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Abstract. Let E be a separable real Banach space not containing an isomor-
phic copy of c0. Let Q be a subset of L (E∗, E) with the property that each
Q ∈ Q is the covariance of the centred Gaussian measure µQ on E. We show
that the weak operator closure of Q consists of Gaussian covariances again,
provided that

sup
Q∈Q

Z

E
‖x‖2 dµQ(x) <∞.

If in addition E has type 2, the same conclusion holds for the weak operator
closure of the convex hull of Q. As an application, sufficient conditions are
obtained for the integral of Gaussian covariance operators to be a Gaussian
covariance. Analogues of these results are given for the class of γ-radonifying
operators from a separable real Hilbert space H into E.

1. Introduction

Let (µn) be a sequence of Gaussian Radon measures on a real Banach space E
and let (Qn) ⊆ L (E∗, E) be the associated sequence of their covariance operators.
Assuming that the weak operator limit limn→∞Qn = Q exists in L (E∗, E), it is
natural to ask under what conditions Q is a Gaussian covariance again. In this
paper we show that this is the case if E does not contain an isomorphic copy of c0

and the boundedness condition

sup
n

∫

E

‖x‖2 dµn(x) <∞

is satisfied. For separable E this implies that the weak operator closure of any
family of Gaussian covariances Q ⊆ L (E∗, E) which is bounded in second moment
consists of Gaussian covariances again, and if E has type 2 this result extends to
the weak operator closure of the convex hull of Q. As an application of this result
we show that in separable spaces with type 2, certain weak operator integrals of
Gaussian covariances are Gaussian covariances again. These results are obtained
in Sections 2 and 3.

Our motivation for studying these questions comes from the theory of stochas-
tic evolution equations. Let A be the infinitesimal generator of a C0−semigroup
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{S(t)}t>0 on a real Banach space E and let {W (t)}t>0 be an E-valued Brownian
motion. Denoting the law of W (t) by νt, the covariance of W (t) is given in terms
of the covariance operator Rt of νt by

E 〈W (t), x∗〉2 = 〈Rtx∗, x∗〉 = t 〈R1x
∗, x∗〉, x∗, y∗ ∈ E∗.

Extending well known results for the case wehre E is a Hilbert space, it is shown
in [3, 8] that the stochastic differential equation

(1.1)
dU(t) = AU(t) dt+ dW (t), t ∈ [0, T ],

U(0) = 0,

has a unique weak solution {U(t)}t∈[0,T ] if and only the operator QT ∈ L (E∗, E)
defined by

QTx
∗ :=

∫ T

0

S(t)R1S
∗(t)x∗ dt, x∗ ∈ E∗,

is a Gaussian covariance operator. Since the operators Q(t) := S(t)R1S
∗(t) are

Gaussian covariances, the abstract framework considered above applies. In this
special situation our results show that if E has type 2, the operator QT is indeed
a Gaussian covariance and therefore the problem (1.1) has a weak solution.

The class of Gaussian covariance operators is closely related to that of γ-radon-
ifying operators. Indeed, in Sections 4 and 5 we obtain analogues of our main
results for this class of operators In the final section we establish a converse to the
main result of Section 5 for spaces with cotype 2.

2. Weak limits of Gaussian covariances

A Radon measure µ on a real Banach space E is called a Gaussian measure if
for all x∗ ∈ E∗ the image measure 〈µ, x∗〉 is Gaussian. For such a measure µ on E
there exists a unique vector m ∈ E, the mean of µ, and a unique bounded operator
Q ∈ L (E∗, E), the covariance of µ, such that

(2.1) 〈Qx∗, y∗〉 =

∫

E

〈x−m,x∗〉〈x −m, y∗〉 dµ(x) ∀x∗, y∗ ∈ E∗.

Conversely, m and Q determine µ uniquely. A Gaussian measure µ is called centred
if m = 0, or equivalently if the image measures 〈µ, x∗〉 are centred for all x∗ ∈ E∗.
In this paper, all Gaussian measures will be centred. A necessary condition for a
bounded operator Q ∈ L (E∗, E) to be a Gaussian covariance is that Q be positive
and symmetric, i.e., 〈Qx∗, x∗〉 > 0 for all x∗ ∈ E∗ and 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all
x∗, y∗ ∈ E∗. If E is a real Hilbert space, a positive symmetric operator Q ∈ L (E)
(we identify E∗ with E in the usual way) is the covariance of a Gaussian measure
µ on E if and only if Q is of trace class. Taking µ to be centred we have

tr (Q) =

∫

E

‖x‖2 dµ(x).

In general Banach spaces, no simple explicit characterization of Gaussian covari-
ances seems to be known. Our main tool for finding sufficient conditions on positive
symmetric operators to be Gaussian covariances is the following Fatou type lemma.

Lemma 2.1. Let E be a real Banach space not containing an isomorphic copy
of c0 and let F be a norming subspace of E∗. Let (Qn) ⊆ L (E∗, E) be a se-
quence of Gaussian covariances and assume that there exists a bounded operator
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Q ∈ L (E∗, E) such that

(2.2) lim
n→∞

〈Qnx∗, x∗〉 = 〈Qx∗, x∗〉 ∀x∗ ∈ F.
If

(2.3) sup
n

∫

E

‖x‖2 dµQn(x) <∞,

then Q is a Gaussian covariance and we have

(2.4)

∫

E

‖x‖2 dµQ(x) 6 lim inf
n→∞

∫

E

‖x‖2 dµQn(x).

Here, for a given Gaussian covariance operator Q ∈ L (E∗, E) we write µQ for
the unique centred Gaussian measure with covariance Q.

In the proof below we use freely the theory of Gaussian Radon measures on locally
convex spaces presented in [2, Chapter 3], where also unexplained terminology can
be found.

Proof. We begin with observing that (2.1) and (2.3) imply the uniform boundedness
of the sequence (Qn). Hence without loss of generality we may assume that F is
norm closed in E∗.

Let νQn := jµQn be the image measure under the canonical isometric embedding
j : E ⊆ F ∗. Each νQn is a centred Gaussian measure on F ∗. Let B(0, r) and
BF∗(0, r) denote the closed balls of radius r in E and F ∗, respectively. Combining
(2.3), the weak∗-compactness of BF∗(0, r), and the estimate

νQn({BF∗(0, r)) 6
1

r2

∫

BF∗ (0,r)

‖y∗‖2 dνQn(y∗) =
1

r2

∫

B(0,r)

‖x‖2 dµQn(x),

it follows that the family (νQn) is uniformly tight as a family of Radon measures
on (F ∗, σ(F ∗, F )); cf. [2, Example 3.8.13(i)]. Let ν be any weak limit point.
Then ν is a Gaussian Radon measure on (F ∗, σ(F ∗, F )). Let R : F → F ∗ be
its covariance operator and let y ∈ F be fixed. By a standard argument involving
characteristic functions, (2.2) implies that j◦Q = R. In particular R takes its values
in j(E) and therefore we may identify Q and R as positive symmetric operators
from (F, σ(F,E)) to (E, σ(E,F )). Let H be their common reproducing kernel
Hilbert space. The canonical inclusion mapping i : H ↪→ E is weakly-to-σ(E,F )
continuous and its adjoint will be denoted by i′ : F → H ; we have R = i ◦ i′. By
[2, Theorem 3.2.7], H is separable and we may choose a sequence (yn) in F such
that the sequence (hn) := (i′yn) is an orthonormal basis for H . For all N and all
y ∈ F ,

E
(∑

n6N
gn〈ihn, y〉

)2

=
∑

n6N
〈ihn, y〉2 6 ‖i′y‖2H = 〈Ry, y〉.

Hence by Anderson’s inequality [1], for all N we have

P
(∥∥∥
∑

n6N
gnihn

∥∥∥
2

F∗
6 r2

)
> ν(BF∗(0, r)).

Since F is norming for E, this implies that the series
∑
n gnihn is bounded in

probability in E. Since E does not contain an isomorphic copy of c0, the Hoffmann-
Jørgensen–Kwapień theorem [6, Theorem 9.29] implies that

∑
n gnihn converges in

E almost surely and in L2(Ω;E). As a consequence, Q is the covariance of a
Gaussian measure µQ on E. Note that from R = j ◦Q we have ν = j ◦ µQ.
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It remains to prove (2.4). Let EQ denote the closure of the linear support of
µQ. Since µQ is Radon, EQ is a separable closed subspace of E and we may choose
a sequence of norm one elements (yn) in F such that ‖x‖ = supn |〈x, yn〉| for all
x ∈ EQ. For every r > 0 and N we have, by weak convergence,

∫

B(0,r)∩EQ
sup
n6N
|〈x, yn〉|2 dµQ(x) 6

∫

F∗
sup
n6N
|〈yn, y∗〉|2 ∧ r2 dν(y∗)

= lim
n→∞

∫

F∗
sup
n6N
|〈xn, y∗〉|2 ∧ r2 dνQn(y∗)

6 lim inf
n→∞

∫

F∗
‖y∗‖2 ∧ r2 dνQn(y∗)

6 lim inf
n→∞

∫

E

‖x‖2 ∧ r2 dµQn(x)

6 lim inf
n→∞

∫

E

‖x‖2 dµQn(x).

By monotone convergence, (2.4) follows from this by first letting N →∞ and then
r →∞. �

The following example shows that the lemma fails for E = c0:

Example 2.2. Let T : l2 → c0 be the multiplication operator associated with the
sequence 1/

√
ln 2, 1/

√
ln 3, . . . . For n > 1 let Tn denote the multiplication operator

associated with the sequence 1/
√

ln 2, 1
√

ln 3, . . . , 1/
√

ln(n+ 1), 0, 0, . . . . Then for
every n > 1 the operator Qn := Tn ◦ T ∗n is the covariance of a centred Gaussian
measure µn on c0. With Q := T ◦ T ∗ we have limn→∞〈Qnx∗, x∗〉 = 〈Qx∗, x∗〉 for
all x∗ ∈ E∗. As is shown in [7, Theorem 11], the assumptions of the lemma are
satisfied but Q fails to be a Gaussian covariance operator.

Let us denote by G (E∗, E) the collection of all Gaussian covariances in L (E∗, E).
A collection Q ⊆ G (E∗, E) will be called bounded in second moment if

sup
Q∈Q

∫

E

‖x‖2 dµQ(x) <∞.

Lemma 2.1 be rephrased as saying that if Q ⊆ G (E∗, E) is bounded in second
moment, then its sequential weak operator closure is contained in G (E∗, E). For
separable spaces E this may be strengthened as follows:

Theorem 2.3. Let E be a separable real Banach space not containing an isomor-

phic copy of c0. Let Q ⊆ G (E∗, E) be bounded in second moment and let Q
w

denote

the closure of Q in the weak operator topology of L (E∗, E). Then Q
w ⊆ G (E∗, E),

and for all R ∈ Q
w

we have∫

E

‖x‖2 dµR(x) 6 sup
Q∈Q

∫

E

‖x‖2 dµQ(x).

Proof. Since E is separable we may pick a sequence (x∗n)n>1 in E∗ whose linear

span F is a norming subspace for E. Fix an arbitrary R ∈ Q
w

. For each n > 1 let
Qn ∈ Q be an operator such that |〈(R −Qn)x∗j , x

∗
k〉| 6 1

n for j, k = 1, . . . , n. Then
limn→∞〈Qnx∗j , x∗j 〉 = 〈Rx∗j , x∗k〉 for all j, k > 1, and by polarization this implies

limn→∞〈Qnx∗, x∗〉 = 〈Rx∗, x∗〉 for all x∗ ∈ F . The result now follows from Lemma
2.1. �
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3. Weak integrals of Gaussian covariances in spaces with type 2

Recall that a Banach space E is said to have type 2 if there exists a constant
C > 0 such that for all finite subsets {x1, . . . , xN} of E we have

(3.1) E
∥∥∥

N∑

n=1

εnxn

∥∥∥
2

6 C2
N∑

n=1

‖xn‖2,

where (εn)Nn=1 are independent Rademachers. The least possible constant C in
(3.1) is called the type 2 constant of E and is denoted by C2. Examples of spaces
with type 2 are the Hilbert spaces and the Lp-spaces for p ∈ [2,∞).

Lemma 3.1. Let E be a real Banach space of type 2. Let Q =
∑N
n=1 anQn, where

an > 0 and Qn ∈ G (E∗, E) for all n = 1, . . . , N . Then Q ∈ G (E∗, E) and

∫

E

‖x‖2 dµQ(x) 6 C2
2

N∑

n=1

an

∫

E

‖x‖2 dµQn(x).

Proof. Without loss of generality we may assume that an > 0 for all n = 1, . . . , N .
Let us denote by νn the centred Gaussian measure on E given by

νn(B) = µQn(B/
√
an)

for Borel sets B ⊆ E. Then Q is the covariance of the centred Gaussian measure
µQ = ν1 ∗ · · · ∗ νN . For any choice of (r1, . . . rN ) ∈ {−1, 1}N we have, using the
symmetry of each of the νn,

∫

E

‖x‖2 dµQ(x) =

∫

EN

∥∥∥
N∑

n=1

xn

∥∥∥
2

dν1(x1) . . . dνN (xN )

=

∫

EN

∥∥∥
N∑

n=1

rnxn

∥∥∥
2

dν1(x1) . . . dνN (xN ).

Let (εn)Nn=1 be independent Rademachers on a probability space (Ω,P ). Putting
rn := εn(ω), taking expectations with respect to ω ∈ Ω and applying Fubini’s
theorem, we obtain

∫

E

‖x‖2 dµQ(x) =

∫

EN
E
∥∥∥

N∑

n=1

εnxn

∥∥∥
2

dν1(x1) . . . dνN (xN ).

Since E has type 2, the right hand side can be estimated from above by

C2
2

∫

EN

N∑

n=1

‖xn‖2 dν1(x1) . . . dνN (xN )

= C2
2

N∑

n=1

∫

E

‖y‖2 dνn(y) = C2
2

N∑

n=1

an

∫

E

‖x‖2 dµQn(x).

�

A Banach space E with type 2 cannot contain an isomorphic copy of c0. Hence
we may combine Theorem 2.3 and Lemma 3.1 to obtain the following result, in
which co Q denotes the convex hull of Q:
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Theorem 3.2. Let E be a separable real Banach space with type 2. If Q ⊆
G (E∗, E) is bounded in second moment, then co Q

w ⊆ G (E∗, E) and for all R ∈
co Q

w
we have ∫

E

‖x‖2 dµR(x) 6 C2
2 sup
Q∈Q

∫

E

‖x‖2 dµQ(x).

This theorem will be applied next to show that in spaces E with type 2, the
weak operator integral of a function with values in G (E∗, E) belongs to G (E∗, E).
For this result we need the following elementary lemma.

Lemma 3.3. Let (X,λ) be a probability space and let η > 0 be arbitrary. For
m = 1, . . . ,M let fm : X → R be bounded. Then there exists a finite partition
P = A1, . . . , Ak of X into disjoint measurable sets with the following property: for
every refinement P ′ = B1, . . . , Bk′ and every choice of points ξj ∈ Bj , j = 1, . . . , k′,
we have

∫

X

∣∣∣fm(ξ) −
k∑

j=1

fm(ξj)1Aj (ξ)
∣∣∣ dλ(ξ) < η, m = 1, . . . ,M.

Proof. Let |fm| 6 R for m = 1, . . . ,M . For N so large that 2R/N < η, divide
[−R,R] into N disjoint intervals In of length 2R/N and let Bm,n = f−1

m (In),
m = 1, . . . ,M , n = 1, . . . , N . Consider the partition P of X generated by the
k = NM sets B1,n1 ∩ · · ·∩BM,nM with 1 6 n1, . . . , nM 6 N. If P ′ is a refinement of
P and if ξj ∈ Bj ∈ P ′, then Bj ⊆ Ai for some Ai ∈ P , and therefore for all ξ ∈ Bj
and all m we have |fm(ξ) − fm(ξj)| 6 2R/N < η. By integrating, this shows that
P has the required properties. �

Theorem 3.4. Let E be a separable real Banach space with type 2, let (X,λ) be
probability space, and let Q : X → L (E∗, E) be a function with the following
properties:

(1) Q(ξ) ∈ G (E∗, E) for λ-almost all ξ ∈ X and we have
∫

X

∫

E

‖x‖2 dµQ(ξ)(x) dλ(ξ) <∞;

(2) ξ 7→ Q(ξ)x∗ is Pettis integrable for all x∗ ∈ E∗.
Then the operator QX ∈ L (E∗, E) defined by

QXx
∗ :=

∫

X

Q(ξ)x∗ dλ(ξ), x∗ ∈ E∗,

belongs to G (E∗, E) and we have
∫

E

‖x‖2 dµQX (x) 6 C2
2

∫

X

∫

E

‖x‖2 dµQ(ξ)(x) dλ(ξ).

Remark 3.5. It is implicit in the formulation of the theorem that the function

ξ 7→
∫

E

‖x‖2 dµQ(ξ)(x)

is measurable. That this is indeed the case can be checked by an argument using
approximation of x 7→ ‖x‖2 by cylindrical functions. The details are somewhat
tedious and are left to the reader.
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Proof. Let X0 be a set of full λ-measure in X with the property that Q(ξ) is a
Gaussian covariance for all ξ ∈ X0. Without loss of generality we may assume that
X0 = X .

Step 1 – We first prove the theorem under the additional assumption that the
function Q is bounded in the operator norm of L (E∗, E). Let R be the set of all

operators R ∈ co Q of the form R =
∑k

j=1 ajQ(ξj), where

(3.2) aj = µ(Aj) and ξj ∈ Aj for all j = 1, . . . , k

for some partition P = A1, . . . , Ak of X .
For δ > 0 arbitrary and fixed let Rδ denote the collection of all R ∈ R for which

P and the ξj ∈ Aj in (3.2) satisfy the additional requirement

(3.3)
∣∣∣
∫

X

∫

E

‖x‖2 dµQ(ξ)(x) dλ(ξ) −
∫

X

k∑

j=1

1Aj (ξ)

∫

E

‖x‖2 dµQ(ξj )(x) dλ(ξ)
∣∣∣ < δ.

Note that every partition P = A1, . . . , Ak has a refinement P ′ = B1, . . . , Bk′ such
that (3.3) holds for P ′ and a suitable choice of points ξi ∈ Bi.

We claim that QX ∈ Rδ
w
. Suppose the contrary. Then some weakly open

subset of L (E∗, E) containing QX is disjoint from Rδ. It follows that there exist
an integer M > 1, elements x∗1, . . . , x

∗
M , y∗1 , . . . , y

∗
M ∈ E∗, and an ε > 0 such that

for all R ∈ Rδ we have |〈(QX − R)x∗l , y
∗
m〉| > ε for some l,m ∈ {1, . . . ,M}. In

particular, for all partitions P of X and all choices ξj ∈ Aj subject to the condition
(3.3) we have

∣∣∣
∫

X

〈Q(ξ)x∗l , y
∗
m〉 dλ(ξ) −

∫

X

k∑

j=1

1Aj (ξ)〈Q(ξj )x
∗
l , y
∗
m〉 dλ(ξ)

∣∣∣ > ε

for some l,m ∈ {1, . . . ,M}. But this is impossible in view Lemma 3.3. This proves
the claim.

By Lemma 3.1 and (3.3), for any R ∈ Rδ we have

∫

E

‖x‖2 dµR(x) 6 C2
2

k∑

j=1

aj

∫

E

‖x‖2 dµQ(ξj )(x)

= C2
2

∫

X

k∑

j=1

1Aj (ξ)

∫

E

‖x‖2 dµQ(ξj )(x) dλ(ξ)

6 C2
2 (1 + δ)

∫

X

∫

E

‖x‖2 dµQ(ξ)(x) dλ(ξ).

Moreover, by claim and Theorem 3.2,∫

E

‖x‖2 dµQX (x) 6 sup
R∈Rδ

∫

E

‖x‖2 dµR(x).

The theorem (for bounded Q) now follows by combining these estimates and noting
that δ > 0 was arbitrary.

Step 2 – For general functions Q, let Q(n) := 1{‖Q‖6n}Q. Then Q(n) is bounded
and satisfies the conditions (1) and (2). Hence by Step 1, the operator Qn ∈
L (E∗, E) defined by

Q
(n)
X x∗ :=

∫

X

Q(n)(ξ)x∗ dλ(ξ), x∗ ∈ E∗,
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is a Gaussian covariance. Clearly we have 〈Q(n)
X x∗, x∗〉 ↑ 〈QXx∗, x∗〉 as n→∞ for

all x∗ ∈ E∗. Therefore condition (2.2) in Lemma 2.1 is satisfied and, by Ander-
son’s inequality, condition (2.3) is satisfied as well. The proof is concluded by an
application of this lemma and noting that for x∗ ∈ E∗ we have

〈QXx∗, x∗〉 = lim
n→∞

〈Q(n)
X x∗, x∗〉

= lim
n→∞

∫

X

〈Q(n)(ξ)x∗, x∗〉 dλ(ξ) =

∫

X

〈Q(ξ)x∗, x∗〉 dλ(ξ),

where the last equality follows by monotone convergence. �

Corollary 3.6. Let E be a separable real Banach space with type 2 and let (X,λ)
be a probability space. Let Q ∈ G (E∗, E) be fixed and let S : X → L (E) be a
strongly measurable function satisfying

(3.4)

∫

X

‖S(ξ)‖2 dλ(ξ) <∞.

Then the operator QX ∈ L (E∗, E) defined by

QXx
∗ :=

∫

X

S(ξ)QS∗(ξ)x∗ dλ(ξ)

belongs to G (E∗, E) and we have
∫

E

‖x‖2 dµQX (x) 6 C2
2

(∫

X

‖S(ξ)‖2 dλ(ξ)
)(∫

E

‖x‖2 dµQ(x)
)
.

Proof. For all x∗ ∈ E∗, the function ξ 7→ S(ξ)QS∗(ξ)x∗ is strongly measurable by
Pettis’s measurability theorem and therefore Bochner integrable by (3.4). For all
ξ ∈ X , S(ξ)QS∗(ξ) is the covariance operator of the image measure S(ξ)µQ =: µξ
and therefore,

∫

E

‖x‖2 dµQX (x) 6 C2
2

∫

X

∫

E

‖x‖2 dµξ(x) dλ(ξ)

= C2
2

∫

X

∫

E

‖S(ξ)y‖2 dµQ(y) dλ(ξ)

6 C2
2

(∫

X

‖S(ξ)‖2 dλ(ξ)
)(∫

E

‖y‖2 dµQ(y)
)
.

�

An application of this result to stochastic evolution equations has been discussed
in the Introduction.

4. Weak limits of γ-radonifying operators

Let H be a separable real Banach space. A bounded operator T ∈ L (H,E) is
said to be γ-radonifying if TT ∗ ∈ G (E∗, E). Here we identify H and its dual in the
usual way, which permits us to view TT ∗ as a bounded operator from E∗ into E.
It is well-known that

‖T‖2γ(H,E) :=

∫

E

‖x‖2 dµTT∗(x)

defines a norm ‖ ·‖γ(H,E) on the vector space γ(H,E) of all γ-radonifying operators
from H to E, and that γ(H,E) is a Banach space with respect to this norm. If
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(hn) is an orthonormal basis for H and (gn) is a sequence of independent standard
Gaussian variables, then

‖T‖2γ(H,E) = E
∥∥∥
∑

n

gn Thn

∥∥∥
2

.

An overview of the theory of γ-radonifying operators is presented in [2]. We shall
need the following ideal property, which readily follows from Anderson’s inequality:
if S1 : H1 → H and S2 : E → E1 are bounded and T : H → E is γ-radonifying,
then S2TS1 : H1 → E1 is γ-radonifying and

‖S2TS1‖γ(H1,E1) 6 ‖S2‖ ‖T‖γ(H,E)‖S1‖.
As an application of Lemma 2.1 we obtain the following Fatou lemma for γ-

radonifying operators.

Theorem 4.1. Let H be a separable real Hilbert space, E a real Banach space not
containing an isomorphic copy of c0, and F a norming subspace of E∗. Let (Tn) be
a bounded sequence in γ(H,E) and let T ∈ L (H,E) be such that

(4.1) lim
n→∞

〈Tnh, x∗〉 = 〈Th, x∗〉 ∀h ∈ H, x∗ ∈ F.

Then T ∈ γ(H,E) and

(4.2) ‖T‖γ(H,E) 6 lim inf
n→∞

‖Tn‖γ(H,E).

Proof. Since the operators Tn and T have separable ranges, there is no loss of
generality by assuming that E is separable.

Fix a sequence (x∗j ) of norm one vectors in F such that ‖x‖ = supj |〈x, x∗j 〉| for

all x ∈ E. Also fix an integer k > 1. Noting that by (4.1) we have limn→∞ T ∗nx
∗
j =

T ∗x∗j weakly in H for all j > 1, we choose a sequence of convex combinations of
the form

(4.3) S(k)
n =

N(k)
n∑

m=n

a(k)
m,nTm

such that

(4.4) lim
n→∞

‖S(k)
n
∗x∗j − T ∗x∗j‖ = 0 ∀j = 1, . . . , k.

By (4.3), the inequality ‖ · ‖ 6 ‖ · ‖γ(H,E), and the boundedness of (Tn) in γ(H,E),

(4.5) sup
n
‖S(k)

n ‖ 6 sup
n
‖S(k)

n ‖γ(H,E) 6 sup
n

(
sup
m>n
‖Tm‖γ(H,E)

)
<∞.

From

|〈(S(k)
n − T )T ∗x∗j , x

∗
j 〉| 6

N(k)
n∑

m=n

a(k)
m,n|〈(Tm − T )T ∗x∗j , x

∗
j 〉|

6 sup
m>n
|〈(Tm − T )T ∗x∗j , x

∗
j 〉|

and (4.1) it follows that

(4.6) lim
n→∞

〈S(k)
n T ∗x∗j , x

∗
j 〉 = 〈TT ∗x∗j , x∗j 〉 ∀j = 1, . . . , k.
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Therefore, by (4.4), (4.5), and (4.6),
(4.7)

lim
n→∞

〈S(k)
n S(k)

n
∗x∗j , x

∗
j 〉

= lim
n→∞

〈S(k)
n T ∗x∗j , x

∗
j 〉+ lim

n→∞
〈S(k)
n (S(k)

n
∗x∗j − T ∗x∗j ), x∗j 〉 = 〈TT ∗x∗j , x∗j 〉

for all j = 1, . . . , k.
For every k > 1 we use (4.7) to choose an index nk such that

|〈S(k)
nk S

(k)
nk
∗x∗j , x

∗
j 〉 − 〈TT ∗x∗j , x∗j 〉| <

1

k
∀j = 1, . . . , k.

Then,

(4.8) lim
k→∞

〈S(k)
nk
S(k)
nk
∗x∗j , x

∗
j 〉 = 〈TT ∗x∗j , x∗j 〉 ∀j > 1.

By polarization we obtain from (4.8) that

(4.9) lim
k→∞

〈S(k)
nk
S(k)
nk
∗x∗, x∗〉 = 〈TT ∗x∗, x∗〉 ∀x∗ ∈ F0,

where F0 denotes the linear span of the sequence (x∗j ). It follows from (4.5), (4.9),
and Lemma 2.1 that T ∈ γ(H,E) and

(4.10) ‖T‖γ(H,E) 6 lim sup
m→∞

‖Tm‖γ(H,E).

By applying (4.10) to suitable subsequences of (Tm) the estimate (4.2) follows. �

Under the stronger assumption that limn→∞ Tnh = Th for all h ∈ H this result
is contained in [5, Proposition 4.10] where it is proved with the following concise
argument. Fix an orthonormal basis (hj) of H and an integer k. Then, by the
Fatou lemma,

E
∥∥∥
∑

j6k
gj Thj

∥∥∥
2

6 lim inf
n→∞

E
∥∥∥
∑

j6k
gj Tnhj

∥∥∥
2

6 lim inf
n→∞

‖Tn‖2γ(H,E).

Hence,

(4.11) sup
k
E
∥∥∥
∑

j6k
gj Thj

∥∥∥
2

6 lim inf
n→∞

‖Tn‖2γ(H,E).

This means that T is almost summing in the sense of [4, Chapter 12]. Since E
does not contain c0, the Hoffmann-Jørgensen–Kwapień theorem implies that T ∈
γ(H,E) and (4.2) follows from (4.11).

Let (X,λ) be a separable σ-finite measure space. We call an operator T ∈
γ(L2(X), E) representable if there exists a function φ : X → E such that for all
x∗ ∈ E∗ we have T ∗x∗ = 〈φ, x∗〉. Here 〈φ, x∗〉 ∈ L2(X) is defined by 〈φ, x∗〉(ξ) :=
〈φ(ξ), x∗〉 for ξ ∈ X . In this situation we say that φ represents T . We write
γ(X ;E) for the vector space of all functions φ : X → E representing an element T
of γ(L2(X), E). For such a function we write ‖φ‖γ(X;E) := ‖T‖γ(H,E).

Our interest in the class γ(X ;E) is explained by the following result from [8]:
If φ : (0, T ) → E is a function such that 〈φ, x∗〉 ∈ L2(0, T ) for all x∗ ∈ E∗ and if
W = {W (t)}t>0 is a real-valued Brownian motion, then φ is stochastically integrable
with respect to W if and only if φ ∈ γ((0, T );E), and in this case we have

E
∥∥∥
∫ T

0

φ(t) dW (t)
∥∥∥

2

= ‖φ‖2γ((0,T );E).
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Theorem 4.1 implies a Fatou lemma for functions in γ(X ;E). It generalizes [5,
Proposition 4.11] where stronger measurability and convergence assumptions were
imposed. As in [5] the proof is based on Egoroff’s theorem, but the details are more
intricate. By the result from [8] just quoted, for X = (0, T ) it provides a sufficient
condition for stochastic integrability of certain E-valued functions.

Theorem 4.2. Let (X,λ) be a separable σ-finite measure space and let E be a real
Banach space not containing an isomorphic copy of c0. Let (φn) be a sequence of
functions in γ(X ;E) satisfying

sup
n
‖φn‖γ(X;E) <∞

and let φ : X → E be a function such that

lim
n→∞

〈φn, x∗〉 = 〈φ, x∗〉 µ-almost everywhere

for all x∗ ∈ E∗. If φ is Pettis integrable, then φ ∈ γ(X ;E) and

‖φ‖γ(X;E) 6 lim inf
n→∞

‖φn‖γ(X;E).

Proof. For all n and all x∗ ∈ E∗ we have ‖〈φn, x∗〉‖2 6 ‖φn‖γ(X;E)‖x∗‖. Hence, by

Fatou’s lemma, 〈φ, x∗〉 ∈ L2(X) and

‖〈φ, x∗〉‖2 6 lim inf
n→∞

‖〈φn, x∗〉‖2 6 ‖x∗‖ lim inf
n→∞

‖φn‖γ(X;E) ∀x∗ ∈ E∗.

Step 1 - The separability of X implies that L2(X) is separable. Let Tn : L2(X)→
E and T : L2(X)→ E be the operators represented by φn and φ, respectively. Note
that T is well defined since φ is Pettis integrable. That the operators Tn are well
defined follows immediately from the assumption that φn ∈ γ(X ;E).

Let E0 be a separable closed subspace of E containing the ranges of the operators
Tn and T . Let (x∗j ) be a sequence of norm one vectors in E∗ such that ‖x‖ =
supj |〈x, x∗j 〉| for all x ∈ E0.

We construct a sequence of measurable subsets (X (k)) of X with the following
properties:

(1) λ(X(k)) <∞ for all k;
(2) λ(X \⋃kX(k)) = 0;

(3) limn→∞〈φn, x∗j 〉 = 〈φ, x∗j 〉 uniformly on X(k) for all j and k.

We start by selecting a sequence of measurable subsets (A(k)) ofX with λ(A(k)) <
∞ and X =

⋃
k A

(k); this is possible since (X,λ) is σ-finite. Next we use Egoroff’s

theorem to choose measurable subsets A
(k)
m ⊆ A(k) such that λ(A(k) \A(k)

m ) 6 2−m

and limn→∞〈φn, x∗j 〉 = 〈φ, x∗j 〉 uniformly on A
(k)
m for all j = 1, . . . ,m. Let

B
(k)
l :=

⋂

m>l+1

A(k)
m .

Then B
(k)
l ⊆ A(k), λ(A(k) \ B(k)

l ) 6 2−l, and limn→∞〈φn, x∗j 〉 = 〈φ, x∗j 〉 uniformly

on B
(k)
l for all j > 1. The sets

X(k) :=

k⋃

i,l=1

B
(i)
l

have the desired properties.
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Step 2 - Put φ
(k)
n := 1X(k)φn and φ(k) := 1X(k)φ. Let T

(k)
n : L2(X) → E and

T (k) : L2(X) → E be the operators represented by φ
(k)
n and φ(k), respectively.

From T
(k)
n f = Tn(1X(k)f) and T (k)f = Tn(1X(k)f) it follows that T

(k)
n and T (k)

take their values in E0.
Let f ∈ L2(X) be fixed. From

|〈T (k)
n f − T (k)f, x∗j 〉| 6

∫

X(k)

|f〈φn − φ, x∗j 〉| dλ 6 ‖1X(k)f‖1‖1X(k)〈φn − φ, x∗j 〉‖∞

it follows that limn→∞〈T (k)
n f −T (k)f, x∗j 〉 = 0 for all j and k. Theorem 4.1, applied

to the Banach space E0 and the norming subspace of E∗0 spanned by the restrictions
of the x∗j to E0, implies that φ(k) ∈ γ(X ;E) and

‖φ(k)‖γ(X;E) 6 lim inf
n→∞

‖φ(k)
n ‖γ(X;E) 6 lim inf

n→∞
‖φn‖γ(X;E),

where the second inequality is a consequence of Anderson’s inequality. Next, for
all f ∈ L2(X) we have, by Fatou’s lemma,

‖T (k)f − Tf‖ = sup
j
|〈T (k)f − Tf, x∗j 〉|

6 sup
j

∫

{X(k)

|f〈φ, x∗j 〉| dλ 6 ‖1{X(k)f‖2 ‖〈φ, x∗j 〉‖2

6 ‖1{X(k)f‖2 lim inf
n→∞

‖〈φn, x∗j 〉‖2 6 ‖1{X(k)f‖2 lim inf
n→∞

‖φn‖γ(X;E).

By dominated convergence it follows that limk→∞ ‖T (k)f − Tf‖ = 0. Another
application of Theorem 4.1 (or its special case discussed after the proof) implies
that φ ∈ γ(X ;E) and

‖φ‖γ(X;E) 6 lim inf
k→∞

‖φ(k)‖γ(X;E)

6 lim inf
k→∞

(
lim inf
n→∞

‖φn‖γ(X;E)

)
= lim inf

n→∞
‖φn‖γ(X;E).

�

5. Weak integrals of γ-radonifying operators in spaces with type 2

In this section we will prove an analogue of Theorem 3.4 for functions with values
in γ(H,E). Throughout we assume that E is separable.

Let (X,λ) be a probability space and let T : X → L (H,E) be a function such
that T (ξ) ∈ γ(H,E) for λ-almost all ξ ∈ X and for all h ∈ H the function ξ 7→ T (ξ)h
is strongly measurable. A standard argument involving the Pettis measurability
theorem and the separability of γ(H,E) (which follows from the separability of H
and E) shows that T is strongly measurable as an γ(H,E)-valued function. If

∫

X

‖T (ξ)‖2γ(H,E) dλ(ξ) <∞,

then for all f ∈ L2(X ;H) the integral

IT f :=

∫

X

T (ξ)f(ξ) dλ(ξ)

converges as a Bochner integral, and the resulting operator IT : L2(X ;H) → E is
bounded. To see this, note that from the inequality ‖T (ξ)‖ 6 ‖T (ξ)‖γ(H,E) it fol-
lows that ξ 7→ T (ξ)f(ξ) is strongly measurable and the Cauchy-Schwarz inequality
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then gives ∫

X

‖T (ξ)f(ξ)‖ dλ(ξ) 6 ‖T‖L2(X;γ(H,E))‖f‖L2(X;H) <∞.

It follows that the function ξ 7→ T (ξ)f(ξ) is Bochner integrable. Hence the operator
IT is well-defined and satisfies ‖IT ‖ 6 ‖T‖L2(X;γ(H,E)). For later use we note that
I∗Tx

∗ = T ∗(·)x∗ for all x∗ ∈ E∗.
Theorem 5.1. If E has type 2, then under the above assumptions the operator
IT : L2(X ;H)→ E is γ-radonifying and

‖IT ‖2γ(L2(X;H),E) 6 C2
2

∫

X

‖T (ξ)‖2γ(H,E) dλ(ξ).

Proof. Since T : X → γ(H,E) is strongly measurable, there exists a sequence (Tn)
of γ(H,E)-valued step functions with the following properties:

(i) For all n > 1 we have

∫

X

‖Tn‖2γ(H,E) dm 6
∫

X

‖T‖2γ(H,E) dλ;

(ii) lim
n→∞

∫

X

‖Tn − T‖2γ(H,E) dλ = 0.

Let us write Tn =
∑Nn
k=1 1Bk,n ⊗Tk,n with the Bk,n measurable and disjoint and

with Tk,n ∈ γ(H,E). For each n > 1 let

Qn =

Nn∑

k=1

λ(Bk,n)Qk,n,

where Qk,n = Tk,n ◦ T ∗k,n. Let in : Hn ↪→ E denote the reproducing kernel Hilbert
space associated with Qn. Then Qn = in ◦ i∗n. By Lemma 3.1, in is γ-radonifying
and

(5.1)

‖in‖2γ(Hn,E) 6 C2
2

Nn∑

k=1

λ(Bk,n)‖Tk,n‖2γ(H,E)

= C2
2

∫

X

‖Tn‖2γ(H,E) dλ 6 C2
2

∫

X

‖T‖2γ(H,E) dλ.

Let Q := IT ◦ I∗T and note that

〈Qx∗, y∗〉 = [I∗Tx
∗, I∗T y

∗]L2(X;H) =

∫

X

[T ∗(ξ)x∗, T ∗(ξ)y∗]H dλ(ξ) ∀x∗, y∗ ∈ E∗.

Therefore for all x∗, y∗ ∈ E∗ we have

(5.2)

∣∣〈Qnx∗, y∗〉 − 〈Qx∗, y∗〉
∣∣

6
∫

X

∣∣[T ∗n(ξ)x∗ − T ∗(ξ)x∗, T ∗n(ξ)y∗]H
∣∣ dλ(ξ)

+

∫

X

∣∣[T ∗(ξ)x∗, T ∗n(ξ)y∗ − T ∗(ξ)y∗]H
∣∣ dλ(ξ),

which tends to 0 as n → ∞ by (i), (ii), the Cauchy-Schwarz inequality, and the
inequality ‖ · ‖ 6 ‖ · ‖γ(H,E).

By (5.1) and (5.2) we may apply Theorem 3.2 to the operators Qn and Q and
obtain that IT is γ-radonifying with

‖IT ‖2γ(L2(X;H),E) 6 C2
2

∫

X

‖T‖2γ(H,E) dλ.
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�

Corollary 5.2. Under the assumptions of Theorem 5.1, the operator T : H → E
defined by

Th :=

∫

X

T (ξ)h dλ(ξ)

is γ-radonifying and

‖T‖2γ(H,E) 6 C2
2

∫

X

‖T (ξ)‖2γ(H,E) dλ(ξ).

Proof. This follows by restricting the operator IT of Theorem 5.1 to the closed
subspace of L2(X ;H) consisting of all function of the form 1⊗ h with h ∈ H and
noting that ‖T‖γ(H,E) 6 ‖IT ‖γ(H,E). �

6. The spaces L2(X ; γ(H,E)) and γ(L2(X ;H), E)

In this section we take an operator-theoretical look at Theorem 5.1. With the
notations of the previous section, for simple functions T : X → γ(H,E) we have

(6.1) IT f =

∫

X

T (ξ)f(ξ) dλ(ξ),

where the right hand side can be defined in an elementary way. We claim that the
operators IT belong to γ(L2(X ;H), E) regardless whether E has type 2 or not. By
linearity it is enough to prove this for simple functions of the form T = 1B ⊗ S,
where B ⊆ X has finite measure and S ∈ γ(H,E). But then we have IT = S ◦ iB,
where iB : L2(X ;H)→ H is defined by

iBf :=

∫

X

1B(ξ)f(ξ) dλ(ξ).

Hence IT is γ-radonifying by the right ideal property. The content of Theorem 5.1
may be summarized by saying that if E has type 2, the mapping I : T 7→ IT has a
unique extension to a bounded operator

I : L2(X ; γ(H,E)) ↪→ γ(L2(X ;H), E)

of norm ‖IT ‖ 6 C2. In line with the development so far, we derived this result
from the Fatou lemma for Gaussian covariances. We proceed an independent and
considerably more elementary proof of this result. The reason for including this
argument will become apparent below when we prove a converse for spaces with
cotype 2.

Lemma 6.1. If E has type 2, the mapping I : T 7→ IT defined by (6.1) has a
unique extension to a continuous embedding

I : L2(X ; γ(H,E)) ↪→ γ(L2(X ;H), E)

of norm ‖I‖ 6 C2.

Proof. Consider a simple function T =
∑M
m=1 1Bm ⊗ Tm, where the Bm ⊆ X are

disjoint and have finite positive measure, and Tm ∈ γ(H,E) for all m = 1, . . . ,M .
Choose an orthonormal basis (hn)n>1 forH . By the separability of (X,λ), the space
L2(X) is separable and we may choose an orthonormal basis (fm)m>1 for L2(X),

the first M elements of which are given by fm := 1/
√
λ(Bm)1Bm . Then the doubly

indexed sequence (fm ⊗ hn)m,n>1 is an orthonormal basis in L2(X ;H). Finally,
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choose a doubly indexed orthogaussian sequence (gmn)m,n>1 and an independent
Rademacher sequence (ε̃m)Mm=1. Then, using orthogonality, the symmetry of the
gmn, Fubini’s theorem, and the type 2 property, we estimate:

(6.2)

‖IT ‖2γ(L2(X;H),E) = E
∥∥∥
∑

m,n>1

gmnIT (fm ⊗ hn)
∥∥∥

2

= E
∥∥∥
∑

m,n>1

gmn

∫

X

fm(ξ)T (ξ)hn dλ(ξ)
∥∥∥

2

= E
∥∥∥
∑

m,n>1

gmn

M∑

k=1

∫

X

fm(ξ)1Bk (ξ)Tkhn dλ(ξ)
∥∥∥

2

= E
∥∥∥
M∑

m=1

gmn
√
λ(Bm)

∑

n>1

Tmhn

∥∥∥
2

= Ẽ E
∥∥∥
M∑

m=1

ε̃m gmn
√
λ(Bm)

∑

n>1

Tmhn

∥∥∥
2

6 C2
2E

M∑

m=1

λ(Bm)
∥∥∥
∑

n>1

gmn Tmhn

∥∥∥
2

= C2
2

M∑

m=1

λ(Bm)‖Tm‖2γ(H,E)

= C2
2‖T‖2L2(X;γ(H,E)).

This proves that I : T 7→ IT is bounded of norm ‖I‖ 6 C2 on the dense subspace
of all simple functions in L2(X ; γ(H,E)), and the unique extendability follows.

To check that I is an embedding, suppose that IT1 = IT2 for certain T1, T2 ∈
L2(X ; γ(H,E)). Then from 〈IT1f, x

∗〉 = 〈IT2f, x
∗〉 for all f ∈ L2(X ;H) and x∗ ∈

E∗ it follows that T ∗1 x
∗ = T ∗2 x

∗ in L2(X ;H) for all x∗ ∈ E∗ and hence, 〈T1h, x
∗〉 =

〈T2h, x
∗〉 in L2(X) for all h ∈ H and x∗ ∈ E∗. By strong measurability this implies

T1h = T2h in L2(X ;E) for all h ∈ H . Since H is separable, it follows that T1 = T2

λ-almost everywhere. �

We proceed with an analogue of Lemma 6.1 for spaces with cotype 2. Recall-
ing that I : T 7→ IT is injective on the simple functions, the inverse mapping
I−1 : IT 7→ T is well-defined on the subspace γ0(L2(X ;H), E) of all operators
I ∈ γ(L2(X ;H), E) of the form I = IT with T simple.

Lemma 6.2. If E has cotype 2, the mapping I−1 has a unique extension to a
continuous embedding

I−1 : γ(L2(X ;H), E) ↪→ L2(X ; γ(H,E))

of norm ‖I−1‖ 6 c2, where c2 is the cotype 2 constant of E.

Proof. By reversing the estimates in (6.2) we see that the operator I−1 is bounded
from γ0(L2(X ;H), E) into L2(X ; γ(H,E)) of norm ‖I−1‖ 6 c2(E). By an easy ap-
proximation argument, γ0(L2(X ;H), E) is dense in γ(L2(X ;H), E) and the unique
extendability follows.
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To see that I−1 is injective, define J : L2(X ; γ(H,E))→ L (L2(X ;H), E) by

(JT )f :=

∫

X

T (ξ)f(ξ) dλ(ξ)

and let j : γ(L2(X ;H), E) ↪→ L (L2(X ;H), E) be the natural inclusion mapping.
On γ0(L2(X ;H), E) we have J ◦ I−1 = j and by continuity this identity extends to
all of γ(L2(X ;H), E). Hence if I−1S1 = I−1S2 for certain S1, S2 ∈ γ(L2(X ;H), E),
then jS1 = jS2 as elements of L (L2(X ;H), E) and therefore S1 = S2. �

From Theorems 6.1 and 6.2 one expects that the inclusion L2(X ; γ(H,E)) ↪→
γ(L2(X ;H), E) is proper when E is a space with type 2 but not with cotype 2, and
similarly, that the inclusion γ(L2(X ;H), E) ↪→ L2(X ; γ(H,E)) is proper when E
is a space with cotype 2 but not with type 2. The following examples confirm this
for the spaces lp in the appropriate ranges of p.

If fact, the first example shows that in the type 2 case it may even happen that
IT is γ-radonifying while none of the integrated operators T (ξ) has this property.

Example 6.3. Let H = l2 and E = lp with 2 < p <∞. For k = 1, 2, . . . we choose
sets Ak ⊆ [0, 1] of Lebesgue measure 1

k in such a way that for all t ∈ [0, 1] we have

(6.3) #{k > 1 : t ∈ Ak} =∞.
Define the operators T (t) : l2 → lp as coordinatewise multiplication with the se-
quence (a1(t), a2(t), . . . ), where

(6.4) ak(t) =

{
1, if t ∈ Ak,
0, else.

Then ‖T (t)‖ = 1 for all t ∈ [0, 1] and none of the operators T (t) is γ-radonifying.
Indeed, by [9, Theorem V.5.6], Q(t) := T (t)◦T ∗(t) is a Gaussian covariance operator
if and only if

∞∑

k=1

〈Q(t)u∗k, u
∗
k〉

p
2 <∞,

where u∗k denote the k-th unit vector of lq ( 1
p + 1

q = 1). From Q(t)u∗k = a2
k(t)uk,

with uk the k-th unit vector of lp, and (6.3) and (6.4) we see that this sum diverges
for all t ∈ [0, 1].

The operator IT : L2([0, 1]; l2) → lp, IT f :=
∫ 1

0 T (t)f(t) dt, is well-defined and
bounded. Putting QT := IT ◦ I∗T , we have

(6.5) 〈QTu∗k, u∗k〉 =

∫ 1

0

〈Q(t)u∗k, u
∗
k〉 dt =

∫ 1

0

a2
k(t) dt = |Ak| =

1

k
.

Consequently,
∑

k>1

〈QTu∗k, u∗k〉
p
2 =

∑

k>1

1

k
p
2

<∞.

It follows that QT is a Gaussian covariance operator and IT is γ-radonifying. Note
that by the first identity in (6.5) and polarization we have

QTu
∗ =

∫ 1

0

Q(t)u∗ dt

for all u∗ ∈ lq, i.e., QT is the integral of the function t 7→ Q(t).
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The next example shows that in the cotype 2 case there exist functions in
L∞([0, 1]; γ(l2, lp)) which do not represent an element of γ(L2([0, 1]; l2), lp):

Example 6.4. Let H = l2 and E = lp with 1 < p < 2. For k = 1, 2, . . . we now
choose sets Ak ⊆ [0, 1] of Lebesgue measure 1

k2/p in such a way that for all t ∈ [0, 1]
we have

#{k > 1 : t ∈ Ak} 6 N,
where N is an arbitrary fixed integer greater than

∑
k>1

1
k2/p . As before we define

the operators T (t) : l2 → lp as coordinatewise multiplication with the sequence
(a1(t), a2(t), . . . ) defined as in (6.4). For all t ∈ [0, 1], T (t) is γ-radonifying and

‖T (t)‖γ(l2,lp) 6 CpN
2
p ,

where the constant Cp depends on p only. For each h ∈ l2 the function t 7→
T (t)h is strongly measurable, and using the separability of γ(l2, lp) this easily
implies the strong measurability of t 7→ T (t). As a result we obtain that T ∈
L∞([0, 1]; γ(l2, lp)). The corresponding operator IT ∈ L (L2([0, 1]; l2), lp) fails to
be γ-radonifying, however. Indeed, with the notations of the previous example we
have ∑

k>1

〈Qu∗k, u∗k〉
p
2 =

∑

k>1

1

(k
2
p )

p
2

=
∑

k>1

1

k
=∞.
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