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The vector-valued Loomis theorem for the half-line
and individual stability of C0−semigroups:

a counterexample
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Abstract. We construct a bounded, uniformly continuous function
g : [0,∞)→ l2 with the following properties:

(1) The Laplace transform Lg(·) has a holomorphic extension to a
neighbourhood of {Reλ ≥ 0}\{0} ;

(2) The non-tangential strong limit limλ→0 Lg(λ) exists;

(3) lim
τ→∞

∥∥∥∥
1

τ

∫ τ

0

g(t) dt

∥∥∥∥ = 0;

(4) limt→∞〈g(t), x∗〉 = 0 for all x∗ ∈ l2 ;
(5) lim supt→∞ ‖g(t)‖ ≥ 1.

This function is then used to construct a C0−semigroup {T (t)}t≥0 ,
with generator A , on a Banach space X with the following property.
There exists an element x ∈ X such that:

(i) The orbit t 7→ T (t)x is bounded and uniformly continuous;
(ii) The local resolvent λ 7→ R(λ,A)x has a holomorphic extension to

a neighbourhood of {Reλ ≥ 0}\{0} ;

(iii) lim
τ→∞

∥∥∥∥
1

τ

∫ τ

0

T (t)x dt

∥∥∥∥ = 0;

(iv) There is a norming subspace Z ⊆ X∗ such that

lim
t→∞
〈T (t)x, x∗〉 = 0 for all x∗ ∈ Z;

(v) lim sup
t→∞

‖T (t)x‖ ≥ 1.

This example shows that in the local version of the Arendt-Batty-
Lyubich-Vũ stability theorem, obtained recently by Batty-van Neerven-
Räbiger, the total ergodicity assumption cannot be weakened to ergod-
icity.

1991 Mathematics Subject Classification: 47D03, 44A10, 43A60, 43A65

0. Introduction

In this paper we present a counterexample related to the validity of the vector-
valued Loomis theorem for the half-line R + = [0,∞) and examine its conse-
quences for the theory of individual stability of C0−semigroups.

In order to motivate the questions studied here, let us first recall some
well-known results for the real line. Let X be a complex Banach space and let
C− and C+ denote the sets {λ ∈ C : Reλ < 0} and {λ ∈ C : Reλ > 0} ,
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respectively. The Carleman transform of a function f ∈ L∞(R , X) is the

holomorphic X−valued function f̂ : C− ∪ C+ → X defined by

f̂(λ) :=

{−
∫∞

0
eλtf(−t) dt, Re λ < 0;∫∞

0
e−λtf(t) dt, Re λ > 0.

A point iω ∈ iR is regular for f̂ if f̂ admits a holomorphic extension to some
open neighbourhood of C−∪C+∪{iω} . The Carleman spectrum of f , notation

σC(f), is the set of all iω ∈ iR that are singular, i.e. not regular, for f̂ .
Let Cb(R , X) denote the Banach space of bounded continuous X -valued

functions on R and let AP (R , X) be its closed subspace of all almost periodic
X−valued functions on R . Recall that a function f ∈ Cb(R , X) is almost peri-
odic if it belongs to the closed linear span in Cb(R , X) of the set of trigonometric
polynomials {eiω ⊗ x : ω ∈ R , x ∈ X} ; here (eiω ⊗ x)(t) := eiωtx , t ∈ R . It
is well-known that a function f is almost periodic if and only if the set of its
translates {ft : t ∈ R } is a relatively compact subset of Cb(R , X); here ft is
the function defined by ft(s) := f(t+ s), s ∈ R .

It is well-known that almost periodic X−valued functions are uniformly
continuous and have countable Carleman spectrum. Conversely, a function
f ∈ BUC(R , X), the Banach space of bounded uniformly continuous X−valued
functions on R , whose Carleman spectrum is countable, is almost periodic if at
least one of the following four conditions is satisfied:

(i) X does not contain a closed subspace isomorphic to c0 ;
(ii) σC(f) is discrete (i.e. consists of isolated points only);

(iii) f has relatively weakly compact range;

(iv) f is totally ergodic, i.e. lim
τ→∞

1

2τ

∫ τ

−τ
e−iωtf(t+ s) dt exists, uniformly in

s ∈ R , for all iω ∈ σC(f).

The fact that a scalar-valued bounded uniformly continuous function with count-
able Carleman spectrum is almost periodic is known as Loomis’s theorem. For
the proof of its vector-valued versions we refer to [LZ, Theorem 6.4.4], [AB1] (for
(i) and (iii)), [AS] (for (ii)), and [RV], [AB1] (for (iv)).

The following simple example, which is included for reasons of complete-
ness, shows that the condition ‘uniformly in s ≥ 0’ cannot be omitted in (iv).

Example 0.1. Define g ∈ BUC(R , c0) by

g(t) = (eit − eit/2, eit/2 − eit/4, eit/4 − eit/8, . . . ), t ∈ R .

It is easily verified that σC(g) = {i, i/2, i/4, i/8, . . . } ∪ {0} and that for all

iω ∈ σC(g) the limit lim
τ→∞

1

2τ

∫ τ

−τ
e−iωtg(t) dt exists. Nevertheless g is readily

seen not to be almost periodic.

For functions on the half-line R+ the concept of Carleman spectrum breaks
down and needs to be replaced by that of Laplace spectrum. Recall that the
Laplace transform of a function f ∈ L∞(R+, X) is the holomorphic X−valued
function Lf on C+ defined by

Lf(λ) =

∫ ∞

0

e−λtf(t) dt, λ ∈ C+.
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A point iω ∈ iR is regular for Lf if Lf admits a holomorphic extension to some
open neighbourhood of C+ ∪{iω} . The Laplace spectrum of f , notation σL(f),
is the set of all iω ∈ iR that are singular, i.e. not regular, for Lf .

For a function f ∈ BUC(R+, X) the Laplace spectrum σL(f |R+
) of its

restriction to R+ is usually much smaller than its Carleman spectrum σC(f).

For instance if f(t) = e−t
2

, then σL(f |R+
) = Ø and σC(f) = iR .

A function f ∈ Cb(R+, X) is called almost periodic if it is the restriction
to R+ of an almost periodic function on R , and asymptotically almost periodic if
its set of left translates {ft : t ≥ 0} is a relatively compact subset of Cb(R+, X);
we now define ft(s) := f(t+ s), s ≥ 0. The spaces of almost periodic functions
and asymptotically almost periodic functions on R + are denoted by AP (R+, X)
and AAP (R+, X), respectively. As closed subspaces of Cb(R+, X) we have the
direct sum decomposition [RS1]

AAP (R+, X) = AP (R+, X)⊕ C0(R+, X).

The following analogue of version (iv) of the vector-valued Loomis theorem for
the half-line was obtained recently in [BNR2, Theorem 4.1] (where the result is
stated in terms of Abel means) and [Ne, Theorem 5.3.5]:

Proposition 0.2. Let f ∈ BUC(R+, X) and assume that σL(f) is countable.
If for all iω ∈ σL(f) the limit

lim
τ→∞

1

τ

∫ τ

0

e−iωtf(t+ s) dt

exists, uniformly in s ≥ 0 , then f ∈ AAP (R +, X) . If in addition we know that
limt→∞〈f(t), x∗〉 = 0 for all x∗ ∈ X∗ , then f ∈ C0(R+, X) .

As is the case for the real line, the condition ‘uniformly in s ≥ 0’ cannot be
omitted from the first statement. This is shown by the following example, which
also shows that there is no analogue for R + of versions (i), (ii), and (iii) of the
vector-valued Loomis theorem:

Example 0.3 [BNR, Example 4.2], [RV, Example 3.12], [St, p. 608]. Let
X = C and consider the function g(t) = sin

√
t , t ≥ 0. Then g ∈ BUC(R+)

and its Laplace transform is given by

Lg(z) =

√
πe−1/(4z)

2z3/2
, z ∈ C \(−∞, 0].

Hence, σL(g) = {0} . Moreover,

lim
τ→∞

∣∣∣∣
1

τ

∫ τ

0

g(t) dt

∣∣∣∣ = 0,

but g is not asymptotically almost periodic.

Example 0.3 does not rule out the possibility that the condition ‘uniformly in
s ≥ 0’ may be dropped in Proposition 0.2 if in addition to the stated assumptions
we have limt→∞〈f(t), x∗〉 = 0 for all x∗ ∈ X∗ . In Section 1 we will show that
this hope is unfounded by proving:
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Theorem 0.4. There exists a function g ∈ BUC(R +, l
2) with the following

properties:

(1) σL(g) = {0} ;
(2) the non-tangential strong limit limλ→0 Lg(λ) exists;

(3)

∥∥∥∥
1

τ

∫ τ

0

g(t) dt

∥∥∥∥
l2
≤ C

4
√
τ

for all τ > 0 and some constant C > 0 ;

(4) limt→∞〈g(t), x∗〉 = 0 for all x∗ ∈ l2 ;
(5) lim supt→∞ ‖g(t)‖l2 ≥ 1 .

This function g is obtained through a construction which combines the essential
features of Examples 0.1 and 0.3. We point out that this construction can be
simplified somewhat to obtain an example of a c0−valued function with the
properties (1) - (5); this would suffice for the applications in Sections 2 and 3.
But in the context of version (i) of Loomis’s theorem it is interesting that the
example can be realized for l2−valued functions.

Note that (4) and (5) imply that g is not asymptotically almost periodic.
In fact, g even fails to be Eberlein weakly almost periodic. Recall that a function
f ∈ Cb(R+, X) is called Eberlein weakly almost periodic if the set {ft : t ≥ 0}
is a relatively weakly compact subset of Cb(R+, X) Indeed, if g were Eberlein
weakly almost periodic, then (4) in combination with [BNR1, Theorem 6.1] and
[BNR2, Theorem 4.1] would imply that limt→∞ ‖g(t)‖l2 = 0.

It is well-known that there is a close relationship between the theory
of asymptotic almost periodicity on the one hand and the homogenous and
inhomogenous abstract Cauchy problem on the other; we refer the reader to [AB],
[AS], [Ba], [LZ], [RS], [RV] and the references given there. For more information
on the general theory of C0−semigroups, as well as for an explanation of the
standard terminology and notation, we refer to the book [Pa]. Here we mention
the fact that Proposition 0.2 implies an individual version of the celebrated
Arendt-Batty-Lyubich-Vũ stability theorem. In order to state the precise result
we need the following notation.

Let T = {T (t)}t≥0 be a C0−semigroup on a Banach space X with
generator A . Choose constants M > 0 and ω ∈ R such that ‖T (t)‖ ≤ Meωt

for all t ≥ 0. Fix x ∈ X . The local resolvent of A at x is the X−valued
holomorphic function λ 7→ R(λ,A)x := (λ − A)−1x , Re λ > ω . Let us assume
that this function has a holomorphic extension Fx to C+ . This happens, for
instance, if the orbit t 7→ T (t)x is bounded. We then denote by σiR (A, x) the
set of singular points of Fx on the imaginary axis. Recalling that the resolvent
is given by the Laplace transform of the semigroup,

R(λ,A)x =

∫ ∞

0

e−λtT (t)x dt, Reλ > ω,

we see that σiR (A, x) = σL(T (·)x) if the orbit t 7→ T (t)x is bounded. Applying
Proposition 0.2 to such orbits gives the following result [BNR2, Theorem 5.3] (cf.
[Ne, Theorem 5.3.6]).

Proposition 0.5. Let T = {T (t)}t≥0 be a C0−semigroup on X with generator
A . Let x ∈ X be an element with the following properties:

(1) The orbit t 7→ T (t)x is bounded and uniformly continuous;
(2) σiR (A, x) is countable;
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(3) For all iω ∈ σiR (A, x) the limit lim
τ→∞

1

τ

∫ τ

0

e−iωtT (t+ s)x dt exists,

uniformly in s ≥ 0 .

Then the orbit t 7→ T (t)x is asymptotically almost periodic. If the limits in (3)
equal 0 , then

lim
t→∞

‖T (t)x‖ = 0.

The question whether the assumption ‘uniformly in s ≥ 0’ can be omitted from
this result was left open in [BNR2]. We mention the fact, proved in [BNR1], that
it can be omitted indeed if T is a uniformly bounded semigroup.

Here we will show that in general the answer is negative:

Theorem 0.6. There exists a C0−semigroup T = {T (t)}t≥0 with generator
A on a Banach space X with the following property: there is an element x ∈ X
such that

(1) The orbit t 7→ T (t)x is bounded and uniformly continuous;
(2) σiR (A, x) = {0} ;

(3) lim
τ→∞

∥∥∥∥
1

τ

∫ τ

0

T (t)x dt

∥∥∥∥ = 0 ;

(4) There is a norming subspace Z ⊆ X∗ such that lim
t→∞
〈T (t)x, x∗〉 = 0 for

all x∗ ∈ Z ;

(5) lim sup
t→∞

‖T (t)x‖ ≥ 1 .

Note that (4) implies that the limits in Proposition 0.5 (3), whenever they exist,
are equal to 0.

The proofs of Theorems 0.4 and 0.6 are given in Sections 1 and 2,
respectively. In the final Section 3 we use Theorem 0.4 to construct a translation
invariant linear functional on the closed subspace of BUC(R +, l

2) consisting of
all functions converging to 0 scalarly.

1. Proof of Theorem 0.4

We start with a simple estimate.

Lemma 1.1. sup
τ>0

sup
λ≥0

∣∣∣∣
1

τ

∫ τ

0

e−λs sin
√
s ds

∣∣∣∣ ≤
6√
τ
.

Proof. Fix τ > 0 and λ ≥ 0. By a change of variable,

1

τ

∫ τ

0

e−λs sin
√
s ds =

1

τ

∫ √τ

0

2te−λt
2

sin t dt,

and by partial integration we have
∣∣∣∣∣

∫ √τ

0

te−λt
2

sin t dt

∣∣∣∣∣ =

∣∣∣∣∣ −
√
τe−λτ cos

√
τ +

∫ √τ

0

(1− 2λt2)e−λt
2

cos t dt

∣∣∣∣∣

≤ √τ +

∫ √τ

0

∣∣(1− 2λt2)e−λt
2 ∣∣ dt

≤ √τ +

(
1 +

2

e

)√
τ ;

in the last step we used the inequality 0 ≤ ue−u ≤ 1/e , u ≥ 0.
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Proof of Theorem 0.4: Let 0 < λ1 ≤ 1 so small that

∫ 2π

0

(1− e−λ1s) ds ≤ 1

and choose t1 > 0 such that t1 = ((2n1+ 1
2)π)2 for some n1 ∈ N and e−λ1t1 ≤ 1

2 .

Let 0 < λ2 ≤ 1
2

be so small that λ2 < λ1 ,

1− e−2λ2 ≤ 1

2
, e−λ2t1 ≥ 1− 1

2
=

1

2
, and

∫ 8π

0

(1− e−λ2s) ds ≤ 1

2
.

Choose t2 > t1 such that t2 = ((2n2 + 1
2)π)2 for some n2 ∈ N and e−λ2t2 ≤ 1

4 .
Continuing in the obvious way we obtain sequences (λn) and (tn) of positive
real numbers satisfying:

(i) 0 < t1 < t2 < . . .→∞ and for all j = 1, 2, . . . we have tj = ((2nj+
1
2)π)2

for some nj ∈ N ;

(ii) λ1 > λ2 > . . . ↓ 0 and λj ≤ 1
j for all j = 1, 2, . . . ;

(iii) 1− e−jλj ≤ 1
j for all j = 1, 2, . . . ;

(iv) e−λj tj ≤ 2−j for all j = 1, 2, . . . ;
(v) e−λj+1tj ≥ 1− 2−j for all j = 1, 2, . . . ;

(vi)
∫ 2πj2

0
(1− e−λjs) ds ≤ 1

j for all j = 1, 2, . . .

The reader will notice some reduncancy in these condition; trying to avoid this
would just complicate the construction below.

For n = 1, 2, . . . we define fn : R+ → C by

fn(t) = e−λn+1t − e−λnt, t ≥ 0.

Let f : R+ → l2 be defined by

f(t) = (f1(t), f2(t), . . . ).

Finally let φ(t) := sin
√
t , t ≥ 0, and define gn : R+ → C and g : R+ → l2 by

gn(t) := φ(t)fn(t), g(t) := φ(t)f(t), t ≥ 0.

First we check that indeed f(t) ∈ l2 , and hence g(t) ∈ l2 , for all t ≥ 0. To this
end let t ≥ 0 be fixed and let k denote the smallest positive integer such that
t ≤ tk . Then t ∈ [tk−1, tk] , with the convention that t0 = 0. If m ≥ k , then
0 ≤ t ≤ tk ≤ tm implies 1 ≥ e−λm+1t ≥ e−λm+1tm ≥ 1 − 2−m . Therefore, for
n ≥ k + 1 we have 1 ≥ e−λn+1t ≥ e−λnt ≥ 1− 2−n+1 and thus

|fn(t)| ≤ |e−λn+1t − e−λnt| ≤ 2−n+1.

If 1 ≤ m ≤ k − 1, then e−λmt ≤ e−λmtk−1 ≤ e−λmtm ≤ 2−m, and therefore, for
1 ≤ n ≤ k − 2 we have e−λnt ≤ e−λn+1t ≤ 2−n−1 and thus

|fn(t)| ≤ |e−λn+1t − e−λnt| ≤ 2−n−1.

It follows that

‖f(t)‖2l2 ≤
(
k−2∑

n=1

2−2n−2

)
+ 1 + 1 +

( ∞∑

n=k+1

2−2n+2

)
≤ 2 +

∞∑

n=1

2−2n+2 ≤ 4.
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This shows that f , and hence also g , is a bounded l2−valued function; in fact,

sup
t≥0
‖g(t)‖l2 ≤ sup

t≥0
‖f(t)‖l2 ≤ 2.

Next we check that the l2−valued function g is uniformly continuous on
R+ . Once more it suffices to prove this for f . Let 0 ≤ s ≤ t be fixed. We have

‖f(t)− f(s)‖l2 =

( ∞∑

n=1

|(e−λn+1t − e−λnt)− (e−λn+1s − e−λns)|2
) 1

2

≤
( ∞∑

n=1

|e−λn+1s − e−λn+1t|2
) 1

2

+

( ∞∑

n=1

|e−λns − e−λnt|2
) 1

2

.

≤
( ∞∑

n=1

|1− e−λn+1(t−s)|2
) 1

2

+

( ∞∑

n=1

|1− e−λn(t−s)|2
) 1

2

.

By (iii) the last two sums are finite and depend only on the difference t − s .
Moreover, as t−s ↓ 0 these sums tend to 0 by monotone convergence. It follows
that f , as an l2−valued function, is uniformly continuous and we conclude that
f ∈ BUC(R+, l

2).

We will check that g has the properties (1) - (5) stated in Theorem 0.4.
The Laplace transform of gn is given by

Lgn(z) = Lφ(λn+1 + z)− Lφ(λn + z), Re z > 0,

with

Lφ(ζ) =

√
πe−1/(4ζ)

2ζ3/2
, ζ ∈ C \(−∞, 0].

We will show that Lg extends holomorphically to D := C \(−∞, 0]. Let z ∈ D
be fixed and choose ε > 0 so small that dist (z, ∂D) < ε . By analyticity we can
choose a constant C > 0 such that

|Lφ(z0)− Lφ(z1)| ≤ C|z0 − z1|

whenever |z − z0| ≤ ε and |z − z1| ≤ ε . Since λj+1 ≤ λj ≤ 1
j for all j ≥ 1, for

n > 1/ε we have

|Lgn(z)| = |Lφ(λn+1 + z)− Lφ(λn + z)| ≤ C|λn+1 − λn| ≤
1

n
.

It follows that
Lg(z) := (Lg1(z),Lg2(z), . . .)

defines an element in l2 . The function z 7→ Lg(z) is coordinatewise holomor-
phic on D , from which it is easily seen to be weakly holomorphic, and hence
holomorphic.

Having obtained a holomorphic extension of Lg to D , it follows that
σL(g) ⊂ {0} . But since the singularities of Lgn accumulate in 0, this is a
singular point of Lg . This proves that σL(g) = {0} , which is (1).
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Next we check that the non-tangential strong limit limλ→0 Lg(λ) exists.
Fix θ ∈ [0, π2 ) and let

Σθ := {z ∈ C : Re z > 0, | arg z| < θ}.

Define

ψ(ζ) := Lφ(ζ) =

√
πe−1/(4ζ)

2ζ−3/2
, ζ ∈ Σθ.

For r > 0 we put Σr,θ := {ζ ∈ Σθ : |ζ| < r} and let

Cr,θ := sup
ζ∈Σr,θ

|ψ′(ζ)|.

It is easy to check that this number is finite for each r > 0 and that limr→0 Cr,θ =
0. Now fix r > 0. If n is so large that λn < r , then for all n′ ≥ n and z ∈ Σr,θ
we have λn′ + z ∈ Σ2r,θ , and the mean-value theorem then gives

|Lgn(z)− Lgn(0)| ≤ |ψ(λn+1 + z)− ψ(λn + z)|+ |ψ(λn+1)− ψ(λn)|

≤ 2C2r,θ|λn+1 − λn| ≤
2C2r,θ

n
,

where in the last inequality we used (ii). Defining ĝ(0) ∈ l2 by

ĝ(0) := (Lg1(0),Lg2(0), . . . )

it follows that

‖Lg(z)− ĝ(0)‖2l2 ≤
∑

λn≥r
|Lgn(z)− Lgn(0)|2 + 4C2

2r,θ

∑

λn<r

1

n2
.

The first sum on the right hand side extends over finitely many n and tends to
0 as z → 0. Keeping r > 0 fixed and letting z → 0 in Σθ , we obtain

lim sup
z∈Σθ, z→0

‖Lg(z)− ĝ(0)‖2l2 ≤ 4C2
2r,θ

∞∑

n=1

1

n2
.

Because limr→0 C2r,θ = 0 this gives (2).
We now check (3). First note that since g is bounded, it suffices to

prove that there is a constant C > 0 such that
∥∥ 1
τ

∫ τ
0
g(t) dt

∥∥
l2
≤ Cτ−

1
4 for all

τ ≥ (2π)2 .
Fix τ ≥ (2π)2 and an integer k ≥ 1 such that τ ∈ [τk, τk+1] , where

τj := (2πj)2 . If n ≥ k + 1, then by (vi),

∣∣∣∣
1

τ

∫ τ

0

gn(s) ds

∣∣∣∣ ≤
1

τ

∫ (2πn)2

0

(e−λn+1s − e−λns) ds

≤ 1

τ

∫ (2πn)2

0

(1− e−λns) ds ≤ 1

nτ
.

On the other hand, if 1 ≤ n ≤ k then by Lemma 1.1,
∣∣∣∣
1

τ

∫ τ

0

gn(s) ds

∣∣∣∣ ≤
12√
τ
.
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Hence, ∥∥∥∥
1

τ

∫ τ

0

g(s) ds

∥∥∥∥
2

l2
≤

k∑

n=1

144

τ
+

∞∑

n=k+1

1

n2τ2

≤ k · 144

τ
+

∞∑

n=k

1

n2τ2

≤ 144

2π
√
τ

+
2

τ2

≤
(

144

2π
+ 2

)
1√
τ
,

where in the last inequality we recall that τ ≥ (2π)2 > 1. Taking square roots
on both sides gives (3).

Let en = (0, 0, . . . , 0, 1, 0, . . .) denote the n−th unit vector in l2 . Then

lim
t→∞
〈g(t), en〉 = lim

t→∞
gn(t) = 0,

and since the linear span of the sequence (en) is dense in l2 and g is bounded,
(4) follows from this.

Finally, noting that by (i) we have φ(tn) = 1 all n ≥ 1, it follows that

‖g(tn)‖l2 ≥ |gn(tn)| = e−λn+1tn − e−λntn ≥ (1− 2−n)− 2−n = 1− 2−n+1,

which gives (5).

2. Proof of Theorem 0.6

In this section we will prove Theorem 0.6, thus giving a negative answer to the
question, mentioned in the introduction, that was raised in [BNR2].

We start with a lemma.

Lemma 2.1. Suppose f ∈ L∞(R+, X) satisfies
∥∥∥∥

1

τ

∫ τ

0

f(t) dt

∥∥∥∥ ≤ Cτ−
1
4 , ∀τ > 0,

for some constant C > 0 . Then,
∥∥∥∥

1

τ

∫ τ

0

f(t+ s) dt

∥∥∥∥ ≤ Cτ−
1
4 (1 + 2s

3
4 ), ∀τ ≥ 1, s ≥ 0.

Proof. For s = 0 the estimate is trivial. Fix τ ≥ 1 and s > 0. We estimate
∥∥∥∥

1

τ

∫ τ

0

f(t+ s) dt

∥∥∥∥ ≤
τ + s

τ

∥∥∥∥
1

τ + s

∫ τ+s

0

f(t) dt

∥∥∥∥+
s

τ

∥∥∥∥
1

s

∫ s

0

f(t) dt

∥∥∥∥

≤ τ + s

τ
· C

(τ + s)
1
4

+
s

τ
· C
s

1
4

=
C

(τ + s)
1
4

+
Cs

τ(τ + s)
1
4

+
Cs

3
4

τ

≤ C

τ
1
4

+
Cs

3
4

τ
+
Cs

3
4

τ
,

which gives the desired result.
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Let
ψ(t) := 1 + t

3
4 , t ≥ 0,

and denote by BUCψ(R+, X) the space of all functions f : R+ → X such that
f/ψ ∈ BUC(R+, X). This is a Banach space with respect to the norm

‖f‖BUCψ(R+,X) := ‖f/ψ‖BUC(R+,X).

For a function f ∈ BUCψ(R+, X) and a real number t ≥ 0 we denote by
ft : R+ → X the function

ft(s) := f(s+ t), s ≥ 0.

It is easy to see that ft ∈ BUCψ(R+, X); in fact:

Lemma 2.2. For all f ∈ BUCψ(R+, X) we have

lim
t↓0
‖f − ft‖BUCψ(R+,X) = 0.

Proof. For all s, t ≥ 0,
∥∥∥∥
f(s+ t)

1 + s
3
4

− f(s+ t)

1 + (s+ t)
3
4

∥∥∥∥ =
((s+ t)

3
4 − s 3

4 )‖f(s+ t)‖
(1 + s

3
4 )(1 + (s+ t)

3
4 )

≤ ‖f‖BUCψ(R+,X)
((s+ t)

3
4 − s 3

4 )

1 + s
3
4

≤ ‖f‖BUCψ(R+,X)((s+ t)
3
4 − s 3

4 )

≤ ‖f‖BUCψ(R+,X) · t
3
4

.

Using this estimate and the strong continuity of translation in BUC(R +, X) we
obtain

lim sup
t↓0

‖f − ft‖BUCψ(R+,X) = lim sup
t↓0

(
sup
s≥0

1

1 + s
3
4

‖f(s)− f(s+ t)‖
)

≤ lim
t↓0

(
sup
s≥0

∥∥∥∥
f(s)

1 + s
3
4

− f(s+ t)

1 + (s+ t)
3
4

∥∥∥∥
)

+ lim
t↓0

(
sup
s≥0

∥∥∥∥
f(s+ t)

1 + (s+ t)
3
4

− f(s+ t)

1 + s
3
4

∥∥∥∥
)

= 0.

It follows that limt↓0 ‖f − ft‖BUCψ(R+,X) exists and equals 0.

This lemma shows that the left translation semigroup Sψ on BUCψ(R+, X)
defined by

Sψ(t)f := ft, f ∈ BUCψ(R+, X), t ≥ 0,

is strongly continuous. From

‖Sψ(t)f‖BUCψ(R+,X) = sup
s≥0

f(s+ t)

1 + s
3
4

≤ sup
s≥0

1 + (s+ t)
3
4

1 + s
3
4

‖f‖BUCψ(R+,X)

= (1 + t
3
4 )‖f‖BUCψ(R+,X)
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we see that
‖Sψ(t)‖ ≤ ψ(t), ∀t ≥ 0.

Denote the inclusion map BUC(R+, X) ↪→ BUCψ(R+, X) by iψ , and let S
denote the left translation semigroup on BUC(R +, X). Then iψ ◦ S(t) =
Sψ(t) ◦ iψ for all t ≥ 0. Denoting by B and Bψ the generators of S and
Sψ , respectively, it also follows that {Reλ > 0} ⊂ %(Bψ), the resolvent set of
Bψ , and iψ ◦R(λ,B) = R(λ,Bψ) ◦ iψ for all Re λ > 0.

The final ingredient for the proof of Theorem 0.6 is taken from [BNR2]:

Proposition 2.3. Let X be a Banach space and let f ∈ BUC(R +, X) . Then
σL(f) = σiR (B, f) , where B is the generator of the left translation semigroup
on BUC(R+, X) .

Proof of Theorem 0.6: We will now show that the semigroup Sψ on Y :=
BUCψ(R+, l

2) and the element iψg ∈ Y , where g ∈ BUC(R+, l
2) is the

function constructed in Theorem 0.4, have the required properties.
(1): The orbit t 7→ S(t)g is clearly bounded and uniformly continuous.

Hence t 7→ iψS(t)g = Sψ(t)iψg is bounded and uniformly continuous as well.
(2): By Theorem 0.4 (1) and Proposition 2.3 the local resolvent λ 7→

R(λ,B)g extends holomorphically across iR \{0} ; let F (·) be such an extension.
Then iψF (·) is a holomorphic extension of λ 7→ R(λ,Bψ)iψg across iR \{0} .
Hence σiR (Bψ, iψg) ⊂ {0} . But σiR (Bψ, iψg) cannot be empty, since this would
imply limt→∞ ‖Sψ(t)iψg‖Y = 0 by [Ne, Corollary 5.3.7], contradicting (5) below.

(3): By Lemma 2.1 for τ ≥ 1 we have∥∥∥∥
1

τ

∫ τ

0

Sψ(t)iψg dt

∥∥∥∥
Y

= sup
s≥0

1

1 + s
3
4

∥∥∥∥
1

τ

∫ τ

0

g(t+ s) dt

∥∥∥∥

≤ sup
s≥0

1

1 + s
3
4

· Cτ− 1
4 (1 + 2s

3
4 ) ≤ 2Cτ−

1
4 ,

where C > 0 is the constant of Theorem 0.4.
(4): Since limt→∞〈g(t), x∗〉 = 0 for all x∗ ∈ l2 we may take Z ⊆ Y ∗ to

be the linear span of {δt⊗x∗ : t ≥ 0, x∗ ∈ l2} . Noting that δt⊗x∗ is a bounded
linear form on Y of norm ≤ ψ(t)‖x‖ , we see that Z is indeed norming.

(5): This follows from

lim sup
t→∞

‖Sψ(t)iψg‖Y ≥ lim sup
t→∞

‖(Sψ(t)iψg)(0)‖ = lim sup
t→∞

‖g(t)‖ ≥ 1.

3. Translation invariant functionals

In this section we will use the function g of Theorem 0.4 to prove the existence
of a translation invariant functional on the closed subspace Cweak0 (R+, l

2) of
BUC(R+, l

2) consisting of all functions f such that limt→∞〈f(t), x∗〉 = 0 for
all x∗ ∈ l2 .

Let X be a Banach space and let F be a closed subspace of BUC(R +, X)
which is invariant under left translations. A translation invariant functional on
F is a non-zero element L ∈ F ∗ such that 〈ft, L〉 = 〈f, L〉 for all f ∈ F . In
terms of the left translation semigroup S on BUC(R +, X), the assumptions
can be reformulated as saying that F is a closed S− invariant subspace and that
〈S(t)f, L〉 = 〈f, L〉 for all t ≥ 0. In other words, L is a fixed point of the semi-
group S∗F , the adjoint of the restricted semigroup SF = S|F . Denoting by BF
the generator of SF , this, in turn, is equivalent to the condition L ∈ D(B∗F ) and
B∗FL = 0.
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Theorem 3.1. There exists a translation invariant functional on
Cweak0 (R+, l

2) .

Proof. Let F := Cweak0 (R+, l
2). By the observations just made we need to

show that 0 ∈ σp(B∗F ), the point spectrum of B∗F .
Suppose, for a contradiction, that 0 6∈ σp(B∗F ). Let E denote the closed

linear span in BUC(R+, l
2) of the S−orbit of g , where g ∈ BUC(R +, l

2) is
the function of Theorem 0.4. By Theorem 0.4 (4) we have g ∈ Cweak0 (R+, l

2)
and consequently E ⊆ F . The extension lemma for the purely imaginary
point spectrum of an adjoint generator [Ne, Lemma 5.5.6] then implies that
0 6∈ σp(B∗E). Since σiR (BE , g) = σiR (B, g) = σL(g) = {0} , from [Ne, Lemma
5.1.8] we infer that σp(B

∗
E) ∩ iR = Ø. Then by [BNR1, Proposition 3.2 and

Theorem 3.4] or [Ne, Lemma 5.1.9 and Theorem 5.1.11], applied to SE , it follows
that

lim
t→∞

‖g(t)‖ = lim
t→∞

‖SE(t)g‖ = 0,

a contradiction.

Acknowledgement. I am indebted to Ben de Pagter for suggesting an
improvement in Section 2.
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tra and individual stability of uniformly bounded C0 -semigroups, Trans.
Amer. Math. Soc. 350 (1998), 2071–2085.

[BNR2] —, Tauberian theorems and stability of solutions of the Cauchy problem,
Trans. Amer. Math. Soc. 350 (1998), 2087–2103.

[LZ] Levitan, B. M., and V. V. Zhikov, “Almost Periodic Functions and
Differential Equations,” Cambridge University Press, Cambridge, 1982.

[Ne] van Neerven, J. M. A. M., “The Asymptotic Behaviour of Semigroups of
Linear Operators,” Operator Theory: Advances and Applications, Vol.
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