{V^{-1}h_n}$. Then $f_k \in \mathscr{D}(\overline{D_H})$, $\overline{D_H}f_n = 1 \otimes h_n$, and and

$$\|f_n\|_{W^{1,2}_H(E,\mu)}^2 = \|\varphi_{V^{-1}h_n}\|_{L^2(E,\mu)}^2 + \|1 \otimes h_n\|_{L^2(E,\mu;H)}^2 = \|V^{-1}h_n\|_{H_C}^2 + \|h_n\|_{H_C}^2.$$

This shows that (f_n) is bounded in $W^{1,2}_H(E,\mu)$. On the other hand, from

$$||f_n - f_m||_{L^2(E,\mu)} = ||V^{-1}h_n - V^{-1}h_m||_{H_C}$$

it follows that (f_n) is not totally bounded in $L^2(E,\mu)$. We conclude that the inclusion $W_{H}^{1,2}(E,\mu) \subseteq L^{2}(E,\mu)$ fails to be compact.

 $3\Rightarrow 2$: Let us denote the inclusion mapping $H_C \hookrightarrow H$ by j. As we have seen in the proof of Corollary 4.2 we have $j^* = V^{-1}$. The compactness of V^{-1} therefore implies that j^* , and hence j, is compact.

 $2 \Rightarrow 1$: This follows from [19, Theorem 3.1].

For Hilbert spaces E and $p \in (1, \infty)$ it is proved in [5] that compactness of the embedding $W^{1,p}_H(E,\mu) \hookrightarrow L^p(E,\mu)$ is equivalent to the above conditions 2 and 3. If E is a Hilbert space and each eigenvector of C is also an eigenvector for Q, our characterization reduces to the one obtained in [9]. In both papers the result is formulated in terms of the operator $D_{\Omega^{\frac{1}{2}}}$ introduced in Section 6. Further embedding results in the Hilbert space case may be found in [12, 13].

We conclude this section with a result that in some sense parallels Theorem 4.1.

Theorem 4.4. Suppose there exists a linear subspace Y of E^* such that Q(Y) is dense in H_C . Then the operator $(D_H, \mathscr{D}(D_H))$ is closable from $L^p(E, \mu)$ into $L^p(E, \mu; H)$.

Proof. To check that $(V, \mathcal{D}(V))$ is closable we show that its adjoint is densely defined.

Let j denote the linear operator from Y into H_C given by $jx^* := Qx^*$ for $x^* \in Y$. Note that for all $x^* \in Y$ we have $i_C jx^* = Qx^*$. Hence all $x^* \in Y$ and $y^* \in E^*$,

$$[i^*x^*, V(i^*_Cy^*)]_H = [i^*x^*, i^*y^*]_H = \langle Qx^*, y^* \rangle = [jx^*, i^*_Cy^*]_{H_C}.$$

This shows that $i^*(Y) \subseteq \mathscr{D}(V^*)$ and

$$V^*(i^*x^*) = jx^*, \qquad x^* \in Y$$

By the assumption on Y, this shows that V^* is densely defined.

For Hilbert spaces E, this result was obtained by Fuhrman [14]. Theorem 4.1 may be more useful, however, as the practical applicability of Theorem 4.4 seems to be restricted mainly to the case where E is Hilbertian and Q = I (in which case Theorem 2.6 applies as well).

5. GRADIENTS ASSOCIATED TO ORNSTEIN-UHLENBECK OPERATORS

As before, E is a separable real Banach space and (i, H) is a Hilbert subspace of E. In this section we apply our abstract results to the situation where μ is an invariant measure of the stochastic Cauchy problem

(5.1)
$$\begin{cases} dZ(t) = AZ(t) dt + dW_H(t), \\ Z(0) = x. \end{cases}$$

Here $\{W_H(t)\}_{t\geq 0}$ is a standard cylindrical Wiener process with Cameron-Martin space H and A is the generator of a C_0 -semigroup $\mathbf{S} = \{S(t)\}_{t\geq 0}$ on E. A weak solution of equation (5.1) is a predictable E-valued stochastic process $\{Z(t)\}_{t\geq 0}$ such that for all $x^* \in D(A^*)$ the function $s \mapsto \langle Z(s), A^*x^* \rangle$ is almost surely integrable on [0, T] and

$$\langle Z(t), x^* \rangle = \langle S(t)x, x^* \rangle + \int_0^t \langle Z(s), A^*x^* \rangle \, ds + [W_H(t), i^*x^*]_H, \qquad t \ge 0.$$

For more details we refer to [3], where it is shown that equation (5.1) has a unique weak solution (for some, and hence for all, $x \in E$) if and only if for all $t \ge 0$ the operator $Q_t \in \mathscr{L}(E^*, E)$ defined by

$$Q_t x^* = \int_0^t S(s)QS^*(s)x^* \, ds, \qquad x^* \in E^*,$$

where $Q = i \circ i^*$, is the covariance operator of a centred Gaussian measure μ_t on E.

Throughout this section we make the following

Assumption 5.1. Equation (5.1) has an invariant measure μ_{∞} , whose covariance operator Q_{∞} is given by the improper integral

$$\langle Q_{\infty}x^*, y^* \rangle = \int_0^\infty \langle S(s)QS^*(s)x^*, y^* \rangle \, ds, \qquad x^*, y^* \in E^*.$$

This assumption is satisfied whenever the family of measures $\{\mu_t\}_{t\geq 0}$ is tight; in this case we have $\mu_t \to \mu_\infty$ weakly.

The following lemma shows that Assumption 5.1 implies Assumption 3.2 for $C = Q_{\infty}$.

Lemma 5.2. ker $Q_{\infty} \subseteq \ker Q$.

Proof. Let (i_{∞}, H_{∞}) denote the RKHS associated with the operator Q_{∞} ; cf. Section 2. Suppose $Q_{\infty}x^* = 0$ for some $x^* \in E^*$. Then $i_{\infty}^*x^* = 0$ and from

$$\|i_{\infty}^{*}x^{*}\|_{H_{\infty}}^{2} = \langle Q_{\infty}x^{*}, x^{*} \rangle = \int_{0}^{\infty} \langle S(s)QS^{*}(s)x^{*}, x^{*} \rangle \, ds = \int_{0}^{\infty} \|i^{*}S^{*}(s)x^{*}\|_{H}^{2} \, ds$$

it follows that $i^*S^*(s)x^* = 0$ for almost all $s \ge 0$. But ker i^* is weak*-closed, and therefore the weak*-continuity of S^* shows that $i^*x^* = 0$. Hence $Qx^* = 0$.

In the results that follow we will derive various sufficient conditions for closability of the gradient D_H in $L^p(E, \mu_{\infty})$. We will always assume $p \in [1, \infty)$ to be fixed.

The next result is concerned with the case when $L = -\frac{1}{2}D_H^*D_H$ in $L^2(E, \mu_{\infty})$ which is studied in [6] and [16]. Hence L is symmetric in $L^2(E, \mu_{\infty})$ and the closability of D_H follows from the general theory as presented for example in [17]. Here we provide a short and independent argument.

Theorem 5.3. If $S(t)Q = QS^*(t)$ for all $t \ge 0$, then $(D_H, \mathscr{D}(D_H))$ is closable as an operator from $L^p(E, \mu_{\infty})$ into $L^p(E, \mu_{\infty}; H)$.

Proof. We need to check that the operator $(V, \mathscr{D}(V))$ is closable from H_{∞} into H. Suppose that (x_n^*) is a sequence in E^* such that $i_{\infty}^* x_n^* \to 0$ in H and $i^* x_n^* = V(i_{\infty}^* x_n^*) \to g$ in H. Then $Qx_n^* = i(i^* x_n^*) \to ig$ in E and therefore

$$\begin{split} \int_{0}^{1} \|S(s)ig\|^{2} \, ds &= \lim_{n \to \infty} \int_{0}^{1} \|S(s)Qx_{n}^{*}\|^{2} \, ds \\ &= \lim_{n \to \infty} \int_{0}^{1} \|QS^{*}(s)x_{n}^{*}\|^{2} \, ds \\ &\leqslant \|i\|^{2} \limsup_{n \to \infty} \int_{0}^{1} \|i^{*}S^{*}(s)x_{n}^{*}\|_{H}^{2} \, ds \\ &\leqslant \|i\|^{2} \limsup_{n \to \infty} \int_{0}^{\infty} \|i^{*}S^{*}(s)x_{n}^{*}\|_{H}^{2} \, ds \\ &= \|i\|^{2} \limsup_{n \to \infty} \|i_{\infty}^{*}x_{n}^{*}\|_{H_{\infty}}^{2} \\ &= 0. \end{split}$$

Hence ||S(s)ig|| = 0 for all $s \in [0, 1]$, and hence g = 0 since **S** is strongly continuous and i is injective.

Next we will analyze what happens if H is S-invariant.

Lemma 5.4. Suppose $S(t)H \subseteq H$ for all $t \ge 0$ and define the operators $S_H(t) : H \to H$ by restriction. Define

$$\mathscr{D}(T) := \{i^* x^* : x^* \in E^*\},\$$
$$T(i^* x^*)(t) := S_H^*(t)i^* x^*, \qquad t > 0, \ i^* x^* \in \mathscr{D}(T).$$

For each $i^*x^* \in \mathcal{D}(T)$, the function $T(i^*x^*)$ belongs to $L^2((0,\infty); H)$, and the operator $(T, \mathcal{D}(T))$ is closable from H into $L^2((0,\infty); H)$.

Proof. The closed graph theorem shows that $S_H(t)$ is bounded for each $t \ge 0$. By dualizing, from $i \circ S_H(t) = S(t) \circ i$ it follows that

$$S_H^*(t)i^*x^* = i^*S^*(t)x^*, \qquad t \ge 0, \ x^* \in E^*.$$

Hence,

(5.2)
$$\int_0^\infty \|T(i^*x^*)(t)\|_H^2 dt = \int_0^\infty \|i^*S^*(t)x^*\|_H^2 dt = \|i^*_\infty x^*\|_{H_\infty}^2.$$

Hence $T(i^*x^*) \in L^2((0,\infty); H)$ and $||T(ix^*)||_{L^2((0,\infty); H)} = ||i^*_{\infty}x^*||_{H_{\infty}}$ for all $i^*x^* \in \mathcal{D}(T)$.

Next suppose $i^*x_n^* \to 0$ in H and $T(i^*x_n^*) \to f$ in $L^2((0,\infty); H)$. Passing if necessary to a pointwise a.e. convergent subsequence, we have for almost all t > 0:

$$f(t) = \lim_{n \to \infty} T(i^* x_n^*)(t) = \lim_{n \to \infty} S_H^*(t) i^* x_n^* = 0.$$

With the notation introduced in this lemma we have the following result:

Theorem 5.5. Suppose $S(t)H \subseteq H$ for all $t \ge 0$. The following assertions are equivalent:

(1) The operator $(D_H, \mathscr{D}(D_H))$ is closable from $L^p(E, \mu_{\infty})$ into $L^p(E, \mu_{\infty}; H)$; (2) ker $\overline{T} = \{0\}$.

Proof. Suppose $x^* \in \ker Q$. Then $x^* \in \ker i^*$, and in view of $i^*S^*(t)x^* = S^*_H(t)i^*x^* = 0$ it follows from the second identity in (5.2) that $x^* \in \ker Q_\infty$. In combination with Lemma 5.2 we conclude that $\ker Q_\infty = \ker Q$. It follows that V is a bijection from $\mathscr{D}(V)$ onto $\mathscr{D}(T)$, and for its inverse $V^{-1} : \mathscr{D}(T) \to \mathscr{D}(V)$ we find from (5.2)

$$||T(i^*x^*)||_{L^2((0,\infty);H)} = ||V^{-1}i^*x^*||_{H_\infty}, \qquad i^*x^* \in \mathscr{D}(T).$$

Since $(T, \mathscr{D}(T))$ is closable, so is $(V^{-1}, \mathscr{D}(T))$; moreover we see that ker $\overline{T} = \ker \overline{V^{-1}}$.

 $1\Rightarrow 2$: Since $(D_H, \mathscr{D}(D_H))$ is closable by assumption, $(V, \mathscr{D}(V))$ is closable. Suppose $h \in \ker \overline{V^{-1}}$. Then there is a sequence $i^*x_n^* \to h$ in H with $V^{-1}i^*x_n^* \to 0$. From $V(V^{-1}i^*x_n^*) = i^*x_n^* \to h$ and the closability of V it follows that $0 = \overline{V}0 = h$. Hence, $\ker \overline{T} = \ker \overline{V^{-1}} = \{0\}.$

 $2\Rightarrow1$: If ker $\overline{T} = \{0\}$, then ker $\overline{V^{-1}} = \{0\}$. Now suppose $i_{\infty}^* x_n^* \to 0$ in H_{∞} and $Vi_{\infty}^* x_n^* = i^* x_n^* \to y$ in H. From $V^{-1}i^* x_n^* = i_{\infty}^* x_n^* \to 0$ it follows that $y \in \mathscr{D}(\overline{V}^{-1})$ and $\overline{V^{-1}y} = 0$. Hence y = 0. This shows that V, and therefore D_H , is closable.

Corollary 5.6. Suppose $S(t)H \subseteq H$ for all $t \ge 0$ and assume that the semigroup \mathbf{S}_H is strongly continuous on H. Then the operator $(D_H, \mathscr{D}(D_H))$ is closable from $L^p(E, \mu_\infty)$ into $L^p(E, \mu_\infty; H)$.

Proof. Suppose $h \in \mathscr{D}(\overline{T})$ and let $i^*x_n^* \to h$ in H be such that $T(i^*x_n^*) \to \overline{T}h$ in $L^2((0,\infty);H)$. Passing if necessary to a pointwise a.e. convergent subsequence, we see that for almost all t > 0,

$$\overline{T}h(t) = \lim_{n \to \infty} T(i^* x_n^*)(t) = \lim_{n \to \infty} S_H^*(t) i^* x_n^* = S_H^*(t)h.$$

Hence $\overline{T}h(t) = S_H^*(t)h$ for almost all t > 0. If $\overline{T}h = 0$, then the strong continuity of \mathbf{S}_H^* implies h = 0, and therefore ker $\overline{T} = \{0\}$.

Remark 5.7. Mutatis mutandis, the results of this section can be extended to the problem

$$\begin{cases} dZ(t) = AZ(t)dt + BdW_H(t) \\ Z(0) = x, \end{cases}$$

where now H is an arbitrary separable real Hilbert space and $B: H \to E$ is bounded and linear. The rôle of H as being the RKHS associated with $Q = i \circ i^*$ is then taken over by the RKHS H_R of the operator $R = B \circ B^*$. As a Hilbert subspace of E, H_R equals the range of B, with norm given by the formula

$$\|Bh\|_{H_R} = \|Ph\|_H, \qquad h \in H$$

where P is the orthogonal projection in H onto $(\ker B)^{\perp}$.

6. THE CASE WHEN E IS A HILBERT SPACE

In this section we specify the previous results in the important case when E is a Hilbert space. We will use the framework introduced in books [7, 10].

Let *E* be a Hilbert space. One may consider the operator $(D_{Q^{\frac{1}{2}}}, \mathscr{D}(D_{Q^{\frac{1}{2}}}))$ acting from $L^{p}(E, \mu)$ into $L^{p}(E, \mu; E)$ defined by $\mathscr{D}(D_{Q^{\frac{1}{2}}}) = \mathscr{F}C^{1}_{b}(E)$ and

$$D_{Q^{\frac{1}{2}}} \Phi = Q^{\frac{1}{2}} \circ D\Phi, \qquad \Phi \in \mathscr{D}\big(D_{Q^{\frac{1}{2}}}\big),$$

where D is the Fréchet derivative (into the direction of E). If

$$\Phi(x) = \phi(\langle x, x_1^* \rangle, \dots, \langle x, x_k^* \rangle)$$

for certain $x_1^*, \ldots, x_k^* \in E$ and $\phi \in C_b^1(\mathbb{R}^k)$, then

$$D_{Q^{\frac{1}{2}}}\Phi(x) = \sum_{j=1}^{k} \frac{\partial \phi}{\partial x_j} (\langle x, x_1^* \rangle, \dots, \langle x, x_k^* \rangle) \otimes Q^{\frac{1}{2}} x_j^*,$$

whereas

$$D_H \Phi(x) = \sum_{j=1}^k \frac{\partial \phi}{\partial x_j} (\langle x, x_1^* \rangle, \dots, \langle x, x_k^* \rangle) \otimes i^* x_j^*.$$

It follows that $D_H = R \circ D_{Q^{\frac{1}{2}}}$, where $R := Q^{\frac{1}{2}}$ as an operator from E onto H. Since for all $x^* \in E$ we have

$$\|Q^{\frac{1}{2}}x^*\|_E^2 = \langle Qx^*, x^* \rangle = \|i^*x^*\|_H^2$$

we see that $D_{Q^{\frac{1}{2}}}$ is closable as an operator from $L^{p}(E,\mu)$ into $L^{p}(E,\mu;E)$ if and only if D_{H} is closable from $L^{p}(E,\mu)$ into $L^{p}(E,\mu;H)$.

We can also reformulate the closability of V in terms of the operators $C^{\frac{1}{2}}$ and $Q^{\frac{1}{2}}$. To this end we define an operator $(W, \mathscr{D}(W)) : E \to E$ by

$$\mathscr{D}(W) := \{ C^{\frac{1}{2}}x : x \in E \} = H_C,$$
$$W(C^{\frac{1}{2}}x) := Q^{\frac{1}{2}}x \qquad (x \in E).$$

Identifying E and its dual, we have

$$Q^{\frac{1}{2}}W(C^{\frac{1}{2}}x) = Qx = i(i^*)x = iV(i^*_Cx), \qquad x \in E.$$

If we think of $C^{\frac{1}{2}}$ and $Q^{\frac{1}{2}}$ as bounded operators from E onto $H_C = \text{Im}(C^{\frac{1}{2}})$ and $H = \text{Im}(Q^{\frac{1}{2}})$ respectively, we can rewrite this as

$$Q^{\frac{1}{2}}Wh = VC^{\frac{1}{2}}h, \qquad h \in \operatorname{Im}(C^{\frac{1}{2}}).$$

We claim: if ker $Q = \{0\}$, then W is closable in E if and only if V is closable from H_C into H.

Assume first that W is closable, and suppose that $h_n \to 0$ in H_C and $Vh_n \to y$ in H. Since ker $C \subset \ker Q = \{0\}$ by Assumption 3.2, the operator $C^{\frac{1}{2}} : E \to H_C$ is an isomorphism. Denoting $x_n := C^{-\frac{1}{2}}h_n$ we have $x_n \to 0$ in E and $Q^{\frac{1}{2}}Wx_n = VC^{\frac{1}{2}}x_n = Vh_n \to y$ in H. The operator $Q^{\frac{1}{2}} : E \to H$ is an isomorphism as well, and therefore $Wx_n \to Q^{-\frac{1}{2}}y$ in E. The closability of W gives $Q^{-\frac{1}{2}}y = 0$, so y = 0.

Assume now that V is closable, and suppose that $x_n \to 0$ and $Wx_n \to y$ in E. Then $C^{\frac{1}{2}}x_n \to 0$ in H_C and $VC^{\frac{1}{2}}x_n = Q^{\frac{1}{2}}Wx_n \to Q^{\frac{1}{2}}y$ in H. The closability of V then gives $Q^{\frac{1}{2}}y = 0$. It follows that $y \in \ker Q = \{0\}$, so y = 0. This proves the claim.

Combining what we just proved with Theorem 3.5, we obtain:

Theorem 6.1. Assume that ker $Q = \{0\}$. Then the following assertions are equivalent:

- (1) The operator D_H is closable from $L^p(E,\mu)$ into $L^p(E,\mu;H)$;
- (2) The operator $D_{Q^{\frac{1}{2}}}$ is closable from $L^{p}(E,\mu)$ into $L^{p}(E,\mu;E)$;
- (3) The operator W is closable in E.

In a similar way we can reformulate the conditions for the compact imbedding of $W_H^{1,2}(E,\mu)$ into $L^2(E,\mu)$.

Let us finally consider the equation

$$\begin{cases} dZ(t) = AZ(t)dt + dW_H(t), \\ Z(0) = x, \end{cases}$$

on E. If E is a Hilbert space, a weak solution is given by the variation of constants formula

$$Z(t) = S(t) + \int_0^t S(t-s)dW_H(s), \quad t \ge 0,$$

provided the operators Q_t are of trace class on E and the existence of the invariant measure μ_{∞} amounts to the assumption that Q_{∞} is of trace class as well. In this case we may take $C = Q_{\infty}$ and all the results of Section 5 hold as well.

7. EXAMPLES

In this section we use the previously developed theory to study the closability and nonclosability of some Ornstein-Uhlenbeck operators. In particular we provide two examples of nonclosability (a first order equation and a delay equation) which show that such a 'bad' behaviour may appear quite naturally. We also present an example where closability follows from the results of Section 3.

7.1. **Stochastic PDE of first order.** Let us consider the stochastic partial differential equation

(7.1)
$$\begin{cases} dy(t) = \frac{\partial y}{\partial x} dt + b dB(t) \\ y(0) = y_0, \end{cases}$$

where $\{B(t)\}_{t\geq 0}$ is a standard Brownian motion and $b, y_0 \in E = L^2(0, \infty)$. Without loss of generality we may assume that ||b|| = 1. This process is closely related to the Gaussian Musiela model of interest rates, see [18] for more details.

In order to apply our results of the previous section we let (i, H) denote the onedimensional Hilbert subspace of E spanned by the function b. Then b B(t) may be identified in the natural way with a standard Wiener process $W_H(t)$ whose Cameron-Martin space is H. Let

$$S(t)x(\zeta) = x(t+\zeta)$$

denote the semigroup of left shifts on E. Then the E-valued process

$$Z(t) = S(t)y_0 + \int_0^t S(t-s)b \, dB(s) = S(t)y_0 + \int_0^t \left(S(t-s) \circ i\right) dW_H(s)$$

is the solution to (7.1). Let us make the following assumptions:

(7.2)
$$\int_0^\infty \|S(t)b\|^2 dt < \infty,$$

(7.3)
$$\overline{\ln\left\{S(t)b:t\geqslant 0\right\}} = E.$$

It follows from the results in [7, chapter 11], that (7.2) and (7.3) are necessary and sufficient for the process $\{Z(t)\}_{t\geq 0}$ to have a unique nondegenerate invariant measure μ_{∞} , whose covariance operator Q_{∞} is given by

$$Q_{\infty}f = \int_0^{\infty} S(t)(b \otimes b)S^*(t)f \, dt.$$

We will show that D_H is not closable from $L^p(E, \mu_{\infty})$ into $L^p(E, \mu; H)$ for any $p \in [1, \infty)$.

Assume, for a contradiction, that D_H is closable for some p. Then by Example 3.7, $b \in H_{\infty}$. By the result in [7, Appendix B] this implies the existence of a function $u \in L^2(0, \infty)$ such that

$$\int_0^\infty S(s)b\,u(s)\,ds = b.$$

Then for almost all $\zeta > 0$ we have

(7.4)
$$b(\zeta) = \int_0^\infty b(\zeta + s)u(s) \, ds$$

and hence by the Cauchy-Schwarz inequality,

(7.5)
$$|b(\zeta)| \leqslant \left(\int_{\zeta}^{\infty} b^2(s) \, ds\right)^{\frac{1}{2}} \|u\|_2 \, .$$

It follows that $b \in L^{\infty}(0, \infty)$. By a similar estimate, for almost all $0 < \zeta_1 < \zeta_2$ we have

$$b(\zeta_{2}) - b(\zeta_{1}) \leqslant \int_{0}^{\infty} |b(\zeta_{2} + s) - b(\zeta_{1} + s)| |u(s)| ds$$

$$\leqslant \left(\int_{0}^{\infty} |b(\zeta_{2} - \zeta_{1} + v) - b(v)|^{2} dv\right)^{\frac{1}{2}} ||u||_{2},$$

which shows that b has a continuous representative. Finally, by (7.5),

$$\lim_{\zeta\to\infty} |b(\zeta)| = 0.$$

Therefore, (7.4) can be rewritten in the form

$$\langle S(\zeta)b, \delta_0 - u \rangle = 0, \quad t \ge 0$$

Since $\ln \{S(t)b : t \ge 0\}$ is dense in $L^2(0, \infty)$ the functional $\delta_0 - u$ extends to the zero functional on $L^2(0, \infty)$, a contradiction.

Remark 7.1. More generally the above argument implies that each $x \in H_{\infty}$ can be redefined on a set of measure zero as to become a continuous function on $[0, \infty)$ vanishing at infinity.

7.2. **Delay Equations.** Let us consider the following stochastic differential equation with a delay r > 0:

(7.6)
$$\begin{cases} dx(t) = (a_0 x(t) + a_1 x(t-r)) dt + dB(t), \\ x(0) = x_0, x(\theta) = x_1(\theta), \ \theta \in [-r, 0). \end{cases}$$

This equation may be rewritten as a stochastic evolution equation in the space $E = \mathbb{R} \times L^2(-r, 0)$. To this end note first that for $h = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \in E$ the equation

(7.7)
$$\begin{cases} \dot{y}(t) = a_0 y(t) + a_1 y(t-r), \\ y(0) = x_0, \ y(\theta) = x_1(\theta), \quad \theta \in [-r, 0), \end{cases}$$

can be rewritten as

(7.8)
$$\begin{cases} \dot{Y}(t) = AY(t), \\ Y(0) = h, \end{cases}$$

where the operator A on E is defined as

$$\mathscr{D}(A) = \left\{ \begin{pmatrix} f(0) \\ f \end{pmatrix} : f \in W^{1,2}(-r,0) \right\}$$
$$Af = \begin{pmatrix} a_0 f(0) + a_1 f(-r) \\ df/d\theta \end{pmatrix}, \quad f \in \mathscr{D}(A).$$

It is well known that the operator A generates a strongly continuous semigroup $\{S(t)\}_{t\geq 0}$ in E and that Y(t) := S(t)h is a mild solution of (7.8). Concerning the stochastic equation (7.6) it may be shown (see [4] and [10, Chapter 10]) that it has a unique solution x and the process

$$Z(t) = \begin{pmatrix} x(t) \\ x(t+\cdot) \end{pmatrix} \in E, \quad t \ge 0,$$

is the unique mild solution of the stochastic linear evolution equation

(7.9)
$$\begin{cases} dZ(t) = AZ(t)dt + b \, dB(t), \\ Z(0) = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \in E, \end{cases}$$

where

$$(7.10) b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

We assume that

$$a_0 < 1, \quad a_0 < -a_1 < \sqrt{\gamma^2 + a_0^2}.$$

where $\gamma \in (0, \pi)$ and $\gamma \coth \gamma = a_0$. Under this condition (see e.g. [10, Chapter 10]) equation (7.9) has a unique invariant measure μ_{∞} with nondegenerate covariance operator Q_{∞} . Moreover, the semigroup $\{S(t)\}_{t\geq 0}$ is uniformly exponentially stable, implying that the solution $y(\cdot)$ of (7.7) belongs to $L^2(0, \infty)$.

We will show that the operator D_H is not closable on $L^2(E, \mu_{\infty})$. By the result in Example 3.7, D_H is closable if and only if $b \in H_{\infty}$, the RKHS associated with Q_{∞} . By the result in [7, Appendix B] $b \in H_{\infty}$ if and only if

(7.11)
$$\int_0^\infty S(s)b\,u(s)ds = b$$

for a certain $u \in L^2(0, \infty)$. Consider equation (7.7) with $x_0 = 1$ and $x_1 = 0$. It is easy to check that the solution is continuous after time t = 0 (see also [4]) and

(7.12)
$$S(t)b = \begin{pmatrix} y(t) \\ y(t+\cdot) \end{pmatrix}$$

Assume now that there exists $u \in L^2(0,\infty)$ such that (7.11) holds. Then by (7.12) and (7.10),

$$\int_0^\infty y(s)u(s)ds = 1,$$

and

$$\int_0^\infty y(s+\theta)u(s)ds=0,\quad\text{for a.a. }\theta\in[-r,0).$$

Finally, taking into account the strong continuity of the C_0 -semigroup of translations in $L^2(0, \infty)$ and the fact that $y \in L^2(0, \infty)$ we see that this is impossible.

Remark 7.2. For simplicity of presentation, we considered a one dimensional case of stochastic delay equations. In fact the same result holds in the following more general situation. Take a linear d-dimensional stochastic delay equation of the following type

(7.13)
$$\begin{cases} dx(t) = \left[a_0 x(t) + \sum_{i=1}^N a_i x(t+\theta_i)\right] dt + b \, dB(t), \\ x(0) = x_0, \, x(\theta) = x_1(\theta), \quad \theta \in [-r, 0), \end{cases}$$

with a finite number of delays

$$-r = \theta_1 < \theta_2 < \dots < \theta_N < 0.$$

We assume that $a_0, a_1, ..., a_N$ are suitable $d \times d$ matrices, $\{B(t)\}_{t \ge 0}$ is an *m*-dimensional Brownian motion and *b* is a $d \times m$ matrix. If there exists an invariant measure μ_{∞} for the above equation (7.13) (see [10, Chapter 10] for conditions that guarantees this property), then D_H is again not closable by an argument similar to that in the above proof.

7.3. **Ornstein-Uhlenbeck Process in Chaotic Environment.** In this subsection we consider the so-called Ornstein-Uhlenbeck process in a random environment, see [10]. We shall use the framework considered in [20]. Let $\vartheta \in C^{\infty}(\mathbb{R}^d)$ be an even and strictly positive function such that $\vartheta(\zeta) = e^{-|\zeta|}$ for $|\zeta| \ge 1$. For $\rho \in \mathbb{R}$ we put $\vartheta_{\rho}(\zeta) = \vartheta^{\rho}(\zeta)$. We will denote by L^2_{ρ} the weighted L^2 -space endowed with the norm

$$|x|_{\rho} = \left(\int_{\mathbb{R}^d} |x(\zeta)|^2 \vartheta_{\rho}(\zeta) \, d\zeta\right)^{1/2}$$

For $\rho = 0$ we write L^2 instead of L^2_{ρ} . If $\rho > 0$, then $L^2 \subseteq L^2_{\rho}$ with continuous inclusion. Let

$$A_0 x(\zeta) = \sum_{|\alpha| \leqslant 2m} a_\alpha(\zeta) D^\alpha x(\zeta),$$

where m < 2d and the functions $a_{\alpha} \in C^1(\mathbb{R}^d)$ are bounded. We assume that A_0 is uniformly elliptic in L^2 . Then by the result in [20] A_0 has a unique extension to a generator A of an analytic C_0 -semigroup $\{S(t)\}_{t \ge 0}$ in L^2_ρ for every $\rho > 0$. In the space L^2_ρ we will consider a linear equation

(7.14)
$$\begin{cases} dZ(t) = AZ(t)dt + dW(t), \\ Z(0) = x \in L^2_{\rho}, \end{cases}$$

where $\{W(t)\}_{t\geq 0}$ is a standard cylindrical Wiener process on L^2 . By the results in [20] the variation of constants formula (1.3) is meaningful and defines a solution to (7.14) in L^2_{ρ} .

Assume now that there exists an invariant measure μ_{∞} for (7.14) in L^2_{ρ} . It is well known that then μ_{∞} is nondegenerate. Noting that L^2 is invariant under $\{S(t)\}_{t\geq 0}$ and that $\{S(t)\}_{t\geq 0}$ restricts to a C_0 -semigroup on L^2 , it follows from Corollary 5.6 that the gradient operator D_{L^2} is closable in $L^p(L^2_{\rho}, \mu_{\infty})$ for all $p \in [1, \infty)$ and $\rho > 0$.

Remark 7.3. Let $a = (a_{ij})$. If for a certain $\omega > 0$,

$$\vartheta_{
ho/2}A\vartheta_{-
ho/2} - \operatorname{div}\left(\vartheta_{
ho/2}a\nabla\vartheta_{
ho/2}
ight) \leqslant -\omega$$

in sense of distributions, then the semigroup $\{S(t)\}_{t\geq 0}$ is uniformly exponentially stable in L^2_{ρ} and therefore there exists a unique invariant measure for $\{Z(t)\}_{t\geq 0}$. In particular, this is true if d = 1, $A = \Delta - m$ with $m > \frac{\rho^2}{2}$, see p. 192 of [10].

REFERENCES

- Albeverio S. and Röckner M.: Classical Dirichlet forms on topological vector spaces closability and a Cameron-Martin formula, J. Funct. Anal. 88 (1990), 395-435
- [2] Bogachev V.I.: GAUSSIAN MEASURES, Mathematical Surveys and Monographs, Vol. 62, AMS, 1998
- [3] Brzeźniak Z. and van Neerven J.M.A.M.: Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem, *Studia Math.* 143 (2000), 43-74
- [4] Chojnowska-Michalik A.: Representation theorem for general stochastic delay equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. 26 (1978), 634-641
- [5] Chojnowska-Michalik A. and Goldys B.: Nonsymmetric Ornstein-Uhlenbeck generators, in: Ph. Clément, F. den Hollander, J. van Neerven and B. de Pagter (Eds.): INFINITE DIMENSIONAL STOCHASTIC ANALYSIS, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 2000, pp. 99-116
- [6] Chojnowska-Michalik and Goldys B.: Symmetric Ornstein-Uhlenbeck generators: characterizations and identification of domains, in preparation
- [7] Da Prato G. and Zabczyk J.: STOCHASTIC EQUATIONS IN INFINITE DIMENSIONS, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (UK) 1992
- [8] Da Prato G. and Zabczyk J.: Evolution equations with white noise boundary conditions, *Stochastics Stochastics Rep.* 42 (1993), 167-182
- [9] Da Prato G. and Zabczyk J.: Regular densities of invariant measures in Hilbert spaces, J. Funct. Anal. 130 (1995), 427-449
- [10] Da Prato G. and Zabczyk J.: ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS, Cambridge University Press, Cambridge (UK) 1996
- [11] Eberle A.: UNIQUENESS AND NON-UNIQUENESS OF SEMIGROUPS GENERATED BY SINGULAR DIFFUSION OPERATORS, Lecture Notes in Mathematics, Vol. 1718, Springer-Verlag, Berlin, 1999
- [12] Frolov N.N.: Embedding theorems for functions of a countable number of variables and their applications to the Dirichlet problem, *Soviet Math. Dokl.* 13 (1972), 346-349
- [13] Frolov N.N.: Embedding theorems for spaces of functions of a countable number of variables and their applications to the Dirichlet problem, *Siberian Math. J.* 22 (1981), 638-652
- [14] Fuhrman M.: Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces, *Studia Math.* 115 (1995), 53-71
- [15] Goldys B. and Gozzi F.: Second order Hamilton-Jacobi equations in Hilbert spaces and stochastic control: L^2 -approach, in preparation
- [16] Goldys B. and van Neerven J. M. A. M.: Symmetric and nonsymmetric Ornstein-Uhlenbeck semigroups in Banach spaces and their reproducing kernel Hilbert spaces, in preparation.

- [17] Ma Z. M. and Röckner M., INTRODUCTION TO THE THEORY OF (NONSYMMETRIC) DIRICHLET FORMS, Springer-Verlag, 1992
- [18] Musiela M.: Stochastic PDEs and term structure models, Journées Internationales de Finance, IGR-AFFI, La Baule 1993
- [19] Peszat S.: Sobolev spaces of functions on an infinite-dimensional domain. In: Stochastic processes and related topics (Siegmundsberg, 1994), 103-116, Stochastics Monogr. 10, Gordon and Breach, Yverdon, 1996
- [20] Peszat S. and Zabczyk J.: Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), 187-204
- [21] Stannat W.: (Nonsymmetric) Dirichlet operators on L¹: existence, uniqueness and associated Markov processes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 99–140.

SCHOOL OF MATHEMATICS, THE UNIVERSITY OF NEW SOUTH WALES, SYDNEY 2052, AUSTRALIA *E-mail address*: B.Goldys@unsw.edu.au

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA, VIA F. BUONARROTI N.2, 56127 PISA, ITALY *E-mail address*: gozzi@dm.unipi.it

DEPARTMENT OF APPLIED MATHEMATICAL ANALYSIS, TECHNICAL UNIVERSITY OF DELFT, P.O. BOX 5031, 2600 GA DELFT, THE NETHERLANDS

E-mail address: J.vanNeerven@its.tudelft.nl