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In this paper we present a short and elementary proof of Wiener’s Tauberian theorem
based on methods from the theory of C0-groups.

Let T = {T (t)}t∈R be a C0-group on a Banach space X, i.e. a strongly continuous
one-parameter group of bounded linear operators on X. Then T defines an Banach
algebra homomorphism T : L1(R)→ L(X) by

T (f)x :=

∫ ∞

−∞
f(t)T (t)x dt, f ∈ L1(R), x ∈ X.

The kernel of T , notation IT , is the ideal

IT := {f ∈ L1(R) : T (f) = 0}.

The Arveson spectrum of T , notation Sp(T ), is the hull of IT , i.e. the set of all ω ∈ R
such that f̂(ω) = 0 for all f ∈ IT . Here, as usual,

f̂(ω) :=

∫ ∞

−∞
e−iωtf(t) dt

is the Fourier transform of f ∈ L1(R) at ω.
Our proof of Wiener’s Tauberian theorem is based on the fact that Sp(T ) is non-

empty provided T is bounded and X 6= {0}. This is true in the more general setting

1 This research has been made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences.



2

of bounded strongly continuous Banach representations of LCA groups G [Ar] and
is usually derived from Wiener’s Tauberian theorem. The essential point about our
proof of Wiener’s Tauberian theorem is that in the case G = R the non-emptyness of
the Arveson spectrum admits a direct and elementary operator-theoretic proof. For
reasons of completeness, we shall give the complete proof below.

Assuming for the moment that Sp(T ) 6= ∅ if X 6= {0}, Wiener’s Tauberian theo-
rem can be proved in a few lines as follows. The right translation group is the C0-group
U on L1(R) defined by

U(t)f(s) := f(s− t), t ∈ R, a.a. s ∈ R.
Note that U(f)g = f ∗ g for all f, g ∈ L1(R); here ∗ denotes convolution.

Theorem 1. (Wiener’s Tauberian theorem) If the Fourier transform of a function
f ∈ L1(R) vanishes nowhere, then the linear span of the set of all translates of f is
dense in L1(R).

Proof: Let X := span{U(t)f : t ∈ R}. We have to prove that X = L1(R). Consider
the quotient space Y := L1(R)/X and let UY denote the associated quotient transla-
tion group on Y . Then UY is strongly continuous and bounded, and for all g ∈ L1(R)
we have U(f)g = f ∗g = g∗f = U(g)f. By the translation invariance of X, U(g)f ∈ X.
Hence U(f)g ∈ X, so UY (f)(g+X) = 0 for all g ∈ L1(R). It follows that UY (f) = 0.

On the other hand, by assumption f̂(ω) 6= 0 for all ω ∈ R. Therefore, Sp(UY ) = ∅.
We conclude that Y = {0} and X = L1(R). ////

Although the above proof seems to be new, the idea to apply the theory of C0-groups,
and more generally, of strongly continuous Banach representations of LCA groups,
to quotients of translation groups to derive results in Harmonic Analysis is not; it
has been used by Huang [Hu] to study spectral synthesis in Beurling algebras and
subsequently in [HNR] to identify a class of Banach subalgebras of L1(G) which have
the Ditkin property.

Even for G = R, the usual proofs of Theorem 1 are quite involved; cf. [Ka], [Lo],
[Ru], [Yo].

It remains to prove that Sp(T) 6= ∅ if X 6= {0}. This is accomplished in two
propositions. The first is a well-known result of Evans [Ev]. As usual, for λ ∈ %(A),
the resolvent set of an operator A, we write R(λ,A) := (λ − A)−1. We assume that
the reader is familiar with the elementary theory of C0-(semi)groups as presented in
the first chapter of [Pa] or [Na].

Proposition 2. Let T be a bounded C0-group on a Banach space X, with infinites-
imal generator A.

(i) For all f ∈ L1(R) whose Fourier transform belongs to L1(R) we have

f̂(T)x =
1

2π
lim
δ↓0

∫ ∞

−∞
f̂(−t) (R(δ + it, A)−R(−δ + it, A))x dt, x ∈ X.

(ii) If f̂ is compactly supported and vanishes in a neighbourhood of iσ(A), then

f̂(T) = 0.
(iii) If X 6= {0}, then σ(A) 6= ∅.
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Proof: For all δ > 0 we have ±δ − it ∈ %(A), and for all x ∈ X we have the identities

R(δ − it, A)x =

∫ ∞

0

e−(δ−it)sT (s)x ds

and

R(−δ − it, A)x = −R(δ + it,−A) = −
∫ ∞

0

e−(δ+it)sT (−s)x ds.

Since f̂ ∈ L1(R), by the formula for the inverse Fourier transform we have

f(t) =
1

2π

∫ ∞

−∞
f̂(s)eits ds, a.a. t ∈ R.

Hence by the dominated convergence theorem and Fubini’s theorem,

f̂(T)x = lim
δ↓0

∫ ∞

−∞
e−δ|t|f(t)T (t)x dt

=
1

2π
lim
δ↓0

∫ ∞

−∞
e−δ|t|

(∫ ∞

−∞
eistf̂(s) ds

)
T (t)x dt

=
1

2π
lim
δ↓0

∫ ∞

−∞
f̂(s)

(∫ ∞

−∞
e−δ|t|eistT (t)x dt

)
ds

=
1

2π
lim
δ↓0

∫ ∞

−∞
f̂(s) (R(δ − is, A)− R(−δ − is, A))x ds.

This proves (i).

If f̂ is compactly supported and vanishes on a neighbourhood of iσ(A), then

f̂(T)x = 0 for all x ∈ X by (i) and the dominated convergence theorem. This proves
(ii).

Finally, assume σ(A) = ∅. Then (ii) implies that f̂(T) = 0 for all f ∈ L1(R)

whose Fourier transform f̂ has compact support. These functions are dense in L1(R);
this can be seen in an elementary way by noting that limλ→∞Kλ ∗ f = f , where Kλ

is the Fejér kernel, and recalling that K̂λ is compactly supported. Thus f̂(T) = 0 for
all f ∈ Lω(R). In particular, by defining f0(t) := e−t for t ≥ 0 and f0(t) := 0 for t < 0

we have f0 ∈ L1(R) and R(1, A) = f̂0(T) = 0. This implies X = R(1, A)X = {0}.
////

The second proposition is a special case of a result of Jorgensen [Jo]. For the real line,
it admits the following simple proof.

Proposition 3. Let T be a bounded C0-group with infinitesimal generator A on a
Banach space X. Then Sp(T) = iσ(A).

Proof: First let ω 6∈ iσ(A). Noting that σ(A) ⊂ iR, we choose a function f ∈ L1(R)
whose Fourier transform is compactly supported and vanishes in a neighbourhood of
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iσ(A) but not on ω. By Proposition 2 (ii), f̂(T) = 0. But then f̂(ω) 6= 0 implies that
ω 6∈ Sp(T).

Conversely, let ω ∈ iσ(A). Since σ(A) ⊂ iR and since the topological boundary
of σ(A) is always contained in the approximate point spectrum (cf. [Na, Ch. A-III]),
we see that −iω is contained in the approximate point spectrum of A. Hence we may
choose a sequence (xn) of norm one vectors in X, xn ∈ D(A) for all n, such that
limn→∞ ‖Axn + iωxn‖ → 0. In view of

T (t)xn − e−iωtxn =

∫ t

0

eiωsT (s)(A+ iω)xn ds = 0,

(xn) is an approximate eigenvector of T (t) with approximate eigenvalue e−iωt.
Let f ∈ L1(R). By the dominated convergence theorem,

lim
n→∞

∥∥∥∥
∫ ∞

−∞
f(t)(T (t)xn − e−iωtxn) dt

∥∥∥∥ = 0.

Thus, using that ‖xn‖ = 1,

‖f̂(T)‖ ≥ lim
n→∞

‖f̂(T)xn‖ = lim
n→∞

∥∥∥∥
∫ ∞

−∞
f(t)T (t)xn dt

∥∥∥∥ =

∣∣∣∣
∫ ∞

−∞
e−iωtf(t) dt

∣∣∣∣ = |f̂(ω)|.

This inequality shows that f̂(ω) = 0 for all f ∈ IT. Therefore, ω ∈ Sp(T). ////
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