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Abstract. By a recent result of Priola and Zabczyk, a null controllable linear system

y′(t) = Ay(t) + Bu(t)

in a Hilbert space E is null controllable with vanishing energy if and only if it is null controllable
and the only positive self-adjoint solution of the associated algebraic Riccati equation

XA + A∗X −XBB∗X = 0

is the trivial solution X = 0. In this paper we extend this result to Banach spaces with an ele-
mentary proof which uses only reproducing kernel Hilbert space techniques. We also show that null
controllability with vanishing energy implies null controllability.
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Let A be the generator of a C0-semigroup on a real Banach space E and let B
be a bounded linear operator from a real Hilbert space H into E. The pair (A,B) is
said to be null controllable with vanishing energy if for all x ∈ E and all ε > 0 there
exists a time t > 0 and a function u ∈ L2(0, t;H) satisfying ‖u‖L2(0,t;H) < ε such that
the mild solution yu,x of the linear control problem

y′(s) = Ay(s) + Bu(s) (s ∈ [0, t]),

y(0) = x
(0.1)

satisfies yu,x(t) = 0. The pair (A,B) is said to be null controllable in finite time
if there exists a fixed time t0 > 0 such that for all x ∈ E there exists a function
u ∈ L2(0, t0;H) such that the mild solution of the problem (0.1) satisfies yu,x(t0) = 0.

For Hilbert spaces E, Priola and Zabczyk recently proved that a pair (A,B),
which is null controllable in finite time, is null controllable with vanishing energy if
and only if the only positive self-adjoint solution to the algebraic Riccati equation

XA + A∗X −XBB∗X = 0

is the trivial solution X = 0 [10]. One of the main ingredients of the proof is the
fact that a certain differential Riccati equation is solved in terms of a minimal energy
functional. In this paper we extend the Priola–Zabczyk result to Banach spaces with a
different proof which is based on reproducing kernel Hilbert space techniques, and we
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show that null controllability with vanishing energy in fact implies null controllability
in finite time. Our approach relies upon the identification of the space Ht of points
that are reachable in time t as the reproducing kernel Hilbert space associated with
the operator Qt ∈ L(E∗, E) defined by

Qtx
∗ :=

∫ t

0

S(s)BB∗S∗(s)x∗ ds (x∗ ∈ E∗).

The square norm ‖h‖2
Ht

can be interpreted as the minimal energy needed to reach
the state h ∈ Ht in time t starting from the origin. The basic problem is then to
understand how this minimal energy varies with h and t. Our main result in this
direction is Theorem 2.5, which describes the instantaneous rate of change of the
minimal energy along curves in Ht as time progresses. It is used to obtain an explicit
positive symmetric solution X(t) for a differential Riccati equation. As in [10], the
weak operator limit X = limt→∞ X(t) then turns out to be the maximal positive
symmetric solution of the algebraic Riccati equation, and null controllability with
vanishing energy is equivalent to the condition that X = 0.

For more information about null controllability and Riccati equations as well as
applications to various control systems we refer to [1, 2, 3, 4, 7, 8, 12, 13].

1. Reachable states and reproducing kernels. The mild solution of the
problem (0.1) will be denoted by yu,x. Thus,

yu,x(s) := S(s)x +

∫ s

0

S(s− r)Bu(r) dr (s ∈ [0, t]).

An element h ∈ E is reachable in time t if there exists a control u ∈ L2(0, t;H) such
that yu,0(t) = h. The collection Ht of all elements that are reachable in time t is a
linear subspace of E which is a Hilbert space with norm

‖h‖2
Ht

:= inf
{
‖u‖2

L2(0,t;H) : u ∈ L2(0, t;H), yu,0(t) = h
}
.

Thus, ‖h‖2
Ht

is the minimal energy needed to steer the system from 0 to h in time t.
Notice that Ht equals the range of the operator Lt ∈ L(L2(0, t;H), E) defined by

Ltf :=

∫ t

0

S(t− s)Bf(s) ds.

It is easy to check that L∗
tx

∗ = B∗S∗(t−·)x∗ for all x∗ ∈ E∗. Consequently, Lt ◦L∗
t =

Qt, where Qt ∈ L(E∗, E) is defined by

Qtx
∗ :=

∫ t

0

S(s)BB∗S∗(s)x∗ ds.(1.1)

It follows from this that Ht can be identified with the reproducing kernel Hilbert
space of Qt. Denoting the inclusion operator Ht ↪→ E by it, we have the operator
identity

it ◦ i∗t = Qt.(1.2)

Moreover, by general results on reproducing kernel Hilbert spaces, the range of i∗t is
dense in Ht.
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We insert a simple result on controls with minimal energy. It will not be needed
in what follows and is included for reasons of completeness only. We write Λt for the
Lt when we regard it as an operator from L2(0, t;H) onto Ht.

Proposition 1.1 (control with minimal energy). For all h ∈ Ht we have
ΛtΛ

∗
th = h and ‖Λ∗

th‖2
L2(0,t;H) = ‖h‖2

Ht
.

Upon identifying h ∈ Ht with ith ∈ E, we have Lt(Λ
∗
th) = h. Thus, the lemma

states that the control Λ∗
th steers 0 to h in time t with minimal energy.

Proof. For all x∗ ∈ E∗ we have Λ∗
t i

∗
tx

∗ = L∗
tx

∗ = B∗S∗(t− ·)x∗. Hence,

itΛtΛ
∗
t i

∗
tx

∗ = LtΛ
∗
t i

∗
tx

∗ =

∫ t

0

S(t− s)BB∗S∗(t− s)x∗ ds = Qtx
∗ = iti

∗
tx

∗.

Since it is injective and the range of i∗t is dense in Ht, this implies that ΛtΛ
∗
th = h

for all h ∈ Ht. This proves the first assertion. The second follows from

‖Λ∗
t i

∗
tx

∗‖2
L2(0,t;H) = ‖L∗

tx
∗‖2

L2(0,t;H) = 〈LtL
∗
tx

∗, x∗〉 = 〈Qtx
∗, x∗〉 = ‖i∗tx∗‖2

Ht

and another density argument.
It will be helpful to recall some elementary facts about the spaces Ht; for the

proofs we refer to [9, 13]. The inequality 〈Qtx
∗, x∗〉 � 〈Qt+sx

∗, x∗〉, valid for all
x∗ ∈ E∗, t > 0 and s � 0, implies that Ht ⊆ Ht+s (as subsets of E) with a contractive
inclusion mapping

it,t+s : Ht ↪→ Ht+s, it,t+sh = h (h ∈ Ht).

Moreover, S(s) restricts to a contraction from Ht into Ht+s. We will denote this
restriction by St,t+s(s). Thus,

St,t+s(s) : Ht → Ht+s, St,t+s(s)h = S(s)h (h ∈ Ht).

2. Null controllability. The pair (A,B) is said to be null controllable in finite
time if there exists a time t0 > 0 such that for any x ∈ E there exists a control
u ∈ L2(0, t0;H) such that yu,x(t0) = 0. If we want to stress the role of t0, we say that
(A,B) is null controllable in time t0.

From the trivial identity yu,x(t0) = S(t0)x + yu,0(t0) we see that (A,B) is null
controllable in time t0 if and only if

S(t0)x ∈ Ht0 for all x ∈ E.

As an operator from E into Ht0 , we shall denote S(t0) by Σ(t0). Thus,

S(t0) = it0 ◦ Σ(t0).(2.1)

If (A,B) is null controllable in time t0, then (A,B) is null controllable in time t for
all t � t0. Indeed, from S(t0)x ∈ Ht0 and the fact that S(t − t0) maps Ht0 into Ht

we see that S(t)x ∈ Ht for all x ∈ E. As subsets of E, the spaces of reachable points
agree:

Ht = Ht0 with equivalent norms.

The inclusion Ht0 ↪→ Ht always holds. To prove the converse inclusion Ht ↪→ Ht0 , we
first note that (1.1) implies the operator identity

Qt = Qt0 + S(t0)Qt−t0S
∗(t0) (t � t0).(2.2)
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Using this identity, for all t � t0 and x∗ ∈ E∗ we have

〈Qtx
∗, x∗〉 = 〈Qt0x

∗, x∗〉 + 〈Qt−t0S
∗(t0)x

∗, S∗(t0)x
∗〉

= 〈Qt0x
∗, x∗〉 + 〈Qt−t0Σ

∗(t0)i
∗
t0x

∗,Σ∗(t0)i
∗
t0x

∗〉
� 〈Qt0x

∗, x∗〉 + ‖Qt−t0‖ · ‖Σ(t0)‖2 · ‖i∗t0x
∗‖2

Ht0

=
(
1 + ‖Qt−t0‖ · ‖Σ(t0)‖2

)
· 〈Qt0x

∗, x∗〉.

The inclusion Ht ↪→ Ht0 now follows from [9, Proposition 1.1]. In general, Ht0 and
Ht will be different as Hilbert spaces, and for this reason we will distinguish between
these spaces carefully.

For the rest of this section we fix t0 > 0 and assume that the pair (A,B) is null
controllable in time t0.

Since (A,B) is null controllable in any time t � t0, for t � t0 we define Σ(t) as
S(t), regarded as an operator from E into Ht. Notice that ‖Σ(t)x‖2

Ht
is the minimal

energy to steer from x to 0 in time t. The function t �→ ‖Σ(t)x‖2
Ht

is nonincreasing
on [t0,∞): this follows from

‖Σ(t + s)x‖2
Ht+s

= ‖St,t+s(s)Σ(t)x‖2
Ht+s

� ‖Σ(t)x‖2
Ht

.(2.3)

By a similar argument, for each t � t0 the function s �→ ‖it,t+sΣ(t)x‖2
Ht+s

is non-

increasing on [0,∞). The main result of this section, Theorem 2.5, will show that
this function is in fact differentiable at s = 0, and its derivative will be computed
explicitly.

To prepare for the proof we need a series of lemmas. The first uses the identity

i∗t+s = it,t+si
∗
t + it,t+sΣ(t)QsΣ

∗(t)i∗t ,(2.4)

which follows from (2.2) by using (1.2), (2.1), the trivial identity it = it+s ◦ it,t+s, and
the injectivity of it+s.

Lemma 2.1. For all h ∈ Ht0 the function t �→ i∗t0,tit0,th is continuous on the
interval [t0,∞).

Proof. Fix t′ � t � t0 arbitrary. Since ‖it0,t‖ � 1, for all h ∈ Ht0 we have

‖i∗t0,t′it0,t′h− i∗t0,tit0,th‖Ht0
= ‖i∗t0,t(i

∗
t,t′it,t′ − I)it0,th‖Ht0

� ‖(i∗t,t′it,t′ − I)it0,th‖Ht .

Hence it suffices to prove that limt′−t↓0 ‖i∗t,t′it,t′g − g‖Ht = 0 for all g ∈ Ht. We first
take g = i∗tx

∗ with x∗ ∈ E∗. Then by (2.4),

i∗t,t′it,t′g = i∗t,t′
(
i∗t′x

∗ − it,t′Σ(t)Qt′−tΣ
∗(t)i∗tx

∗) = g − i∗t,t′it,t′Σ(t)Qt′−tΣ
∗(t)g.

Since the range of i∗t is dense in Ht, a limiting argument shows that this identity holds
for all g ∈ Ht. Using (2.3), for all g ∈ Ht we have

‖i∗t,t′it,t′g − g‖Ht = ‖i∗t,t′it,t′Σ(t)Qt′−tΣ
∗(t)g‖Ht

� ‖Σ(t)‖2 ‖Qt′−t‖ ‖g‖Ht
� ‖Σ(t0)‖2 ‖Qt′−t‖ ‖g‖Ht

.

Since limt′−t↓0 ‖Qt′−t‖ = 0, this proves that limt′↓t ‖i∗t,t′it,t′g − g‖Ht
= 0.

The adjoint T ∗ of a C0-semigroup T on a Banach space X may fail to be strongly
continuous on X∗. To overcome this problem, one defines

X� :=
{
x∗ ∈ X∗ : lim

t↓0
‖T ∗(t)x∗ − x∗‖ = 0

}
.
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This is a norm closed, weak∗-dense, S∗-invariant subspace of X∗, and the restricted
semigroup T� = T ∗∣∣

X� is strongly continuous on X�. If X is reflexive, then X� is
norm closed and weakly dense in X∗, and therefore we have X� = X∗.

Lemma 2.2. For all t � t0 the space Ht is S-invariant and the restricted semi-
group St := S|Ht is strongly continuous on Ht.

Proof. Invariance follows from the fact that S(s) maps Ht into Ht+s and the fact
that both Ht and Ht+s equal Ht0 as subsets of E.

Let δ > 0 be arbitrary and fixed. For all x∗ ∈ E∗ and s ∈ [0, δ] we have

‖S∗
t (s)i∗tx

∗‖2
Ht

= ‖i∗tS∗(s)x∗‖2
Ht

= 〈Qt+sx
∗, x∗〉 − 〈Qsx

∗, x∗〉
� 〈Qt+sx

∗, x∗〉

= 〈Qtx
∗, x∗〉 +

∫ s

0

〈BB∗S∗(t + r)x∗, S∗(t + r)x∗〉 dr

= ‖i∗tx∗‖2
Ht

+

∫ s

0

〈BB∗S∗(r)Σ∗(t)i∗tx
∗, S∗(r)Σ∗(t)i∗tx

∗〉 dr

�
(

1 + δ · ‖BB∗‖ · ‖Σ(t)‖2 · sup
r∈[0,δ]

‖S(r)‖2

)
· ‖i∗tx∗‖2

Ht
.

Hence,

lim sup
s↓0

‖St(s)‖ �
(

1 + δ · ‖BB∗‖ · ‖Σ(t)‖2 · sup
r∈[0,δ]

‖S(r)‖2

)
.

On the other hand, for all h ∈ Ht and x∗ ∈ E∗ we have

lim
s↓0

[St(s)h− h, i∗tx
∗]Ht = lim

s↓0
〈S(t)ith− ith, x

∗〉 = 0.

It follows that St is weakly continuous. By a general result from semigroup theory,
this implies that St is strongly continuous.

We note two immediate consequences of this lemma.
Lemma 2.3. For all x ∈ E the function t �→ Σ∗(t)Σ(t)x is continuous on the

interval [t0,∞).
Proof. By the observations preceding Lemma 2.2, the adjoint semigroup S∗

t is
strongly continuous. The lemma now follows from the identity

Σ∗(t)Σ(t)x = Σ∗(t0)S
∗
t0(t− t0)i

∗
t0,tit0,tSt0(t− t0)Σ(t0)x

and Lemmas 2.1 and 2.2.
Lemma 2.4. For all h ∈ Ht we have Σ∗(t)h ∈ E�.
Proof. This follows from

lim
s↓0

‖S∗(s)Σ∗(t)h− Σ∗(t)h‖ = lim
s↓0

∥∥Σ∗(t)
(
S∗
t (s)h− h

)∥∥ = 0,

where we used again the strong continuity of S∗
t .

We are now ready for the main result of this section, which describes the instanta-
neous rate of the change of the minimal energy along curves in the space of reachable
states as time progresses.
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Theorem 2.5 (rate of change of minimal energy). Let the pair (A,B) be null
controllable in time t0. Fix t � t0 and let f : [0,∞) → Ht be differentiable at 0. The
function φ : [0,∞) → [0,∞) defined by

φ(s) := ‖it,t+sf(s)‖2
Ht+s

is differentiable at 0, with derivative

φ′(0) = 2[f ′(0), f(0)]Ht
− ‖B∗Σ∗(t)f(0)‖2

H .

Notice that the first term on the right-hand side accounts for the speed and
direction of leaving f(0), while the second term describes the energy savings resulting
from the extra time available.

Proof. Upon writing f(s) = f(0) + sf ′(0) + g(s) with lims↓0 g(s)/s = 0 we have

lim
s↓0

1

s

[
‖f(s)‖2

Ht
− ‖f(0)‖2

Ht

]

= lim
s↓0

1

s

[
2[sf ′(0) + g(s), f(0)]Ht

+ ‖sf ′(0) + g(s)‖2
Ht

]
= 2[f ′(0), f(0)]Ht

.

Consequently, it remains to prove that

lim
s↓0

1

s

[
‖it,t+sf(s)‖2

Ht+s
− ‖f(s)‖2

Ht

]
= −‖B∗Σ∗(t)f(0)‖2

H .

Let x∗ ∈ E∗ be fixed. Noting that

‖i∗t+sx
∗‖2

Ht+s
− ‖i∗tx∗‖2

Ht
= 〈Qt+sx

∗, x∗〉 − 〈Qtx
∗, x∗〉 = 〈QsΣ

∗(t)i∗tx
∗,Σ∗(t)i∗tx

∗〉,

from identity (2.4) we have

‖it,t+si
∗
tx

∗‖2
Ht+s

− ‖i∗tx∗‖2
Ht

= ‖i∗t+sx
∗‖2

Ht+s
− ‖i∗tx∗‖2

Ht

− 2[i∗t+sx
∗, it,t+sΣ(t)QsΣ

∗(t)i∗tx
∗]Ht+s

+ ‖it,t+sΣ(t)QsΣ
∗(t)i∗tx

∗‖2
Ht+s

= 〈QsΣ
∗(t)i∗tx

∗,Σ∗(t)i∗tx
∗〉

− 2[i∗tx
∗,Σ(t)QsΣ

∗(t)i∗tx
∗]Ht

+ ‖it,t+sΣ(t)QsΣ
∗(t)i∗tx

∗‖2
Ht+s

.

By approximation, for all s � 0 we obtain

‖it,t+sf(s)‖2
Ht+s

− ‖f(s)‖2
Ht

= 〈QsΣ
∗(t)f(s),Σ∗(t)f(s)〉

− 2[f(s),Σ(t)QsΣ
∗(t)f(s)]Ht + ‖it,t+sΣ(t)QsΣ

∗(t)f(s)‖2
Ht+s

.

Next, for any y� ∈ E� we have, by strong continuity,

lim
s↓0

1

s
Qsy

� = lim
s↓0

1

s

∫ s

0

S(r)BB∗S∗(r)y� dr = BB∗y�.
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Hence, using the continuity of f at 0, the fact that lim sups↓0
1
s‖Qs‖ < ∞, and the

fact that Σ∗(t)f(0) ∈ E� by Lemma 2.4, we obtain

lim sup
s↓0

∥∥∥∥1

s
QsΣ

∗(t)f(s) −BB∗Σ∗(t)f(0)

∥∥∥∥
� lim sup

s↓0

∥∥∥∥1

s
QsΣ

∗(t)f(s) − 1

s
QsΣ

∗(t)f(0)

∥∥∥∥
+ lim sup

s↓0

∥∥∥∥1

s
QsΣ

∗(t)f(0) −BB∗Σ∗(t)f(0)

∥∥∥∥
� ‖Σ∗(t)‖ · lim sup

s↓0

(
1

s
‖Qs‖

)
· lim sup

s↓0
‖f(s) − f(0)‖

+ lim sup
s↓0

∥∥∥∥1

s
QsΣ

∗(t)f(0) −BB∗Σ∗(t)f(0)

∥∥∥∥ = 0.

It follows that

lim
s↓0

1

s
QsΣ

∗(t)f(s) = BB∗Σ∗(t)f(0).

As a consequence,

lim
s↓0

1

s

[
〈QsΣ

∗(t)f(s),Σ∗(t)f(s)〉 − 2[f(s),Σ(t)QsΣ
∗(t)f(s)]Ht

+ ‖it,t+sΣ(t)QsΣ
∗(t)f(s)‖2

Ht+s

]

= lim
s↓0

〈
1

s
QsΣ

∗(t)f(s),Σ∗(t)f(s)

〉
− 2 lim

s↓0

[
f(s),Σ(t)

(
1

s
QsΣ

∗(t)f(s)

)]
Ht

+ lim
s↓0

s

∥∥∥∥it,t+sΣ(t)

(
1

s
QsΣ

∗(t)f(s)

)∥∥∥∥
2

Ht+s

= 〈BB∗Σ∗(t)f(0),Σ∗(t)f(0)〉 − 2[f(0),Σ(t)BB∗Σ∗(t)f(0)]Ht
+ 0

= −‖B∗Σ∗(t)f(0)‖2
H ;

in the next to last step we used that ‖it,t+s‖ � 1.
For the convenience of those readers familiar with the Hilbert space formalism as

used, e.g., in [10], we add a reformulation of Theorem 2.5 for Hilbert spaces E. In this
setting we identify E and its dual in the usual way and identify Qt with a positive
self-adjoint operator on E. As is well known, the reproducing kernel Hilbert space of
Qt is then given by

it(Ht) = ImQ
1/2
t .(2.5)

In what follows we identify it(Ht) and Ht and abuse notation by regarding both Q
1/2
t

and Qt as operators from E to Ht whenever this is convenient. Denoting the closure

of Ht in E by Et, it follows from (2.5) and a standard argument that Q
1/2
t is unitary

as an operator from Et to Ht.
By (2.5), the pair (A,B) is null controllable in time t0 if and only if ImS(t0) ⊆

ImQ
1/2
t0 . Since the restriction of Q

1/2
t0 to Et0 is injective, the inverse Q

−1/2
t0 is well-

defined on the linear subspace Ht0 of E. Then by null controllability, the operator
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Γ(t0) := Q
−1/2
t0 S(t0) is well-defined as a bounded operator from E to Et0 . For all

h = Q
1/2
t0 y ∈ Ht0 we have

[Γ(t0)x, h]E = [S(t0)x, y]E = [x, S∗(t0)y]E = [x, S∗(t0)Q
−1/2
t0 h]E .

Since Ht0 is dense in Et0 we see that Γ∗(t0) := (Γ(t0))
∗ is the unique extension of

S∗(t0)Q
−1/2
t0 to a bounded operator from Et0 to E.

Corollary 2.6. Let the pair (A,B) be null controllable in time t0. Fix t � t0
and let g : [0,∞) → Et be differentiable at 0. The function φ : [0,∞) → [0,∞) defined
by

φ(s) := ‖Q1/2
t g(s)‖2

Ht+s
(2.6)

is differentiable at 0, with derivative

φ′(0) = 2[g′(0), g(0)]E − [QΓ∗(t)g(0),Γ∗(t)g(0)]E .

Note some further abuse of notation in (2.6), where Q
1/2
t g(s) is regarded as an

element of Ht+s.

Proof. Let f : [0,∞) → Ht be defined by f(s) = Q
1/2
t g(s). Since Q

1/2
t is unitary

as an operator from Et to Ht, f is differentiable at 0 with derivative f ′(0) = Q
1/2
t g′(0).

Let Q := BB∗. By Theorem 2.5,

φ(s) := ‖it,t+sf(s)‖2
Ht+s

= ‖Q1/2
t g(s)‖2

Ht+s

is differentiable at 0 with derivative

φ′(0) = 2[f ′(0), f(0)]Ht
− ‖B∗Σ∗(t)f(0)‖2

H

= 2[Q
1/2
t g′(0), Q

1/2
t g(0)]Ht

− [QΓ∗(t)g(0),Γ∗(t)g(0)]E

= 2[g′(0), g(0)]E − [QΓ∗(t)g(0),Γ∗(t)g(0)]E .

(2.7)

In the second identity of (2.7) we used that Γ∗(t) extends S∗(t)Q
−1/2
t on Et and that

for all h = Qty ∈ Ht we have

[B∗Σ∗(t)h,B∗Σ∗(t)h]H = [QΣ∗(t)i∗t y,Σ
∗(t)i∗t y]E = [Q∗S(t)y, S∗(t)y]E ,

recalling that we identify Qty = iti
∗
t y and i∗t y. In the third identity of (2.7) we used

that Q
1/2
t is unitary from Et to Ht.

3. Null controllability with vanishing energy. Following Priola and Zabczyk
[10] we call the pair (A,B) null controllable with vanishing energy if for all ε > 0 and
x ∈ E there exists a time t > 0 and a control u ∈ L2(0, t;H) with yu,x(t) = 0
and ‖u‖L2(0,t;H) < ε. Clearly, null controllability with vanishing energy implies null
controllability with bounded energy.

Theorem 3.1. If the pair (A,B) is null controllable with vanishing energy, then
it is null controllable in finite time.

Proof. For n = 1, 2, . . . , let En denote the set of all x ∈ E for which there
exists a control u ∈ L2(0, n;H) with yu,x(n) = 0 and ‖u‖L2(0,n;H) � 1. Notice that⋃

n�1 En = E.
We claim that each En is closed. To see this, fix n � 1 and let limk→∞ xk = x

in E with all xk ∈ En. We must check that x ∈ En. For each k we choose a
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control uk ∈ L2(0, n;H) with yuk,xk(n) = 0 and ‖uk‖L2(0,n;H) � 1. After passing
to a subsequence, we may assume that there exists a control u ∈ L2(0, n;H) with
‖u‖L2(0,n;H) � 1 such that limk→∞ uk = u weakly in L2(0, n;H). Then for all x∗ ∈ E∗

we have

〈yu,x(n), x∗〉 = 〈S(n)x, x∗〉 +

∫ n

0

[u(s), B∗S∗(n− s)x∗]H ds

= lim
k→∞

(
〈S(n)xk, x

∗〉 +

∫ n

0

[uk(s), B
∗S∗(n− s)x∗]H ds

)

= lim
k→∞

〈yuk,xk(n), x∗〉 = 0.

Hence yu,x(n) = 0 and x ∈ En.
By the Baire category theorem, at least one En0

has a nonempty interior. Fix an
arbitrary x0 in the interior of En0 and consider the set En0

−x0. This is a neighborhood
of 0 consisting of elements that can be steered to 0 in time n0. By linearity it follows
that every x ∈ E can be steered to 0 in time n0. This means that the pair (A,B) is
null controllable in time n0.

Recall that if (A,B) is null controllable in time t0, then for all t � t0 the square
norm ‖Σ(t)x‖2

Ht
is the minimal energy to steer from x to 0 in time t. Hence the

following observation is a straightforward consequence of (2.3) and the above theorem.
Corollary 3.2. The following assertions are equivalent:
1. The pair (A,B) is null controllable with vanishing energy.
2. The pair (A,B) is null controllable in finite time and limt→∞ ‖Σ(t)x‖Ht

= 0
for all x ∈ E.

We proceed with two simple examples of systems that are null controllable with
vanishing energy.

Example 3.3. If (A,B) is null controllable in finite time and the semigroup S
generated by A is strongly stable, i.e., if limt→∞ S(t)x = 0 for all x ∈ E, then (A,B)
is null controllable with vanishing energy. Indeed, if (A,B) is null controllable in time
t0, then for all t � t0 we have

‖Σ(t)x‖Ht
= ‖it0,tΣ(t0)S(t− t0)x‖Ht � ‖Σ(t0)‖ ‖S(t− t0)x‖.

Example 3.4. The range of B is a Hilbert space with norm

‖Bh‖rangeB = inf
{
‖h′‖H : Bh′ = Bh

}
.

With this norm, the range of B equals the reproducing kernel Hilbert space of the
operator BB∗. Accordingly we shall denote the range of B by HBB∗ . If S restricts
to a C0-semigroup SB on HBB∗ , then it follows from [6, Theorem 3.5] that the reach-
able spaces Ht for the pair (A,B) coincide with the reproducing kernel space of the
operators Rt ∈ L(HBB∗) defined by

Rth :=

∫ t

0

SB(s)S∗
B(s)h ds (h ∈ HBB∗),

and the pair (SB , IB) is null controllable for all times t > 0. Here IB denotes the
identity operator on HBB∗ . It follows from the same reference that for all h ∈ rangeB
and t > 0 we have an estimate

‖ΣB(t)h‖2
Ht

� 1

t2

∫ t

0

‖SB(s)h‖2
HBB∗ ds (h ∈ HBB∗).
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Here, ΣB(t) denotes SB(t), regarded as an operator from HBB∗ into Ht. In particular
the pair (SB , IB) is null controllable with vanishing energy if the semigroup SB is
uniformly bounded on HBB∗ .

In [10], under the assumption that E is a Hilbert space it was shown by control
theoretic methods that a pair (A,B) which is null controllable in finite time is null
controllable with vanishing energy if and only if the algebraic Riccati equation

XA + A∗X −XBB∗X = 0(3.1)

admits X = 0 as its only positive self-adjoint solution. A solution of (3.1) is a bounded
operator X ∈ L(E) such that

〈XAx, y〉 + 〈Xx,Ay〉 − 〈XBB∗Xx, y〉 = 0 for all x, y ∈ D(A).(3.2)

In this identity the brackets denote the scalar product of E.

In this section we shall prove an extension of this result to Banach spaces E.
It shares with [10] the strategy of first solving a differential Riccati equation and
obtaining the final characterization from a maximality argument, but both steps are
accomplished in a completely different way. In the Banach space setting, a solution of
(3.1) is a bounded operator X ∈ L(E,E∗) such that (3.2) holds for all x, y ∈ D(A);
this time the brackets denote the duality pairing between E∗ and E. The notions
of positivity and self-adjointness extend as follows: we call X ∈ L(E,E∗) positive if
〈Xx, x〉 � 0 for all x ∈ E and symmetric if 〈Xx, y〉 = 〈Xy, x〉 for all x, y ∈ E.

We begin with a result which states that the operator function t �→ Σ∗(t)Σ(t)
solves, in some appropriate sense, the differential Riccati equation

d

dt
X(t) = X(t)A + A∗X(t) −X(t)BB∗X(t)

on the interval [t0,∞).

In the Hilbert space literature, existence of a solution is usually derived from a
fixed point argument. Here, we obtain it as a direct consequence of Theorem 2.5.

Proposition 3.5. Let the pair (A,B) be null controllable in time t0. For all
x, y ∈ D(A) the function t �→ 〈Σ∗(t)Σ(t)x, y〉 is differentiable on the interval [t0,∞),
with derivative

d

dt
〈Σ∗(t)Σ(t)x, y〉

= 〈Σ∗(t)Σ(t)Ax, y〉 + 〈Σ∗(t)Σ(t)x,Ay〉 − 〈BB∗Σ∗(t)Σ(t)x,Σ∗(t)Σ(t)y〉.

Proof. Since both BB∗ and Σ∗(t)Σ(t) are symmetric operators, by polarization
it suffices to prove that for all x ∈ D(A) and t � t0 we have

d

dt
〈Σ∗(t)Σ(t)x, x〉 = 2〈Σ∗(t)Σ(t)Ax, x〉 − 〈BB∗Σ∗(t)Σ(t)x,Σ∗(t)Σ(t)x〉.

For this, in turn, it suffices to prove right differentiability. Indeed, by Lemma 2.3 the
functions 〈Σ∗(t)Σ(t)x, x〉 and 2〈Σ∗(t)Σ(t)Ax, x〉 − 〈BB∗Σ∗(t)Σ(t)x,Σ∗(t)Σ(t)x〉 are
continuous functions of t ∈ [t0,∞), and by elementary calculus a continuous function
that is right differentiable with continuous right derivative is differentiable; cf. [13].
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Fix x ∈ D(A) and t � t0. By Theorem 2.5 applied to f(s) = Σ(t)S(s)x we have

lim
s↓0

1

s

(
〈Σ∗(t + s)Σ(t + s)x, x〉 − 〈Σ∗(t)Σ(t)x, x〉

)

= lim
s↓0

1

s

(
‖it,t+sΣ(t)S(s)x‖2

Ht+s
− ‖Σ(t)x‖2

Ht

)

= 2[Σ(t)Ax,Σ(t)x]Ht − ‖B∗Σ∗(t)Σ(t)x‖2
H

= 2〈Σ∗(t)Σ(t)Ax, x〉 − 〈BB∗Σ∗(t)Σ(t)x,Σ∗(t)Σ(t)x〉.

Remark 3.6. In the special case where E is a Hilbert space, instead of using
Theorem 2.5 we could apply Corollary 2.6 to the Et-valued function g(s) := Γ(t)S(s);

note that Q
1/2
t g(s) = Σ(t)S(s)x = f(s).

From Proposition 3.5 we obtain the following.
Proposition 3.7. Let the pair (A,B) be null controllable in time t0. For all

x, y ∈ E the limit limt→∞〈Σ∗(t)Σ(t)x, y〉 exists, and the operator X ∈ L(E,E∗)
defined by

〈Xx, y〉 := lim
t→∞

〈Σ∗(t)Σ(t)x, y〉(3.3)

defines a positive symmetric solution of the algebraic Riccati equation

XA + A∗X −XBB∗X = 0.

Proof. For all x ∈ E we have 〈Σ∗(t)Σ(t)x, x〉 = ‖Σ(t)x‖2
Ht

, which is a nonincreas-
ing function of t � t0. In particular, for all x ∈ E the limit limt→∞〈Σ∗(t)Σ(t)x, x〉
exists. Since each Σ∗(t)Σ(t) is positive and symmetric, by polarization it follows
that for all x, y ∈ E the limit limt→∞〈Σ∗(t)Σ(t)x, y〉 exists, and then (3.3) defines a
positive and symmetric operator X.

Since t �→ Σ∗(t)Σ(t) solves the differential Riccati equation, a standard argument
implies that X solves the algebraic Riccati equation.

Our next aim is to show that the weak operator limit X = limt→∞ Σ∗(t)Σ(t) is in
fact the maximal symmetric solution of the algebraic Riccati equation. More precisely
we have the following.

Theorem 3.8. Let the pair (A,B) be null controllable at time t0 > 0. If Y is
a symmetric solution of the algebraic Riccati equation, then for all x ∈ E we have
〈Y x, x〉 � 〈Xx, x〉.

Proof. Fix t � t0 and x ∈ E, and let u ∈ L2(0, t;H) be any control steering x
to 0 in time t:

yu,x(t) = S(t)x +

∫ t

0

S(t− s)Bu(s) ds = 0.

We will show that the function fu : [0, t] → R defined by

fu(s) :=

∫ s

0

‖u(r)‖2
H dr + 〈Y yu,x(s), yu,x(s)〉

is nondecreasing. To prove this we shall show that fu is almost everywhere differen-
tiable with nonnegative derivative.

Let us first consider the function gu(s) := 〈Y yu,x(s), yu,x(s)〉. In order to show
that gu is differentiable we introduce a regularization operator as follows. For λ > 0
large enough, put Eλ := λ(λ−A)−1 and define

gu,λ(s) := 〈Y Eλy
u,x(s), Eλy

u,x(s)〉.
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Then, by the symmetry of Y and the fact that this operator solves the algebraic
Riccati equation,

g′u,λ(s) = 2

〈
Y Eλy

u,x(s),
d

ds
Eλy

u,x(s)

〉

= 2

〈
Y Eλy

u,x(s),
d

ds

(
S(s)Eλx +

∫ s

0

S(s− r)EλBu(r) dr

)〉

= 2

〈
Y Eλy

u,x(s), A

(
S(s)Eλx +

∫ s

0

S(s− r)EλBu(r) dr

)
+ EλBu(s)

〉

= 〈Y BB∗Y Eλy
u,x(s), Eλy

u,x(s)〉 + 2〈Y Eλy
u,x(s), EλBu(s)〉

=: Gu,λ(s).

From limλ→∞ Eλ = I strongly we have limλ→∞ gu,λ = gu and

lim
λ→∞

Gu,λ = 〈Y BB∗Y yu,x(s), yu,x(s)〉 + 2〈Y yu,x(s), Bu(s)〉

uniformly on [0, t] (notice that yu,x is continuous on [0, t]). The closedness of the first
derivative now implies that gu is differentiable, with derivative

g′u(s) = 〈Y BB∗Y yu,x(s), yu,x(s)〉 + 2〈Y yu,x(s), Bu(s)〉.

It follows that fu is almost everywhere differentiable, with derivative

f ′
u(s) = ‖u(s)‖2

H + 〈Y BB∗Y yu,x(s), yu,x(s)〉 + 2〈Y yu,x(s), Bu(s)〉
= ‖u(s)‖2

H + ‖B∗Y yu,x(s)‖2
H + 2[B∗Y yu,x(s), u(s)]H

� ‖u(s)‖2
H + ‖B∗Y yu,x(s)‖2

H − 2‖B∗Y yu,x(s)‖H‖u(s)‖H
=

(
‖u(s)‖H − ‖B∗Y yu,x(s)‖H

)2
,

which is nonnegative.
By what has been shown so far, we have

‖u‖2
L2(0,t;H) =

∫ t

0

‖u(r)‖2
H dr =

∫ t

0

‖u(r)‖2
H dr + 〈Y yu,x(t), yu,x(t)〉

= fu(t) � fu(0) = 〈Y yu,x(0), yu,x(0)〉 = 〈Y x, x〉.

Taking the infimum over all admissible controls we obtain

‖Σ(t)x‖2
Ht

� 〈Y x, x〉.

Finally, letting t → ∞, this gives

〈Xx, x〉 = lim
t→∞

‖Σ(t)x‖2
Ht

� 〈Y x, x〉.

The preceding two results may now be combined to prove the following character-
ization of null controllability with vanishing energy, which extends the corresponding
Hilbert space result of [10] to Banach spaces.

Theorem 3.9. The following assertions are equivalent:
1. The pair (A,B) is null controllable with vanishing energy.
2. The pair (A,B) is null controllable in finite time and the only positive sym-

metric solution of the algebraic Riccati equation XA + A∗X −XBB∗X = 0
is the trivial solution X = 0.
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Proof. We will use Corollary 3.2.
(1)⇒(2): Let Y be any positive symmetric solution of the algebraic Riccati equa-

tion. Then for all x ∈ E we have

0 � 〈Y x, x〉 � 〈Xx, x〉 = lim
t→∞

‖Σ(t)x‖2
Ht

= 0,

which implies that Y = 0.
(2)⇒(1): Since X = limt→∞ Σ∗(t)Σ(t) is a positive symmetric solution of the

algebraic Riccati equation, it follows that limt→∞ ‖Σ(t)x‖2
Ht

= 〈Xx, x〉 = 0 for all
x ∈ E.

Under additional spectral assumptions (which are satisfied, e.g., if S is eventually
compact), it is shown in [10] that the pair (A,B) is null controllable with vanishing
energy if and only if sup{Reλ : λ ∈ σ(A)} � 0. This result is applied in [11], where
it is used to obtain necessary and sufficient conditions for the validity of Liouville’s
theorem for the Ornstein–Uhlenbeck operator associated with the pair (A,B).

As an application of Theorem 3.9 we give a sufficient condition for null control-
lability with vanishing energy in the symmetric case.

Theorem 3.10. Let the pair (A,B) be null controllable at time t0 > 0. Assume
furthermore that

• (nondegeneracy) B has dense range,
• (BB∗-symmetry) S(t)BB∗ = BB∗S∗(t) for all t � 0.

If the limit Q∞ := limt→∞ Qt exists in the weak operator topology, then (A,B) is null
controllable with vanishing energy.

Without any nondegeneracy condition on B, the assumptions of the theorem
imply that S restricts to a strongly stable C0-semigroup of contractions SB on the
range of B [6, Theorem 4.5]. By Examples 3.3 and 3.4, the pair (SB , IB) is null
controllable with vanishing energy.

Proof. We shall use the fact that Q∞ := limt→∞ Qt exists in the weak operator
topology if and only if there exists a positive symmetric solution in L(E∗, E) of the
Lyapunov equation

AY + Y A∗ + BB∗ = 0

and that in this case Q∞ is the minimal positive symmetric solution of this equation
[6, Theorem 4.4]. In this context, a bounded operator Y ∈ L(E∗, E) is called positive
if 〈Y x, x〉 � 0 for all x ∈ E and symmetric if 〈Y x, y〉 = 〈Y y, x〉 for all x, y ∈ E.

Assume now that X ∈ L(E,E∗) is a positive symmetric solution of the algebraic
Riccati equation. We have to show that X = 0.

Since B is assumed to have dense range, it is an easy consequence of the Hahn–
Banach theorem that BB∗ is injective and has dense range as well. From this it
follows that Q∞ is injective and has dense range [5, Lemma 5.2].

By the same argument as in the proof of [6, Theorem 4.5], the assumption
S(t)BB∗ = BB∗S(t) implies that the semigroup St on Ht is self-adjoint for all t � t0.
Moreover, for all x ∈ D(A) we have Σ(t)x ∈ D(At) and AtΣ(t)x = Σ(t)Ax. Similarly,
for all h ∈ D(A∗

t ) we have Σ∗(t)h ∈ D(A∗) and A∗Σ∗(t)h = Σ∗(t)A∗
th. Using these

facts, for all x, y ∈ D(A) we obtain

〈Xx,Ay〉 = lim
t→∞

〈Σ∗(t)Σ(t)x,Ay〉 = lim
t→∞

〈Σ∗(t)A∗
tΣ(t)x, y〉

= lim
t→∞

〈Σ∗(t)AtΣ(t)x, y〉 = lim
t→∞

〈Σ∗(t)Σ(t)Ax, y〉 = 〈XAx, y〉.



1326 J. M. A. M. VAN NEERVEN

It follows that Xx ∈ D(A∗) and A∗Xx = XAx. Thus, A∗X = XA. Similarly one
proves that AQ∞ = Q∞A∗. As X and Q∞ are symmetric and solve the algebraic
Riccati equation and the Lyapunov equation, respectively, for all x∗, y∗ ∈ D(A∗) we
obtain

0 = 〈A∗XQ∞x∗, Q∞y∗〉 + 〈XAQ∞x∗, Q∞y∗〉 − 〈XBB∗XQ∞x∗, Q∞y∗〉
= 〈XQ∞A∗x∗, Q∞y∗〉 + 〈XAQ∞y∗, Q∞x∗〉 − 〈XBB∗XQ∞x∗, Q∞y∗〉
= −〈XBB∗x∗, Q∞y∗〉 − 〈XBB∗XQ∞x∗, Q∞y∗〉
= −〈Q∞XBB∗x∗, y∗〉 − 〈Q∞XBB∗XQ∞x∗, y∗〉.

Thus,

〈Q∞XBB∗(I + XQ∞)x∗, y∗〉 = 0(3.4)

for all x∗, y∗ ∈ D(A∗). Since D(A∗) is weak∗-dense, it follows that

Q∞XBB∗(I + XQ∞)x∗ = 0(3.5)

for all x∗ ∈ D(A∗). Furthermore, by the symmetry of Q∞, X, and BB∗, from (3.4)
we obtain

〈(I + Q∞X)BB∗XQ∞y∗, x∗〉 = 0

for all x∗, y∗ ∈ D(A∗). Since D(A∗) is weak∗-dense, it follows that

(I + Q∞X)BB∗XQ∞y∗ = 0(3.6)

for all y∗ ∈ D(A∗). Taking y∗ = x∗ and subtracting (3.5) and (3.6), we find

BB∗XQ∞x∗ = Q∞XBB∗x∗

for all x∗ ∈ D(A∗). Hence, by (3.6),

(I + Q∞X)Q∞XBB∗x∗ = 0

for all x∗ ∈ D(A∗). Since D(A∗) is weak∗-dense and BB∗ is weak∗-to-weakly contin-
uous and has weakly dense range, this implies that

(I + Q∞X)Q∞X = 0

or, equivalently, P (I − P ) = 0, where P := −Q∞X. Thus, P is a projection in E.
For any x ∈ kerP we have Q∞Xx = 0 and therefore Xx = 0 by the injectivity

of Q∞.
For any x ∈ ker (I − P ) we have −Q∞Xx = x and therefore

0 � 〈Xx, x〉 = −〈Xx,Q∞Xx〉 = −〈Q∞Xx,Xx〉 � 0

by the positivity of Q∞. It follows that 〈Q∞Xx,Xx〉 = ‖i∗∞Xx‖2
H∞

= 0, where i∞ :
H∞ ↪→ E denotes the reproducing kernel Hilbert space of Q∞. Since Q∞ = i∞ ◦ i∗∞
is injective, i∗∞ is injective, and we conclude that Xx = 0.

Combining the facts just proved, we obtain that Xx = 0 for all x ∈ E, i.e.,
X = 0.
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It is worthwhile to point out that Theorem 3.10 is not covered by Example 3.3,
since the existence of Q∞ does not imply strong stability of the semigroup S.

Example 3.11. Let E = R
2 and S(t) =

(
e−t 0
0 1

)
. The semigroup S is not strongly

stable. Taking H = R and Bh = (h, 0), the limit Q∞ = limt→∞ Qt exists: we have

lim
t→∞

Qt = lim
t→∞

∫ t

0

(
e−2s 0

0 0

)
ds =

( 1
2 0
0 0

)
.

Let us finally observe that in Theorem 3.10 the condition on existence of Q∞ is
not a necessary one (take E = H = R, B = I, and S(t) = I), nor can it be dropped
(take E = H = R, B = I, and S(t) = etI).
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