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It is well-known that a C0 -semigroup T = {T (t)}t>0 on a Hilbert space
is uniformly exponentially stable, i.e. ‖T (t)‖ 6 Me−ωt for some ω > 0 and all
t > 0, if and only if the resolvent R(z, A) := (z−A)−1 of its generator A exists
and is uniformly bounded in the right half plane {Re z > 0} [2]. Many different
proofs of this result exist; see [6] for further references.

For semigroups acting on a Banach space, this result is false (see for
instance [3], [6, Example A-IV.1.2(b)]), and only some weaker statements are
true. Define, for n = 0, 1, 2, ... , the growth bounds ωn(T) as the infimum of all
ω ∈ R such that

‖T (t)x‖ 6Meωt‖x‖D(An)

for all x ∈ D(An), t > 0, and some M > 1. Here, ‖x‖D(An) := ‖x‖ + ‖Anx‖
is the graph norm in D(An). It was shown by Slemrod [11] that ω2(T) < 0
for every semigroup with uniformly bounded resolvent in {Re z > 0} . In some
special cases it was known that even ω1(T) < 0 holds, viz. if the underlying
Banach space is B -convex [14] or if T is a positive semigroup on a Banach
lattice [6, Theorem C-IV.1.3]. It was an open question whether this holds for
arbitrary semigroups with uniformly bounded resolvent in {Re z > 0} . In [5] an
affirmative solution is claimed, but the proof depends on a lemma that is wrong;
cf. [8] for a counterexample. Recently, the problem was settled by Weis and
Wrobel [12]. In a nutshell, their argument is the following: first, using complex
interpolation theory, it is shown that the map α 7→ ωα(T) is convex, hence
continuous, as a map R+ → R+ . Here, the growth bounds ωα(T) are defined
in terms of the fractional powers of −A . Then this is combined with the fact [8]
that ω1+ε(T) < 0 for all ε > 0.

In this note, we prove an individual stability result for elements in D(A)
that has the Weis-Wrobel result as an immediate corollary. The proof uses a
complex inversion formula for the Laplace transform of T . The basic idea is to
deform the path of integration to a suitable piecewise-linear path and estimate
the pieces separately. Thus, our proof is elementary and uses first principles only.

Lemma 1. For all r > 0 and t > 0 ,
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Proof. Integrate z 7→ z−1eitz along the closed contour consisting of the
semicircle Γr of radius r in the upper half plane, the interval [r, R] , the semicircle
ΓR , and the interval [−R,−r] . By letting R→∞ , we find that
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in the last estimate using the obvious facts that sin(π−θ) = sin θ and sin θ > 2θ
π

for all 0 6 θ 6 π
2 . We also have
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From these two estimates, the lemma follows.

Theorem 2. Let T be a C0 -semigroup on a Banach space X , with generator
A . If, for some x0 ∈ X , the map z 7→ R(z, A)x0 admits a bounded analytic
continuation to the half plane {Re z > 0} , then for each λ ∈ %(A) there exists a
constant M such that

‖T (t)R(λ,A)x0‖ 6M(1 + t) ∀t > 0.

Proof. By the resolvent identity, it is enough to prove the theorem for one
λ ∈ %(A). Fix ω > 0 large enough such that the semigroup Tω defined
by Tω(t) := e−ωtT (t) has negative type ω0(Tω) < 0. We shall prove that
‖T (t)R(ω,A)x0‖ 6M(1 + t) for some M and all t > 0.

Put Aω := A−ω and let F0(z) denote the bounded analytic continuation
of R(z, Aω)x0 to {Re z > −ω} . Choose a constant K such that sup{‖F0(z)‖ :
Re z > −ω} 6 K‖x0‖ . Fix t > 0. By [9] (see also [6], p.116) and the resolvent
identity, for all ξ > ω0(Tω) we have

Tω(t)A−1
ω x0 =

1

2πi

∫
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ω x0 dz
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∫
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eztz−1(A−1

ω x0 + F0(z)) dz.

By Cauchy’s theorem, we may shift the path of integration to Γ = Γ1∪Γ2∪Γ3 ∪
Γ4 ∪ Γ5 , where

Γ1 = {z = iη : η 6 −r};
Γ2 = {z = ξ + iη : −δ 6 ξ 6 0, η = −r};
Γ3 = {z = ξ + iη : ξ = −δ, −r 6 η 6 r};
Γ4 = {z = ξ + iη : −δ 6 ξ 6 0, η = r};
Γ5 = {z = iη : η > r}.

Here, −ω < −δ < 0 is arbitrary and r > 0 is to be chosen later. We are going
to estimate the integrals over Γi , i = 1, ..., 5, separately.

We start with the integral over Γ1 . Since ω0(Tω) < 0, there is a constant
N such that
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By the Plancherel theorem,
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Therefore, by the Lemma and Hölder’s inequality, for all x∗ ∈ X∗ we have
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The same estimate holds for the integral over Γ5 . Also, we have

∥∥∥∥
∫

Γ2

eztz−1(A−1
ω x0 + F0(z)) dz

∥∥∥∥ 6 δ r−1(‖A−1
ω ‖+K)‖x0‖,

and the same estimate holds for the integral over Γ4 . Finally, for the integral
over Γ3 we have
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Putting everything together, we find that for all x∗ ∈ X∗ ,
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where C is a constant depending on N , K , and ‖A−1
ω ‖ . Letting δ → ω and

taking the supremum over all functionals x∗ of norm 6 1, we find that
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So far, r > 0 was arbitrary. For fixed t > 0 we now take r = e2ωt . It follows
that

‖Tω(t)A−1
ω x0‖ 6 C ′

(
t−1e−2ωt + e−ωt + e−2ωt + e−ωt(1 + 2ωt)

)
‖x0‖,

where C ′ is a constant depending only on N , K , ‖A−1
ω ‖ , and ω . Since

Tω(t)A−1
ω x0 is bounded for 0 6 t 6 1, it follows that ‖Tω(t)A−1

ω x0‖ 6 M(1 +
t)e−ωt for some M and all t > 0. By scaling back to T , we obtain the desired
result.

In the theorem no assumption whatsoever is made about the location
of the spectrum, nor on the growth of the semigroup. One should compare
this to the following result of Arendt and Batty [1]: If T is a C0 -semigroup
with generator A , and x0 ∈ X is such that z 7→ R(z, A)x0 admits an analytic
continuation to a neighbourhood of {Re z > 0} and t 7→ T (t)x0 is bounded, then
limt→∞ T (t)A−1x0 = 0. The proof is based on a Tauberian result for Laplace
transforms.

As an immediate corollary of the theorem, we recover the result of Weis
and Wrobel [12]:
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Corollary 3. Let T be a C0 -semigroup on a Banach space X . If the resolvent
of the generator of T exists and is uniformly bounded in the right half plane, then
ω1(T) < 0 .

Proof. The uniform boundedness of the resolvent implies the existence of a
δ > 0 such that the resolvent exists and is uniformly bounded in {Re z > −δ} .
In particular, for each x ∈ X , the map z 7→ R(z, A)x is uniformly bounded in
{Re z > −δ} . By Theorem 2, the exponential type of t 7→ T (t)A−1x is at most
−δ . Therefore, by the uniform boundedness theorem, ω1(T) 6 −δ .

Actually, in [12] it is proved that ωα+1(T) 6 sα(A) for all α > 0, where
ωα(T) denotes the growth bound of elements in D((Aω)α) (which is independent
of ω > ω0(T)) and sα(A) denotes the abscissa of polynomial growth of order α
of the resolvent. By [NSW, Lemma 3.3], for all α > 0 and x ∈ X we have

T (t)(−Aω)−α−1x =
1

2πi

∫

Re z=−c
ezt(−z)−αR(z, Aω)A−1

ω x dz,

where 0 < c < ω−ω0(T) is arbitrary. Using this identity, it is easy to modify the
proof of Theorem 2 to obtain the corresponding individual stability result for all
α > 0. By the uniform boundedness theorem, the inequality ωα+1(T) 6 sα(A)
then follows from this. In Hilbert space, the stronger inequalities ωα(T) 6 sα(A)
hold; see Weiss [13] (for integers α) and Weis and Wrobel [12].

We now turn to an application which says that, roughly speaking, if the
improper convergence on the imaginary axis of the Laplace transform of the orbit
of x0 is uniform with respect to iλ ∈ iR , we can estimate the growth of the
orbit of R(λ,A)x0 .

Theorem 4. Let T be a C0 -semigroup on a Banach space X , with generator
A . If, for some x0 ∈ X ,

sup
λ∈R

sup
s>0

∥∥∥∥
∫ s

0

e−iλtT (t)x0 dt

∥∥∥∥ <∞,

then for each λ ∈ %(A) there is a constant M such that

‖T (t)R(λ,A)x0‖ 6M(1 + t) ∀t > 0.

Proof. We shall prove that R(z, A)x0 admits a bounded analytic continuation
to {Re z > 0} . The proof is modelled after [7], Thm. 1.3.

Choose a constant K such that

sup
λ∈R

sup
s>0

∥∥∥∥
∫ s

0

e−iλtT (t)x0 dt

∥∥∥∥ 6 K‖x0‖.

Consider the X -valued entire functions Fs(z) =
∫ s

0
e−ztT (t)x0 dt . By assump-

tion, each Fs is bounded on the imaginary axis, say with bound K . Also, a
simple estimate shows that each Fs is bounded on vertical lines. Choose con-
stants N and ω > 0 such that ‖T (t)‖ 6 Neωt for all t > 0, and let ξ = ω + 1.
Then,

‖Fs(ξ + iη)‖ 6
∫ s

0

e−ξt‖T (t)x0‖ dt 6
∫ s

0

Ne−t‖x0‖ dt 6 N‖x0‖.

Therefore, by the Phragmen-Lindelöf theorem, each Fs is uniformly bounded in
the strip Sξ := {0 6 Re z 6 ξ} , with bound max{K,N}‖x0‖ . Moreover, for
Re z > ω we have

lim
s→∞

Fs(z) = R(z, A)x0.
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By Vitali’s theorem [4], Thm. 3.14.1, the limit lims→∞ Fs(z) exists for all z ∈ Sξ ,
the convergence being uniformly on compacta. The limit function F is analytic
in the interior of Sξ and coincides with R(z, A)x0 for ω < Re z 6 ξ . Moreover,
F is uniformly bounded in Sξ , with bound max{K,N}‖x0‖ . This proves that
R(z, A)x0 admits a bounded analytic continuation to the interior of Sξ . By
the Hille-Yosida Theorem, R(z, A)x0 is also uniformly bounded in {Re z > ξ} .
Therefore, the analytic continuation F is uniformly bounded in {Re z > 0} .

We recall from [10] (see also [6, Theorem A-IV.1.4]) that ω1(T) coincides
with the abscissa of simple convergence of the Laplace transform of T . The
following result is a uniform version of this. The proof, which is based on the
same observation as Corollary 3, is left to the reader.

Corollary 5. Let T be a C0 -semigroup on a Banach space X . If

sup
λ∈R

sup
s>0

∥∥∥∥
∫ s

0

e−iλtT (t)x dt

∥∥∥∥ <∞ ∀x ∈ X,

then ω1(T) < 0 .

It is interesting to compare this result with [7], Cor. 2.3. There, it is
shown that ω0(T) < 0 if and only if

sup
s>0

∥∥∥∥
∫ s

0

T (t)g(t) dt

∥∥∥∥ <∞ ∀g ∈ AP (R+, X),

where AP (R+, X) denotes the space of X -valued almost periodic functions on
R+ . Thus, Corollary 5 can be interpreted as saying what happens if instead of
considering all of AP (R+, X), one only considers the dense subspace spanned
by functions t 7→ e−iλt ⊗ x .

As is well-known, for positive C0 -semigroups on Banach lattices the spec-
tral bound s(A) := sup{Re z : z ∈ σ(A)} and the growth bound ω1(T) coincide
[6, Theorem C-IV.1.3]. The following theorem generalizes this to individual el-
ements. It says that, for positive x0 , the growth bound of t 7→ T (t)R(λ,A)x0

can be estimated by the local spectral bound of A at x0 .

Theorem 6. Let T be a positive C0 -semigroup on a Banach lattice X , with
generator A . If, for some 0 6 x0 ∈ X , the map z 7→ R(z, A)x0 has an analytic
continuation to {Re z > 0} , then for each λ ∈ %(A) the map t 7→ T (t)R(λ,A)x0

has exponential type less than or equal to 0 .

Proof. Let ωs(A) denote the abscissa of simple convergence of the Laplace
transform of t 7→ T (t)x0 . By the vector-valued Pringsheim-Landau theorem [3],
Thm. 2.1, ωs(A) is a singular point for the analytic function

z 7→ lim
s→∞

∫ s

0

e−ztT (t)x0 dt.

Therefore, the fact that R(z, A)x0 has an analytic extension F (z) to {Re z > 0}
implies that ωs(A) 6 0. Then it is evident that for all z0 , z1 ∈ C with
Re z1 > Re z0 > 0,

|F (z1)| =
∣∣∣∣ lim
s→∞

∫ s

0

e−z1tT (t)x0 dt

∣∣∣∣

6 lim
s→∞

∫ s

0

e−Rez1tT (t)x0 dt 6 lim
s→∞

∫ s

0

e−Rez0tT (t)x0 dt = F (Re z0).

This implies that ‖F (z)‖ 6 ‖F (Re z)‖ , so that F (z) is uniformly bounded
in each half plane {Re z > ε} . It then follows from Theorem 2 that t 7→
T (t)R(λ,A)x0 has exponential type 6 ε for each ε > 0.
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The proof shows that actually it is enough to have an analytic continu-
ation of R(z, A)x0 to a neighbourhood of (0,∞).
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Auf der Morgenstelle 10
D-72076 Tübingen
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