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“Mathematics is a part of physics. Physics is an experimental science, a part

of natural science. Mathematics is the part of physics where experiments are

cheap.” – V.I. Arnold.

1. Wigner’s ‘unreasonable effectiveness of mathematics’

In a famous essay1 the physicist Eugene Wigner
contemplates what he calls the ‘unreasonable effec-
tiveness of mathematics’. Mathematics is effective
in the way it enables us do very detailed calcu-
lations leading to predictions that are consistent
with experiment to incredible precision. However,
this effectiveness is unreasonable: the mathematics
needed for these calculation does not bear any ev-
ident relationship to our every-day experience, nor
was it designed for the purpose of these applica-
tions. In Wigner’s own words:

“The miracle of the appropriateness of the
language of mathematics for the formulation
of the laws of physics is a wonderful gift
which we neither understand nor deserve.”

Wigner’s essay, which is based on a lecture for a
general audience, illustrates the quote with some

examples which can be understood without too much expert knowledge. To give
some further depth to it we will begin by giving three examples of the way mathe-
matics seems to “impose itself” upon physics.2

Example 1. The first example is connected with a famous theorem of differential
geometry, due to Emmy Noether, stating that to every symmetry there corresponds
a conserved quantity.3 The proof of this theorem actually constructs the preserved
quantity from the symmetry. The best-known examples in classical mechanics are
the following:

1E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences, Comm.

Pure Appl. Math. 13 (1) 1960: 1–14.
2A disclaimer seems appropriate: the author is neither a physicist nor a philosopher, nor can

he claim any expert knowledge in the foundations of mathematics. This article is just a collection
of very personal reflections based on a rather modest understanding of some of these issues.

3For a systematic discussion of the role of symmetry in modern theoretical physics, a good
starting point is David Gross’s paper: “The role of symmetry in fundamental physics”, Proc.

Natl. Acad. Sci. USA 93 (1996), 14256–14259.
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symmetry conserved quantity
translation in space momentum
rotation in space angular momentum
translation in time energy

Here the ‘symmetries’ are the Galilean symmetries of the space-time R3 × R of
classical physics preserving length of line segments in space and time intervals in
time. Thus the physical conserved quantities correspond in a one-to-one fashion to
the mathematical symmetries of R3×R. This by itself is remarkable, for ‘symmetry’
is a mathematical notion, while the conserved quantities momentum and energy are
definitely physical ones.

Even more interesting is that the discovery of the theory of special relativity
can be understood in terms of symmetry groups. After Maxwell had formulated
his famous equations unifying electricity and magnetism in 1861, it was quickly
realised that these equations are not invariant under the Galilean symmetry group
of R3 × R. Maxwell’s equations feature a certain absolute constant c, interpreted
as the speed of light, but invariance under the Galilean symmetries precludes the
existence of such a constant: it forces the observed speed of light to depend on the
relative speed of the observer and the light source. If a light source on a riding
train would emit light in the direction of travel, an observer on the ground would
measure the speed of light cground = ctrain + v, where ctrain is the speed of light
relative to the train and v is the speed of the train. This was put to test in the
famous Michelson-Morley experiment in 1887. To the surprise of many, however,
the outcome was unequivocal: in agreement with Maxwell’s equations, the speed
of light appeared to be an absolute constant, independent of the relative speeds of
observer and source, and in subsequent experiments this has been confirmed with
the precision ∆c/c ≤ 10−17.4 About the same time it was noted by Poincaré and
Lorentz that, curiously, Maxwell’s equations are invariant under a different group,
nowadays called the Lorentz group. Attempts to explain this on physical grounds
failed for being artificial. It required the genius of Einstein to simply postulate that
the Lorentz group is the correct symmetry group of space-time and to work out the
mathematical consequences of this assumption – the theory of special relativity.

Example 2. In classical mechanics, the equations of motion for objects satisfying
suitable constraints are modelled on a smooth manifold M which serves as the
configuration space. A Lagrangian is a smooth real-valued function L on TM ×R,
where TM is the tangent bundle of M (the points of which are (q, v) with q ∈ M
and v ∈ Tq(M), the tangent space at the point M). Given a Lagrangian L, the
action along a smooth path γ : [t0, t1]→M is defined as

S :=

∫ t1

t0

L(γ(t), γ′(t), t) dt.

The principle of least action states that the motion of the system is given by the
paths γ that are the critical points of the action functional S. Somewhat informally,

4S. Herrmann, A. Senger, L. Möhle, W. Nagel, E.V. Kovalchuk, A. Peters, A., “Rotating
optical cavity experiment testing Lorentz invariance at the 10−17 level”, Physical Review D. 80

(2009), no. 100, 105011.
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by the latter we mean that

d

dε

∣∣∣
ε=0

S(γε) = 0

for any “parametrised perturbation” γε of γ with a small parameter ε. This pro-
cedure can easily be made rigorous using coordinate charts.5 A simple derivation
shows that the equation of motion of L is the partial differential equation

∂L

∂q
(q(t), v(t), t) =

d

dt

(∂L
∂v

(q(t), v(t), t)
)

= 0,

the so-called Euler-Lagrange equation.
An example may illustrate this. Consider a free point particle with mass m

moving in M = R3 through a potential V . Taking

L :=
1

2
mv2 − V (q),

a simple computation shows that the Euler-Lagrange equations for L reduce to

ma = −∂V
∂x

,

where a = dv/dt denotes acceleration. This is Newton’s equation of motion for a
point mass m subject to the force −∂V /∂x.

Perhaps surprisingly, the Maxwell equations can also be cast in the form of a
principle of least action. This is not the place to develop this in detail, so we only
summarise the main steps.6 The first is to interpret, in the language of differential
geometry, the electric and magnetic fields E and B as a 2-form and a 1-form,
respectively, and to define the electromagnetic field

F := B + E ∧ dt.

Now there is a duality mapping, the so-called Hodge star operator, which provides
a canonical way of associating, in the context of an d-dimensional Riemannian
manifold, a (d − k)-form ?ω to any k-form ω. In our case the dimension equals
d = 3 and the Hodge star operator associates a 1-form ?F to the 2-form F . Their
wedge product F ∧?F is a 3-form which can be integrated over M and the Maxwell
equations are recovered as the Euler-Lagrange equations for the “action”

S := −1

2

∫
M

F ∧ ?F.

Referring once more to the language of differential geometry, the electromagnetic
field F can be interpreted as the curvature of a suitable connection associated with
F . The marvellous thing, discovered by Hilbert, is that Einstein’s equations of
general relativity have the same form: they can be written as the Euler-Lagrange
equations corresponding to the action functional given by the scalar curvature of
space-time!

5See Chapter 9 of M. Spivak, “A Comprehensive Introduction to Differential Geometry”, Vol.

I, Publish or Perish, 1999.
6A lucid and fully self-contained treatment of what follows is given in J. Baez and J.P. Muniain,

“Gauge Fields, Knots and Gravity”, World Scientific, 1994.
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Example 3. This example will be even more condensed. The passage from classical
mechanics to quantum mechanics essentially consists of replacing measured quanti-
ties, such as position, momentum, energy, etc., by the operation of measuring them.
At the risk of oversimplifying things, instead of asking (classically) whether a par-
ticle finds itself in a region R of its configuration space M (which can be answered
by ‘no’ or ‘yes’) we may consider the multiplication operator

πR : f 7→ 1Rf

on the Hilbert space L2(M), where 1R is the indicator function of R. This is
a self-adjoint projection on L2(M) whose spectrum consists of two eigenvalues, 0
and 1, with eigenfunctions f0 = 1{R and f1 = 1R corresponding to ‘no’ and ‘yes’,
respectively. More generally, in the mathematical formulation of quantum mechan-
ics, observables are self-adjoint operators and their spectral values the potential
outcomes of measurement. The spectral theorem for self-adjoint operators, which
states in a precise way how self-adjoint operators can be assembled from self-adjoint
projections, can then be interpreted as saying that every question that we can pose
to Nature can be constructed from yes-no questions.

In the first example we have seen the importance of symmetries. One may now
ask whether the symmetries of M can be similarly implemented on a Hilbert space.
This is indeed possible and the way to do it is to associate with every symmetry
σ of M a unitary operator Uσ acting on a Hilbert space H in such a way that
σ 7→ Uσ is a homomorphism of groups (note that both the symmetries of M and
the unitary operators on H form a group). Such a mapping is called a unitary
representation of the symmetry group of M . By taking direct sums one can add
unitary representations. A unitary representation is said to irreducible if it cannot
be decomposed as a sum of smaller unitary representations.

Eugene Wigner7 proposed that an elementary particle may now be defined math-
ematically as a unitary representation of the inhomogeneous Lorentz group, and
went on to show that they are classified by two numbers: a continuous parameter
m ≥ 0 (‘mass’) and a half-integer parameter s (‘spin’). This indeed corresponds to
the observed elementary particles of Nature, albeit that quantities such as ‘charge’
are not captured in this framework. They, however, appear by the same mech-
anism once the external symmetry group of space-time is augmented by a group
of internal symmetries. Now something truly spectacular happens: if one chooses
U(1) × SU(2) × SU(3) for the internal symmetries, the irreducible unitary repre-
sentations precisely correspond the known particles of particle physics!8 Roughly
speaking, the groups U(1), SU(2), SU(3) correspond to the symmetries of electro-
magnetism, the weak force and the strong force, respectively. Nobody knows why
Nature choose these particular groups; this is an empirical fact unveiled by particle
accelerators at CERN, Fermilab and other facilities.

2. ... as a philosophical problem9

7E. Wigner, “On unitary representations of the inhomogeneous Lorentz group”, Annals of

Math. 40 (1939), no. 1, 149–204.
8A detailed historical account of the discoveries leading up to this realisation is presented in

D. Griffiths’s book “Introduction to Elementary Particles”, 2nd revised edition, Wiley, 2008.
9The title of this paragraph, and indeed of the article, is inspired by Mark Steiner’s book “The

Applicability of Mathematics as a Philosophical Problem”, Harvard University Press, 1998.
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These are but three examples of what appears to be a profound unity of math-
ematics and physics. That this unity should exist is deeply mysterious, if only
because physics is the science of exploring the laws governing the external world
whereas mathematics explores a mathematical universe created by our collective
minds. If one considers mathematics as the art of deducing statements from a pre-
defined collection of axioms by making use of predetermined deduction rules, one
must admit that the choice of those axioms and deduction rules is in a sense ar-
bitrary. Other choices are possible and lead to different mathematics. The French
mathematician Jean Dieudonné has compared the formalist view of mathematics
with a game of chess: it, too, has an alphabet (the pieces), axioms (an initial
configuration) and rules of inference (the chess rules).10

Since their formulation in the early 20th century the axioms of set theory (the
so-called ZF axioms, named after their inventors Zermelo and Fraenkel) have been
widely accepted as the ‘standard’ axiomatisation of mathematics. For most working
mathematicians, however, these axioms appear technical if not bizarre, and they
seem to have little or no connection with everyday intuitions. Apart from set
theorists, only few mathematicians seem to actually know the ZF axioms! How,
then, can it be explained that the edifice we call ‘mathematics’ which is built upon
these axioms is so useful in describing the external world around us? Why would
elementary particles care about the axioms of set theory? A game of chess cannot
teach us anything about the external world, so why would the axioms of set theory?

To address this problem we will have to consider more closely the nature of
mathematics. This has two aspects: What is the structure of mathematics and
what are its object of investigation? The first question leads straight into the
foundations of mathematics and constitutes the subject matter of mathematical
logic, which treats mathematics and its various sub-disciplines as formal languages.
Present-day mathematics is based on the ZF axioms of set theory, but alternative
foundations can be given.11 Interestingly, all these systems seem to reproduce at
least those parts of mathematics that are relevant for physics (we don’t try to define
what this means!). We will focus on the second question, which is a question about
the metaphysical status of mathematical concepts. For example, number theory
investigates numbers, but what are “numbers” really? Are they merely patterns of
neural activity in our brains, or do they have some real “existence” independently

10In his article “Modern axiomatic method and the foundations of mathematics” (in: Great

Currents of Mathematical Thought, 1971) he writes:

“Mathematics becomes a game, whose pieces are graphic symbols distinguished

from each other by their forms; with these symbols we make groupings which
will be called relationships or terms according to their forms. By virtue of

certain rules, certain relationships are described as true; other rules permit the

construction of true relationships either from any relationships whatsoever or
from other true relationships. The essential point is that these rules are of such
a nature that in order to verify that they are being observed, it is sufficient to

examine the form of these groupings which come into play.”

11Not only do different axiomatisations of set theory exist. e.g. by von Neumann-Bernays-
Gödel (see K. Kunen, “Set Theory”, College Publications, 2nd edition, 2011), there are also

very different proposals based on topos theory (see F.W. Lawvere and R. Rosebrugh, “Sets for
Mathematicians”, Cambridge University Press, 2003; an accessible introduction is the paper by
T. Leinster, “Rethinking Set Theory”, Amer. Math. Monthly 121 (2014), no. 5, 403–415)
and Voevodski’s univalence programme (see “Homotopy Type Theory: Univalent Foundations of

Mathematics”, The Univalent Foundations Program, Institute for Advanced Study, 2013)
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of us? Both positions (and various intermediate variants) have passionate adherents
and declared opponents.

The delightful book “Conversations on Mind, Matter, and Mathematics” records
a discussion between the neurologist Jean-Pierre Changeux and Field medallist
Alain Connes defending, respectively, the former and the latter position.12 Chang-
eux’s reductionist point of view seems difficult to reconcile with our every-day
experience that we (mathematicians) are able to meaningfully communicate with
each other about mathematical objects, given that each one of us has a differ-
ent brain with different neuronal connections. All mathematicians will agree that
mathematics is really “about something” which does not depend on the specific
shape and wiring of one’s brain. To dismiss mathematical objects as patterns of
neuronal activity seems to deny the very essence of mathematics. What is more,
in this view mathematics could not have existed before man arrived on the planet,
and will cease to exist when (and if) mankind would ever be wiped out. The situ-
ation bears some resemblance with the ontological status of, say, Beethoven’s 9th
symphony. Nobody would sensibly claim it “existed” before Beethoven wrote it,
and it is imaginable that at some point in the future the collective memory of this
great work could be wept out completely – in which case one could reasonably say
it then no longer “exists”. There is one marked difference, however, in that math-
ematics, or at least a good part of it, is likely to be discovered (perhaps phrased in
a different formal language) by any intelligent beings studying the laws of physics
– something which can be hardly said of Beethoven’s 9th symphony.

Let us, then, consider the platonist view that mathematical objects “exist” in-
dependently of us. In which “universe” do they exist? Obviously, they do not exist
as material objects in our physical universe. Nobody has ever encountered a ‘two’
on a walk in the park; at best one sees two trees or two birds. But if mathematical
objects “exist” in an “immaterial universe” “beyond the space and time”,13 how
can they causally interact with physical objects within space and time, such as

12Jean-Pierre Changeux and Alain Connes, “Conversations on Mind, Matter, and Mathemat-

ics”, Princeton University Press, 1995.
13This view is held by several prominent mathematicians. Kurt Gödel, in his article “What

is Cantor’s continuum problem” (in: “Philosophy of Mathematics, Selected Readings”, Prentice-
Hall, 1964) writes:

“(...) the objects of transfinite set theory (...) clearly do not belong to the

physical world and even their indirect connection with physical experience is
very loose (...) But, despite their remoteness from sense experience, we do have

something like a perception also of the objects of set theory, as is seen from
the fact that the axioms force themselves on us as being true. I don’t see any
reason why we should have less confidence in this kind of perception, i.e., in

mathematical intuition, than in sense perception, which induces us to build up

physical theories and to expect that future sense perceptions will agree with
them and, moreover, to believe that a question not decidable now has meaning

and may be decided in the future. The set-theoretical paradoxes are hardly
any more troublesome for mathematics than deceptions of the senses are for
physics.”

For Alain Connes (in: Alain Connes, André Lichnerowicz, Marcel Paul Schützenberger: Triangle

of Thoughts, American Mathematical Society, 2000), arithmetical truth describe a “primordial
reality” (“réalité mathématique archäıque”):

“By this intentionally imprecise term, I lump together the vast continent of
arithmetical truths.”

Axiomatic theories of mathematics are nothing but a tool to explore this reality:
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our brains? For the very moment we practice mathematics, this is exactly what
happens and the interaction leads to tangible consequences in our physical world,
such as articles in journals and lectures at universities.

This objection to Platonism appears to have been brought up first by the philoso-
pher Paul Benacerraf.14 He has a point if one accepts the sharp distinction between
the external physical world, of which our brain is a part, and the mental world of
our consciousness, of which mathematics is assumed to be a part. But exactly this
could be questioned on the basis that it presupposes the ‘scientific realist’ position
– this is the position that an external world exists independently of our observation
and that its workings can be unravelled through scientific investigation. Reconciling
this position with ‘mathematical realism’ seems indeed problematic.

Can we be sure of the objective existence of an external world? This problem,
known as the Ding an sich problem of the German philosopher Immanuel Kant,
is not so easily dismissed. After all, we perceive the sense-data presented in our
consciousness, but not the “objects themselves”. Even the realist will admit that
when we “see a table”, we do not actually see “the table itself”. At best we see the
photons that are reflected from the table. And in fact we do not even see those:
the image we perceive is formed in our brain only after retinal nerve pulses have

“We cannot avoid discussing in greater detail a distinction that is quite simple

in the science of matter, but which turns out to be more subtle in the case
of mathematics: it is the distinction between tools that are invented and the

objects that they uncover. For example, the structure of DNA was discov-

ered thanks to the electron microscope. The electron microscope is clearly a
tool. Nobody would question that this tool, unlike DNA, was created by man.

(...) As long as a tool has not proved itself by lifting in a significant way the

veil that conceals primordial mathematical reality, it can rightly be considered
sterile and nonexistent. (...) If we look at the sequence of prime numbers, for

example, it appears at first glance to be as bizarre and disorderly as external
reality. But it happens that, by developing an instrument of observation, by

inventing appropriate concepts, we gradually succeed in guessing some of the

regularities that lie within this seemingly disorganized reality. By trying to
understand the geometric structure of the “arithmetic site”, that is, the set of

prime numbers, we manage little by little to perceive the extraordinary funda-

mental organization of this reality. (...) For me, the properties that are true
characterize the object in its primordial reality, whereas those that are provable

are the ones that our brain perceives through its instruments of observation.”

14P. Benacerraf, “Mathematical Proof” (in: “Philosophy of Mathematics, Selected Readings”,

Prentice-Hall, 1964). After elaborating his view that

“I favor a causal account of knowledge on which for X to know that S is true
requires some causal relation to obtain between X and the referents of the

names, predicates, and quantifiers of S.”

he writes:

“It will come as no surprise that this has been a preamble to pointing out that
combining this [the causal – JvN] view of knowledge with the “standard” view

of mathematical truth makes it difficult to see how mathematical knowledge is
possible. If, for example, numbers are the kinds of entities they are normally

taken to be, then the connection between the truth conditions for the state-

ments of number theory and any relevant events connected with the people who
are supposed to have mathematical knowledge cannot be made out. It will be

impossible to account for how anyone knows any properly number-theoretical
propositions.”
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made their way from the eye to the visual cortex. In the end, what we really see is
the electrical activity of our visual cortex. The same reasoning applies to all other
senses. How then can we be sure that there really “is” a table, even when nobody is
watching? The same question can be asked about all objects around us, including
our own brain! One could consistently argue that the “external world” is just a
working hypothesis of our consciousness that serves to explain the patterns of our
sense-data.

The philosophical debate about the nature of existence of things has recently
moved from the philosophy departments to the physics laboratory,15 often with
surprising conclusions. Thus, relativity theory teaches us that distances and time
intervals are not absolute but differ from observer to observer, depending on his/her
frame of reference. In the same vein, quantum mechanics tells us that observables
do not have a definite objective value before being measured and that different
observers will give different (but consistent) accounts of reality. In the words of the
physicist John Wheeler16

“It has no sense to speak of what [the particle] was doing except as
it is observed or calculable from what is observed. More generally
we would seem forced to say that no phenomenon is a phenomenon
until – by observation, or some proper combination of theory and
observation – it is an observed phenomenon. The universe does not
‘exist, out there’ independent of all acts of observation. Instead, it
is in some sense a strange participatory universe.”

A subsequent series of wonderful experiments performed by Alain Aspect, Anton
Zeilinger and others has confirmed this view and showed that our naive ideas about
the reality of things are wrong.17 Let us mention just two of them: the experimental
violation of Bell’s inequality is commonly interpreted as forcing us to either give up
realism or locality (the principle that there is no causation-at-a-distance), and the
experimental realisation of Wheeler’s delayed choice experiment forces us to choose
between realism and backward causation. In reaction to such experiments, new
interpretations of quantum mechanics have emerged which to some degree do away
with notion of objective reality in favour of an operationalist view that ‘performing
measurements’ is ‘posing questions and getting answers’, such as Griffith’s consis-
tent histories interpretation, Zeilinger’s information-theoretical interpretation, and
Rovelli’s relational interpretation.18 In some sense, all this is wonderfully in line
with the positivist’s tenet that it is meaningless to speak of things that in principle
cannot be investigated empirically – ‘states of particles before they are measured’
are precisely that.

15The well-known physicist Abner Shimony has reportedly called quantum mechanics ‘experi-

mental metaphysics’.
16In: “Mathematical Foundations of Quantum Theory”, Elsevier, 1978.
17A detailed description of the most important ones has been given in the book “The Quantum

Divide: Why Schrödinger’s Cat is Either Dead or Alive” by C. Gerry and K. Bruno (Oxford

University Press, 2013).
18R.B. Griffiths, “Consistent Quantum Theory”, Cambridge University Press, 2002; A.

Zeilinger, A foundational principle for quantum mechanics, Foundations of Physics 29 (1999),

no. 4, pp 631–643; C. Rovelli, Relational quantum mechanics, Int. J. Theor. Phys. 35 (1996),
no. 8, 1637–1678; M. Smerlak and C. Rovelli, “Relational EPR”, Found. Phys. 37, (2007), no. 3,

427–445.
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3. Structuralism versus relationalism

We have argued that the notions of ‘mathematical reality’ and ‘physical reality’,
if taken too naive or literal, are both problematic, especially when treated in con-
nection with the problem of applicability of mathematics in physics. In both cases
the problem is about ontology: in mathematics it is unclear “where” and “how”
mathematical objects could exist and interact with the physical world, and physics
has revealed that it is problematic to assign objective existence to space, time, and
states.

A modern view in mathematics is that one can dispense with ontology altogether
and view mathematics as describing structures rather than objects. This view,
known as structuralism and popularised through the works of Bourbaki, maintains
that mathematical objects are exhaustively described by the relations between them
and do not have any “intrinsic” properties whatsoever. This is exemplified by
the pervasive use of implicit definitions in present-day mathematics, which define
structures rather than objects. For example, the definition of a ‘group’ doesn’t
present us with actual groups; rather, it lists what it takes to be a group. ‘Group
theory’ doesn’t require the existence of actual groups: it studies what can be said
if one is presented with a group.

Likewise, a modern view in physics is to view it as the study of ‘generally co-
variant’ quantities, i.e., those quantities that can be defined in a coordinate-free
way and agreed upon by different observers. An ‘observer’ is to be understood in
a general sense and includes inanimate measuring devices. For example, in special
relativity the length of a time interval is not a generally covariant quantity: two ob-
servers in different inertial reference frames will measure time intervals differently.
The generally covariant quantities of special relativity are precisely those that are
invariant under the Lorentz group, such as the speed of light, the four-dimensional
Minkowski distance between space-time points (but not space and time distances
separately), energy-momentum (but not energy and momentum separately), the
electromagnetic field (but not the electric and magnetic fields separately), etc. In
general relativity, generally covariant properties have to be invariant under ar-
bitrary space-time diffeomorphisms, and the famous ‘hole argument’ by Einstein
demonstrates that because of this it becomes entirely meaningless to talk about
‘points in space-time’ altogether. Only invariant descriptions of relations between
space-time points have physical meaning. In Einstein’s own words:

All our space-time verifications invariably amount to a determina-
tion of space-time coincidences. If, for example, events consisted
merely in the motion of material points, then ultimately noth-
ing would be observable but the meeting of two or more of these
points.19

Arguments such as these have convinced many physicists that the laws of physics
should be formulated in a ‘background free’ manner. Here, under a ‘background’
one understands the “empty arena” in which the events unfold. Classical mechanics
and special relativity do have such backgrounds, namely Galilean space-time R3×R

19A. Einstein, “The Foundation of the General Theory of Relativity” 1916, p. 117. An espe-

cially lucid discussion of the hole argument is given in C. Rovelli, “Quantum Gravity”, Cambridge
University Press, 2004. Here one also finds a precise analysis of the physical meaning of statements

such as “the event A happened at time B” as the coincidence of A with the event that the pointer
of a clock points at B.
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and Minkowski space-time R4 respectively, but general relativity is a background
free theory. This point of view is sometimes called relationalism and can be viewed
as the modern version of Leibniz’s relationist view of Galilean space and time.20

4. Conclusion

Roger Penrose, in his book “The Road to Reality”, organises the three
basic problems of reality in his mind/mathematics/external world triangle:

Mind

Mathematics External World

Benacerraf′s

problem

mind−body
problem

Wigner′s

problem

the philosophical problem of ex-
istence of mathematical objects
(we take the liberty of call-
ing this Benacerraf’s problem)
is about the relation [mathe-
matics vs. mind], the mind-
body problem is about the
relation [mind vs. external
world], and Wigner’s problem
concerns the relation [external
world vs. mathematics]. Given
the striking resemblance be-
tween mathematical structural-
ism and physical relationalism,
which both reduce the ontolog-
ical content of their respective
domains to the bare minimum,
one may go a step further by
defining the physicist’s objec-
tive reality as the mathematical

consistency of the individually observed realities presented to the minds of different
observers. Once we have accepted that mathematics and physics can be stripped
from their ontological burdens, this seems a reasonable proposal which may rep-
resent a step towards resolving all three problems in Penrose’s triangle, in that
it reconciles mathematics and physics as two intrinsically related aspects of our
description of the reality presented to our minds. To paraphrase Arnold’s motto:
Mathematics is physics and physics is mathematics.

Delft University of Technology, Delft Institute of Applied Mathematics, Faculty
EEMCS, P.O. Box 5031, 2600GA, The Netherlands

E-mail address: J.M.A.M.vanNeerven@TUDelft.nl

20In his debate with Newton, who held the view that space and time are absolute, Leibniz

already put forward the principle of identity of indiscernibles, which states that two things are
equal if and only if they have the same properties. If absolute space and time existed (this was
the view held by Newton), a different universe would result if all of its contents were translated
or rotated by the same amount - but Galilean invariance means that no experiment could ever
distinguish between these two universes. The same argument applies to translations in time.

Therefore, Leibniz argues, absolute space and time are to be rejected. For an excellent account of
the Leibniz-Newton controversy we recommend Sklar, “Space, Time, and Space-time”, University
of California Press, 1974.


