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Abstract. We present a semigroup approach to stochastic delay equations of the
form

dX(t) =
“

Z

0

−h

X(t + s) dµ(s)
”

dt + dW (t) for t ≥ 0,

X(t) = f(t) for t ∈ [−h, 0],

in the space of continuous functions C[−h,0]. We represent the solution as a C[−h,0]-
valued process arising from a stochastic weak∗-integral in the bidual C[−h,0]∗∗ and
show how this process can be interpreted as a mild solution of an associated sto-
chastic abstract Cauchy problem. We obtain a necessary and sufficient condition
guaranteeing the existence of an invariant measure.

1. Introduction

In this paper we study the stochastic linear delay differential equation

dX(t) =
(

∫ 0

−h

X(t + s) dµ(s)
)

dt + dW (t) for t ≥ 0,

X(t) = f(t) for t ∈ [−h, 0],

(1.1)

where µ is a finite signed Borel measure on [−h, 0] and W = (W (t))t≥0 is a standard
Brownian motion. Following a well known approach in the theory of deterministic delay
equations, we lift the equation to an abstract stochastic Cauchy problem in the space of
continuous functions C[−h, 0] of the form

dU(t) = AU(t) dt + B dW (t) for t ≥ 0,

U(0) = f.
(1.2)

Here A is the generator of the C0-semigroup (T (t))t≥0 on C[−h, 0] canonically associated
with the deterministic part of (1.1). In contrast to the deterministic situation, B is an
element of the bidual space C[−h, 0]∗∗ which is defined by

〈µ, B〉 = µ({0}), µ ∈ M [−h, 0] = C[−h, 0]∗.

Although the problem (1.2) is formulated in the bidual space C[−h, 0]∗∗, it turns out
that its unique mild solution U takes its values in C[−h, 0] almost surely. A solution to
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the problem (1.1) is then obtained by putting

X(t, f) := (U(t, f))(0), t ≥ 0.

The semigroup approach to deterministic delay equations in C[−h, 0] used here is
presented in detail in the monographs of Diekmann–van Gils–Verduyn Lunel–Walther
[6] and Engel–Nagel [7], where further references to the literature can be found. With
the role of C[−h, 0] replaced by L2(−h, 0), stochastic delay equations were studied by
Chojnowska-Michalik [4] and, more recently, in the monograph by Da Prato–Zabczyk
[5]. The reason for taking L2(−h, 0) comes from the fact that the Itô stochastic calculus
extends readily to Hilbert spaces. Recently, a theory of stochastic integration in Banach
spaces has been developed and applied to abstract stochastic Cauchy problems in [3, 11].
This theory cannot be applied to study the problem (1.1) in C[−h, 0], however, since
the functional B belongs to C[−h, 0]∗∗ rather than C[−h, 0]. To overcome this problem,
in Section 2 we formulate a simple extension of the theory of [3, 11] to locally convex
spaces and apply it to dual Banach spaces in their weak∗-topology. In the case of a
bidual Banach space E∗∗, we are particularly interested in conditions ensuring that the
weak∗-stochastic integral takes its values in E almost surely (Theorem 2.3). In Section 3
we verify these conditions for the problem (1.2) and prove the existence of a mild solution
with values in C[−h, 0] (Theorem 3.3). Furthermore, necessary and sufficient conditions
for the existence of an invariant measure are obtained in terms of the resolvent function
associated with the deterministic problem (Theorem 3.4).

2. Stochastic integration in locally convex spaces

2.1. Gaussian Radon measures. Let E be a real locally convex topological vector
space. A Borel probability measure µ on E is called a Radon measure if for every Borel
set B in E and every ε > 0 there exists a compact set K ⊆ B such that µ(B \ K) < ε.
A Borel measurable random variable X : (Ω, P ) → E is called Radon if its distribution
is a Radon probability measure on E. We refer to [2, Appendix A] whose terminology
we follow.

A Radon measure µ on E is called Gaussian if its image under every continuous linear
functional x′ ∈ E′ is a Gaussian measure on R . By [2, Theorem 3.2.3] there exists a
unique element mµ ∈ E, the mean of E, such that for all x′ ∈ E′ we have

〈mµ, x′〉 =

∫

E

〈ξ, x′〉 dµ(ξ).

In this paper, all Gaussian Radon measures µ on E will be centred, meaning that mµ = 0,
or equivalently, that all image measures 〈µ, x′〉 are centred as Gaussian measures on R .

Let µ be a (centred) Gaussian Radon measure on E. For an element x ∈ E we define

|x|µ := sup
{

|〈x, x′〉| : x′ ∈ E′,

∫

E

〈ξ, x′〉2 dµ(ξ) ≤ 1
}

.

This supremum may be infinite. The Cameron-Martin space associated with µ is the
space

Hµ := {h ∈ E : |h|µ < ∞}.

This space has the structure of a separable real Hilbert space [2, Section 3.2]. Moreover,
the inclusion mapping iµ : Hµ →֒ E is continuous. To see this, note that by [2, Corollary
3.2.4], iµ maps bounded set of Hµ into relatively compact sets of E. Since compact sets
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in topological vector spaces are bounded [13, Theorem 1.15], the continuity of iµ now
follows from [13, Theorem 1.32]. Let i′µ : E′ → Hµ denote the adjoint mapping. Then,

〈iµi′µx′, y′〉 = [i′µx′, i′µy′]Hµ
=

∫

E

〈ξ, x′〉〈ξ, y′〉 dµ(ξ).

If (hn)n≥1 is an orthonormal basis for Hµ and (γn)n≥1 is a Gaussian sequence, i.e. a
sequence of independent standard Gaussian random variables, then the E-valued Gauss-
ian sum

∑

n≥1 γn iµhn converges in E almost surely, and its sum is an E-valued random

variable with distribution µ [2, Theorem 3.5.1]. More generally, if H is a Hilbert space
and T ∈ L (H, E) is a continuous linear operator, then by using the fact that the map-
ping U : H → Hµ by U : T ′x′ 7→ i′µx′ satisfies ‖T ′x′‖2

H = ‖i′µx′‖2
Hµ

and therefore extends

to a unitary mapping from ran(T ′) = (ker(T ))⊥ onto Hµ, we have:

Proposition 2.1. Let H be a separable real Hilbert space with orthonormal basis (hn)n≥1.

For a continuous linear operator T : H → E the following assertions are equivalent:

(1) There exists a Gaussian Radon measure µ on E such that T ◦ T ′ = iµ ◦ i′µ;

(2) The E-valued Gaussian sum
∑

n≥1 γn Thn converges almost surely to an E-valued

Radon random variable X.

In this situation, the sum X has distribution µ.

An operator T : H → E satisfying the equivalent assumptions of the proposition is
called radonifying.

A function φ : [0, T ] → E is called weakly L2 if t 7→ 〈φ, x′〉(t) := 〈φ(t), x′〉 defines an
element of L2(0, T ) for all x′ ∈ E′. A function φ : [0, T ] → E is called stochastically

integrable with respect to a Brownian motion W = (W (t))t∈[0,T ] defined on a probability

space (Ω, P ) if it is weakly L2 and there exists a Radon random variable X : Ω → E

such that for all x′ ∈ E′ we have

〈X, x′〉 =

∫ T

0

〈φ(t), x′〉 dW (t)

almost surely. In this situation we write

X =

∫ T

0

φ(t) dW (t).

The random variable X is Gaussian and is uniquely determined almost everywhere.
Indeed, suppose X1 and X2 are E-valued Radon random variables satisfying 〈X1, x

′〉 =
〈X2, x

′〉 for all x′ ∈ E′. To prove that X1 = X2 almost surely it suffices to show that the
distributions µY of Y := X1 − X2 equals the Dirac measure δ0.

Since µY and δ0 are Radon measures on E, they are determined by the cylindrical
σ-field E (this follows by noting that K ∈ E for all compact sets K ⊆ E). Thus it
suffices to show that µY = δ0 on E . Let C the field of cylindrical subsets of E. Then
C is closed under taking finite intersections and we have σ(C ) = E . Thus it suffices to
show that µY = δ0 on C . But if C ∈ C , there exists a Borel set B ⊆ R

n and elements
x′

1, . . . , x
′
n ∈ E′ such that C = {x ∈ E : (〈x, x′

1〉, . . . , 〈x, x′
n〉) ∈ B}, and therefore

µY (C) = P {(〈Y, x′
1〉, . . . , 〈Y, x′

n〉) ∈ B} = P {0 ∈ B} = δ0(C).

The following result extends [11, Theorem 2.3] to locally convex spaces and can be
proved in a similar way.
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Theorem 2.2. For a weakly L2 function φ : [0, T ] → E the following assertions are

equivalent:

(1) φ is stochastically integrable with respect to W ;

(2) There exists a Gaussian Radon measure µ on E such that for all x′ ∈ E′ we have

∫

E

〈ξ, x′〉2 dµ(ξ) =

∫ T

0

〈φ(t), x′〉2 dt;

(3) There exists a radonifying operator I : L2(0, T ) → E such that for all x′ ∈ E′ we

have

〈If, x′〉 =

∫ T

0

f(t)〈φ(t), x′〉 dt.

In this situation, µ is the distribution of
∫ T

0 φ(t) dW (t).

Now let E be a real Banach space with Banach space dual E∗. The theory developed
so far can be applied to E∗, considered as a locally convex topological vector space
in its weak∗-topology. By general results from the theory of locally convex spaces its
topological dual is given by

(E∗, weak∗)′ = E.

Accordingly we say that a function φ : [0, T ] → E∗ is weak∗ L2 if 〈x, φ〉 defines an
element of L2(0, T ) for all x ∈ E. We call a function φ : [0, T ] → E∗ weak∗-stochastically

integrable with respect to W if it weak∗ L2 and there exists a weak∗-Radon random
variable X : Ω → E∗ such that for all x ∈ E we have

〈x, X〉 =

∫ T

0

〈x, φ(t)〉 dW (t)

almost surely. In this situation we write X = weak∗-
∫ T

0
φ(t) dW (t).

Of particular interest is the special case where E itself is a dual space, say E = F ∗ for
some real Banach space F . If φ : [0, T ] → F ∗∗ is weak∗-integrable, one may ask under
which conditions the weak∗-integral is an F -valued random variable. In order to make

this question precise, let µφ denote the distribution of weak∗-
∫ T

0 φdW and let Sφ be the
topological support of µφ, i.e., the smallest weak∗-closed linear subspace of F ∗∗ with the
property that µφ(Sφ) = 1 [2, Appendix A].

Theorem 2.3. Let F be a real Banach space and let φ : [0, T ] → F ∗∗ be weak∗-

stochastically integrable. With the notations as above, the following assertions are equiv-

alent:

(1) The topological support Sφ is contained in F ;

(2) There exists a Gaussian Radon measure µ on F such that for all x∗ ∈ F ∗ we

have
∫

E

〈ξ, x∗〉2 dµ(ξ) =

∫ T

0

〈x∗, φ(t)〉2 dt;

(3) There exists a radonifying operator I : L2(0, T ) → F such that for all x∗ ∈ F ∗

we have

〈If, x∗〉 =

∫ T

0

f(t)〈x∗, φ(t)〉 dt.

In this situation, µ is the distribution of weak∗-
∫ T

0
φ(t) dW (t).
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Proof. (1) ⇒ (2): We need to show that µ restricts to a Radon measure on F .
By [2, Theorem 3.6.1] the Cameron-Martin space Hφ of µφ is contained in Sφ, and

hence in F . Let iφ : Hφ → F ∗∗ be the inclusion mapping. If (hn)n≥1 is an orthonormal
basis for Hφ, then by Proposition 2.1 the sum

∑

n≥1 γniφhn converges weak∗ in F ∗∗

almost surely. Since iφ takes its values in F , the sum
∑

n≥1 γniφhn converges weakly
in F almost surely. Its sum Y is a random variable which takes its values in a weakly
separable, hence separable, closed subspace F0 of F . Thus we see that µφ is supported
on F0. Since the Borel σ-fields generated by the weak and the strong topologies coincide
on F0, µφ is a Borel measure on F0. By a standard result, the separability of F0 then
implies that µφ is actually a Radon measure on F0, and hence on F .

(2) ⇒ (3): By Theorem 2.2 there exists a radonifying operator I : L2(0, T ) → F ∗∗

such that for all x∗ ∈ F ∗ we have

〈x∗, If〉 =

∫ T

0

f(t)〈x∗, φ(t)〉 dt.

We need to show that I takes its values in F . But I∗x∗ = 〈x∗, φ〉 and therefore

〈y∗, II∗x∗〉 =

∫ T

0

〈x∗, φ(t)〉〈y∗, φ(t)〉 dt = 〈y∗, iµi∗µx∗〉

for all y∗ ∈ F ∗, where iµ is the inclusion operator of the Cameron-Martin space Hµ into
F . It follows that II∗x∗ ∈ F for all x∗ ∈ F ∗. Since the range of I∗ is dense in the
orthogonal complement of the kernel of I in L2(0, T ), the result follows from this.

(3) ⇒ (1): Choose an orthonormal basis (fn)n≥1 for L2(0, T ). Denoting by
Itô : L2(0, T ) → L2(Ω) the Itô isometry, the sequence γn := Itôfn consists of independent
standard normal random variables. It follows from Proposition 2.1 that the F -valued
Gaussian series

∑

n≥1 γn Ifn converges almost surely to an F -valued Radon random
variable X . For all x∗ ∈ F ∗ we have

〈X, x∗〉 =
∑

n≥1

γn 〈Ifn, x∗〉 =
∑

n≥1

∫ T

0

[

〈φ, x∗〉, fn

]

fn(t) dW (t)

=

∫ T

0

∑

n≥1

[

〈φ, x∗〉, fn

]

fn(t) dW (t) =

∫ T

0

〈φ(t), x∗〉 dW (t)

almost surely. This proves that φ is weak∗-stochastically integrable in F ∗∗ with X =
∫ T

0
φdW almost surely. Let µX and µφ be the distribution of X and

∫ T

0
φdW . Then

µX is a Radon measure on F and µφ is a weak∗-Radon measure on F . Moreover,
jµX = µφ, where j : F → F ∗∗ is the canonical inclusion operator. It follows that
µφ is a Radon measure on F ∗∗. By [2, Lemma 3.2.2 and Theorem 3.6.1] this implies

SX = HX = Hφ = Sφ, where the closures are taken with respect to the strong topologies
of F and F ∗∗, respectively. In particular, Sφ is contained in F . �

Remark 2.4. We have formulated condition (1) in terms of the topological support in
order to avoid the following subtle issue. For general Banach space E, it is not clear
whether E is always a µφ-measurable subset of (E∗∗, weak∗) (at least we could not find
a reference for this problem). Thus one has to be careful when using the phrase

(2.1) “the weak∗-stochastic integral of φ is almost surely E-valued”

If E is separable, then E is a Borel subset of (E∗∗, weak∗) by [2, Theorem A.3.15(ii)] and
(2.1) becomes meaningful. Also, the proof of the theorem shows that if (3) holds, then



6 JAN VAN NEERVEN AND MARKUS RIEDLE

µφ is actually Radon on (E∗∗, ‖ · ‖) and (2.1) becomes meaningful since E is norm closed
as a subspace of E∗∗.

3. Delay differential equations

In this section we apply our results on weak∗-stochastic integration to represent the
solution of a real-valued stochastic delay differential equation as a C-valued weak∗-
stochastic integral in the bidual of C, where C = C[−h, 0] is the space of history func-
tions. Before turning our attention to stochastic equations, we summarize some results
on deterministic delay differential equations. Proofs may be found in [6, 9].

Let h > 0 be fixed and consider the deterministic linear delay differential equation

ẋ(t) =

∫

[−h,0]

x(t + s) dµ(s) for t ≥ 0,

x(t) = f(t) for t ∈ [−h, 0],

(3.1)

where µ ∈ M = M [−h, 0], the space of signed Borel measure on [−h, 0] with the total
variation norm ‖ · ‖TV . The initial function f : [−h, 0] → R is assumed to be Borel mea-
surable. A function x : [−h,∞) → R is called classical solution of (3.1) if x is continuous
on [−h,∞), its restriction to [0,∞) is continuously differentiable, and x satisfies the first
and second identity of (3.1) for all t ≥ 0 and t ∈ [−h, 0], respectively. It is well known
that for every f ∈ C = C[−h, 0] the problem (3.1) admits a unique classical solution
x = x(·, f).

For a continuous function x : [−h,∞) → R and t ≥ 0 we define the segment xt ∈ C

by

xt(u) := x(t + u), u ∈ [−h, 0].

The solution operators T (t) : C → C,

T (t)f = xt(·, f), t ≥ 0,

where x(·, f) is the solution of (3.1), form a strongly continuous semigroup T = (T (t))t≥0

on C.
The fundamental solution or resolvent of (3.1) is the unique locally absolutely contin-

uous function r : [0,∞) → R which satisfies

r(t) = 1 +

∫ t

0

∫

[max{−h,−s},0]

r(s + u) dµ(u) ds for t ≥ 0.

It plays a role which is analogous to the fundamental system in linear ordinary differential
equations and the Green function in partial differential equations. Formally, it is the
solution of (3.1) corresponding to the initial function f = 1{0}.

From [9, Theorem 6.3.2] and [9, Equation (6.3.13)] we deduce:

Proposition 3.1. The adjoint T ∗(t) of the solution operator T (t) satisfies

〈T ∗(s)ν, B〉 =

∫

[max{−h,−s},0]

r(s + u) dν(u) for all s ≥ 0, ν ∈ M,(3.2)

where B ∈ C∗∗ = M∗ is defined by 〈ν, B〉 := ν({0}).
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Now let us fix a complete probability space (Ω, F , P ) with a filtration (Ft)t≥0. We
will study the stochastic linear delay differential equation

dX(t) =
(

∫

[−h,0]

X(t + s) dµ(s)
)

dt + dW (t) for t ≥ 0,

X(t) = f(t) for t ∈ [−h, 0],

(3.3)

where µ is a finite signed Borel measure on [−h, 0] and W = (W (t))t≥0 is a standard
Brownian motion on (Ω, F , P ). As before the initial function f is taken from C. A
solution of (3.3) is an adapted process (X(t, f))t≥−h with continuous paths such that
almost surely we have

X(t, f) = f(0) +

∫ t

0

(

∫

[−h,0]

X(s + u) dµ(u)
)

ds + W (t) for t ≥ 0,(3.4)

with X(u, f) = f(u) for u ∈ [−h, 0] almost surely.
For t ≥ 0 and u ∈ [−h, 0] we define (I(t))(u) := 0 if t + u < 0 and

(I(t))(u) := W (t + u) −

∫ t+u

0

W (t − s + u) dr(s) if t + u ≥ 0.

Clearly, u 7→ (I(t))(u) is continuous for all t ≥ 0. By the Pettis measurability theorem,
I(t) is strongly measurable as a C-valued random variable. Since for t + u ≥ 0 we have,
almost surely,

W (t + u) −

∫ t+u

0

W (t − s + u) dr(s) =

∫ t+u

0

r(t − s + u) dW (s)

we may think of I(t) as a continuous version of the convolution process r ∗ W .
The following existence and uniqueness result is proved in [10]:

Proposition 3.2. For every f ∈ C the problem (3.3) admits a solution (X(t, f))t≥−h.

This solution is unique up to indistinguishability and almost surely, for all t ≥ 0 we have

Xt(·, f) = T (t)f + I(t) in C.

The first main result of this section identifies the segment process (Xt(·, f))t≥0 as a
weak∗-stochastic integral in C∗∗ which actually takes its values in C.

Theorem 3.3. Let f ∈ C and denote by (X(t, f))t≥−h the solution of (3.3). The

function s 7→ T ∗∗(t − s)B is weak∗-stochastically integrable in C∗∗ on the interval [0, t]
and the segment process (Xt(·, f))t≥0 can be represented in C∗∗ by

Xt(·, f) = T (t)f + weak∗-

∫ t

0

T ∗∗(t − s)B dW (s).
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Proof. For t ≥ 0 we define φ : [0, t] → C∗∗ by φ(s) := T ∗∗(t− s)B. It is immediate from
(3.2) that φ is weak∗ L2. By the stochastic Fubini theorem, for all t ≥ 0 we have

〈I(t), ν〉 =

∫

[−h,0]

(I(t))(u) dν(u)

=

∫

[−h,0]

(

∫ max{0,t+u}

0

r(t − s + u) dW (s)
)

dν(u)

=

∫ t

0

(

∫

[max{−h,s−t},0]

r(t − s + u) dν(u)
)

dW (s)

=

∫ t

0

〈ν, T ∗∗(t − s)B〉 dW (s)

almost surely. The distribution of I(t) is a Radon probability measure on C. As the
inclusion C ⊆ C∗∗ is strongly-to-weak∗-continuous, I(t) is weak∗-Radon as a C∗∗-valued
random variable. Consequently the function φ is weak∗-stochastically integrable and in
C∗∗ we have

I(t) = weak∗-

∫ t

0

T ∗∗(t − s)B dW (s)

almost surely. �

The representation of the solution (X(t, f))t≥−h in C given by Theorem 3.3 identifies
the segment process

U(t, f) := Xt(·, f)

as the mild weak∗-solution of the following Cauchy problem in C∗∗:

dU(t) = AU(t) dt + B dW (t) for t ≥ 0,

U(0) = f,
(3.5)

where A denotes the generator of the solution semigroup (T (t))t≥0. As in [11, Theorem
7.1] one checks that for all t ∈ [0, T ] and µ ∈ D(A∗) we have, almost surely,

〈U(t, f), µ〉 = 〈f, µ〉 +

∫ t

0

〈U(s, f), A∗µ〉 ds + µ({0})W (t).

Further properties of the segment process (Xt(·, f))t≥0 are investigated in [12].

It is shown in [8] that the problem (3.3) admits an invariant measure if and only if
r ∈ L2(0,∞). The second main result of this section shows that this condition is in fact
necessary and sufficient for the existence of an invariant measure for the problem (3.5).

Theorem 3.4. The problem (3.5) admits an invariant measure if and only if r ∈
L2(0,∞). In this situation the invariant measure is unique.

Proof. First assume that r ∈ L2(0,∞). Noting that by Proposition 3.1 and the Cauchy-
Schwarz inequality we have

∫ ∞

0

|〈T ∗(s)ν, B〉|
2

ds =

∫ ∞

0

∣

∣

∣

∫

[max{−h,−s},0]

r(s + u) dν(u)
∣

∣

∣

2

ds

≤ ‖ν‖TV

∫ ∞

0

∫

[max{−h,−s},0]

|r(s + u)|2 d|ν|(u) ds

≤ ‖ν‖
2
TV ‖r‖

2
L2(0,∞) ,
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we may define Q∞ : M → C∗∗ by

〈ν, Q∞ξ〉 =

∫ ∞

0

〈ν, T ∗∗(s)B〉〈ξ, T ∗∗(s)B〉 ds, ν, ξ ∈ M.

We claim that the mapping ν 7→ 〈ν, T ∗∗(·)B〉 is weak∗-to-weakly continuous from M to
L2(0, T ). Indeed, if limα να = ν weak∗ in M , then for all f ∈ L2(0, T ) we have

[〈να, T ∗∗(·)B〉, f ]L2(0,T ) =

∫ T

0

f(t)〈T ∗(t)να, B〉 dt

=

∫ T

0

f(t)
(

∫

[max{−h,−t},0]

r(u + t) dνα(u)
)

dt

=

∫

[−h,0]

(

∫ T

−u

f(t)r(u + t) dt
)

dνα(u).

Since u 7→
∫ T

−u
f(t)r(u + t) dt belongs to C, the right hand side tends to

∫

[−h,0]

(

∫ T

−u

f(t)r(u + t) dt
)

dν(u) = [〈ν, T ∗∗(·)B〉, f ]L2(0,T )

and the claim is proved.
It follows from the claim that Q∞ξ ∈ C for all ξ ∈ M . Indeed, the claim shows that

for all ξ ∈ M , Q∞ξ is weak∗-continuous on M . As a consequence, Q∞ is the adjoint of
some operator acting from M to C, and by symmetry this operator can only be Q∞.

Let µt denote the distribution of the random variable U(t) := U(t, 0), the solution of
(3.5) with initial condition 0. Next we show that the family {µt : t ≥ h} is uniformly
tight on C. According to [1, Theorem 8.2], we have to show that for every η > 0 there
exists an a ≥ 0 such that

P (|U(t)(−h)| > a) ≤ η for every t ≥ h,(3.6)

and that for every ε > 0 and κ > 0 there exists a δ > 0 such that

P

(

sup
u,v∈[−h,0]
|u−v|≤δ

|U(t)(u) − U(t)(v)| ≥ ε
)

≤ κ(3.7)

for every t ≥ h.
The first condition (3.6) coincides with the tightness of the laws of {X(t) : t ≥ h}

in R , where X(t) := X(t, 0) is the solution of (3.3) with initial condition 0. The latter
are tight since equation (3.3) admits an invariant measure by the result of [8] mentioned
above.

Towards (3.7), for −h ≤ v ≤ u ≤ 0 and t ≥ h we have, by (3.4),

U(t)(u) − U(t)(v) =

∫ t+u

t+v

∫

[−h,0]

X(s + m) dµ(m) ds + W (t + u) − W (t + v).

The Burkholder-Davis-Gundy inequality yields, for all δ > 0,

P

(

sup
0≤ρ≤δ

|W (t) − W (t + ρ)| ≥ ε
)

≤ ε−2m
E

(

sup
0≤ρ≤δ

|W (t) − W (t + ρ)|
2m

)

≤ Cmε−2mδm
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for every m ≥ 1, with a constant Cm depending on m only. By using this inequality and
a sufficiently small partition of the interval [−h, 0] one obtains that for all ε, κ > 0 there
exists a δ > 0 such that, for all t ≥ h,

P

(

sup
u,v∈[−h,0]
|u−v|≤δ

|W (t + u) − W (t + v)| ≥ ε
)

≤ κ.(3.8)

Furthermore, Proposition 3.2 and Itô’s isometry imply that

E |X(t)|
2

=

∫ t

0

r2(t − s) ds ≤ ‖r‖
2
L2(0,∞) for t ≥ 0.

Using the Cauchy-Schwartz inequality twice we compute, for t ≥ h,

E

[

sup
u,v∈[−h,0]
|u−v|≤δ

∣

∣

∣

∫ t+v

t+u

∫

[−h,0]

X(s + m) dµ(m) ds
∣

∣

∣

2]

≤ E

[

sup
u,v∈[−h,0]
|u−v|≤δ

|u − v|

∫ t+v

t+u

∣

∣

∣

∫

[−h,0]

X(s + m) dµ(m)
∣

∣

∣

2

ds
]

≤ δ E

[

∫ t

t−h

∣

∣

∣

∫

[−h,0]

X(s + m) dµ(m)
∣

∣

∣

2

ds
]

≤ δ ‖µ‖TV

∫ t

t−h

∫

[−h,0]

E |X(s + m)|
2

d|µ|(m) ds

≤ δh ‖µ‖
2
TV ‖r‖

2
L2(0,∞) .

Applying Chebyshev’s inequality and (3.8), we obtain (3.7) and thus the tightness of
{µt : t ≥ 0}. Therefore, Q∞ is the covariance operator of a centred Gaussian Radon
measure µ∞ on C which satisfies µ∞ = limt→∞ µt weakly. A standard argument shows
that µ∞ is invariant.

Conversely, if there exists an invariant measure for (3.5), then the same holds true for
(3.3). By the result in [8], the latter is equivalent to r ∈ L2(0,∞).

Finally, the uniqueness of the invariant measure follows from the fact, proved in [8],
that the invariant measure for (3.3) is unique. �
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[8] A.A. Gushchin and U. Küchler, On stationary solutions of delay differential equations driven by
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