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0. Introduction

Let µ be a centered Gaussian measure on an infinite-dimensional, separable, real
Banach space E . For t ≥ 0 and bounded Borel functions f : E → R we define

P (t)f(x) =

∫

E

f(x+ y) dµt(y), x ∈ E, (0.1)

where µt(B) := µ(B/
√
t) for Borel sets B ⊂ E ; for t = 0 we set µ0 :=

δ0 , the Dirac measure concentrated at 0. Clearly, each P (t) is a contraction
which maps BUC(E), the Banach space of all bounded real-valued, uniformly
continuous functions on E , into itself. In fact, it is easy to prove that the family
P = {P (t)}t≥0 defines a strongly continuous semigroup of linear operators on
BUC(E). We will refer to this semigroup as the Wiener semigroup over E
associated with µ . On the other hand let W (t), t ≥ 0 be an E−valued Wiener
process, defined on a probability space (Ω,F ,P), such that the distribution
L(W (1)) of W (1) is the measure µ . Then P is the transition semigroup of
W :

P (t)f(x) = E(f(x+W (t)), x ∈ E. (0.2)

It was proved by Guiotto [12] that, if E is a Hilbert space, P is not eventually
differentiable, and Desch and Rhandi [9] that P is not even eventually norm con-
tinuous. Recall that P is eventually differentiable, respectively eventually norm
continuous, if there exists t0 ≥ 0 such that the map t 7→ P (t) is differentiable,
respectively continuous, with respect to the uniform operator topology for t > t0 .
If P is differentiable for t > t0 , then P is norm continuous for t > t0 (see, e.g.,
[16]). Since analyticity implies differentiability, Guiotto’s result implies that P
is not eventually analytic, and since compactness implies norm continuity, the
result of Desch and Rhandi shows that P also fails to be eventually compact.

The proof in [9] is based on elaborate estimates which use the fact that
the covariance operator of a Gaussian measure on a Hilbert space is a trace
class operator and that P can be approximated by ‘finite-dimensional’ heat
semigroups. This approach does not work for more general processes and if
E is a Banach space. Using a completely different method, we extend the result
of [9] to arbitrary separable real Banach spaces E by showing that

‖P (t0 + h)− P (t0)‖ = 2, ∀t0 ≥ 0 and h > 0.
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It turns out that this is only a reformulation of the following well-known result
about Gaussian measures on Banach spaces: if t 6= s , then µt ⊥ µs , see
[13, Theorem II.5.2]). Once this has been realized, the door is open to prove
discontinuity results for the more general class of Ornstein-Uhlenbeck semigroups.

The paper is organized as follows: In Section 1 we present our proof of
the Desch-Rhandi result for the Wiener semigroup on BUC(E). This case is
treated separately in order to show how the general idea works in the simplest
possible situation. In Section 2 we proceed to more general class of Ornstein-
Uhlenbeck semigroups on Hilbert spaces E = H . Before turning to discontinuity
results for the operator norm, we first establish some strong continuity results.
Then in Sections 3 we specialize to the self-adjoint commuting case and in Section
4 we present a specific application to a generalization of stochastic wave equa-
tions. In the final Section 5 we discuss some extensions to transition semigroups
corresponding to Ornstein-Uhlenbeck processes stopped on the boundary of an
open subset of H.

1. Norm discontinuity of the Wiener semigroup

In this section we present our proof of the Desch-Rhandi result for the Wiener
semigroup acting on BUC(E), where E is a separable real Banach space. We
need the following simple fact relating the total variation of a Borel measure to
its norm when considered as a bounded linear functional on the space BUC(E).

Lemma 1.1. Let ν be finite signed Borel measure on a complete separable
metric space E . Then ‖ν‖(BUC(E))∗ = var (ν) .

This follows, e.g., from [1, Section 1.1].

Theorem 1.2. Let µ be a non-degenerate centered Gaussian measure on an
infinite-dimensional separable real Banach space E and let P = {P (t)}t≥0 be
the associated Wiener semigroup defined by (0.1) on the space BUC(E) . For all
t0 ≥ 0 and h > 0 we have

‖P (t0 + h)− P (t0)‖ = 2.

Proof. Since ‖P (t)‖ ≤ 1 for all t ≥ 0, the inequality ‖P (t0+h)−P (t0)‖ ≤ 2 is
trivial. By the disjointness result for Gaussian measures cited in the introduction,
for any two t, s ≥ 0 with t 6= s the measures µt and µs are mutually singular.
Hence, var (µt − µs) = 2. For all t, s ≥ 0 we have µt ∗ µs = µt+s . Hence if
f ∈ BUC(E), then

〈P ∗(t)µs, f〉 = 〈µs, P (t)f〉 =

∫

E

∫

E

f(x+ y) dµt(y) dµs(x)

=

∫

E

f(z) d(µt ∗ µs)(z)

=

∫

E

f(z) dµt+s(z)

= 〈µt+s, f〉,

the brackets 〈·, ·〉 denoting the duality pairing between BUC(E) and its dual.
It follows that P ∗(t)µs = µt+s in (BUC(E))∗ . Then by Lemma 1.1, for any
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s ≥ 0 fixed we have

‖P (t0 + h)− P (t0)‖ = ‖P ∗(t0 + h)− P ∗(t0)‖
≥ ‖P ∗(t0 + h)µs − P ∗(t0)µs‖
= ‖µt0+h+s − µt0+s‖
= var (µt0+h+s − µt0+s) = 2.

(1.1)

In particular, P is not eventually norm continuous on BUC(E).
There exists an interesting relationship between these results and the theory
of adjoint semigroups. If T = {T (t)}t≥0 is a strongly continuous semigroup of
operators on a Banach space F , then F� is defined as the largest closed subspace
of the dual F ∗ on which the adjoint semigroup T∗ acts in a strongly continuous
way:

F� := {x∗ ∈ F ∗ : lim
h↓0
‖T ∗(h)x∗ − x∗‖ = 0}.

For more information about adjoint semigroups we refer to [14]. If F is a Banach
lattice such that F ∗ has order continuous norm, and if each operator T (t)
is positive, then F� is a projection band in F ∗ , i.e. there exists a positive
contractive projection Q of F ∗ onto F� with Qx∗ ⊥ (I −Q)x∗ for all x∗ ∈ F ∗
[15, Theorem 2.1]. Applying this fact to the semigroup P on F = BUC(E), we
obtain the following easy consequence of Theorem 1.2:

Corollary 1.3. For all t ≥ 0 we have µt ⊥ (BUC(E))� in the lattice sense.

Proof. Being an abstract L -space, the dual of F = BUC(E) has order
continuous norm and we have ‖ν1 + ν2‖ = ‖ν1‖+ ‖ν2‖ whenever ν1 ⊥ ν2 in F ∗

[17]. Hence, denoting by Q the band projection of F ∗ onto F� , it follows from
(1.1) that

2 = lim sup
h↓0

‖P ∗(h)µt − µt‖

≤ lim sup
h↓0

‖(P ∗(h)− I)Qµt‖+ lim sup
h↓0

‖(P ∗(h)− I)(I −Q)µt‖

= lim sup
h↓0

‖(P ∗(h)− I)(I −Q)µt‖

≤ 2‖(I −Q)µt‖ = 2− 2‖Qµt‖.

Therefore we must have ‖Qµt‖ = 0, i.e. µt ⊥ F� .

If T is a strongly continuous positive semigroup on a Banach lattice F and if
x∗ ⊥ F� , then the following two statements hold [15, Theorem 4.6 and Corollary
3.4]:

(i) lim sup
h↓0

‖T ∗(h)x∗ − x∗‖ ≥ 2;

(ii) If F ∗ has order continuous norm, then T ∗(h)x∗ ⊥ x∗ for almost all
h > 0.

Now assume Corollary 1.3 to be given. Then by (i) and (1.1) applied to x∗ := µt0
and the semigroup P on F = BUC(E) we recover most of Theorem 1.2, and
from (ii) it follows that µt0+h ⊥ µt0 for almost all h > 0 in the lattice sense,
hence in the measure theoretic sense by the results quoted from [1]. But this
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implies that µt0+h ⊥ µt0 for all h > 0. To see this, choose a sequence εn ↓ 0
such that µt0+h+εn ⊥ µt0 for all n . For each n , choose Borel sets Bn and Cn
such that Bn ∩ Cn = Ø and µt0+h+εn(Bn) = µt0(Cn) = 1. Then B := ∪nBn
is disjoint from C := ∩nCn , µt0(C) = 1, and by the dominated convergence
theorem,

µt0+h(B) = µ(B/
√
t0 + h) = lim

n→∞
µ(B/

√
t0 + h+ εn) = µt0+h+εn(B) = 1.

Summarizing, we see that Corollary 1.3 implies that µt ⊥ µs for any two t, s ≥ 0
with t 6= s .

Mutatis mutandis the considerations of this section apply as well to the (classical)
Ornstein-Uhlenbeck semigroup associated to a non-degenerate centered Gaussian
measure µ on E . This is the semigroup P defined by

P (t)f(x) =

∫

E

f
(
e−t/2x+

√
1− e−ty

)
dµ(y), x ∈ E,

for bounded Borel functions f . This semigroup is strongly continuous on in
invariant subspace BUC(E) ∩ C0(E), but by the above arguments it fails to be
eventually norm continuous there.

2. Ornstein-Uhlenbeck semigroups

Let H be a separable real Hilbert space equipped with the σ−field B = B(H) of
its Borel subsets, and let Q be a self-adjoint nonnegative bounded linear operator
on H . Let S = {S(t)}t≥0 be a C0 -semigroup of bounded linear operators on H
with infinitesimal generator A . For all t > 0, the operator Qt defined by

Qtx =

∫ t

0

S(s)QS∗(s)x ds, x ∈ H,

is self-adjoint and nonnegative on H . Throughout the rest of this paper we will
make the following standing

Assumption: For each t > 0, the operator Qt is trace class.

As is well-known, this implies that Qt is the covariance operator of a unique
centered Gaussian measure µt . If we want to stress that Qt is the covariance
of µt we will use the notation µt = N(0, Qt), and more generally we denote by
N(m,Qt) the Gaussian measure on H with mean m and covariance Qt .

If Q itself is trace class, then the Assumption is fulfilled. Indeed, if (en)
is an orthonormal basis in H , then by Fubini’s theorem

∞∑

n=1

[Qten, en] =

∫ t

0

∞∑

n=1

[S(s)QS∗(s)en, en] ds

≤
(

sup
0≤s≤t

‖S(s)‖2
)
· t ‖Q‖1 <∞,

where [·, ·] is the inner product of H and ‖Q‖1 is the trace class norm of Q ; we
used the fact that for any bounded T , the operator TQT ∗ is trace class whenever
Q is, with ‖TQT ∗‖1 ≤ ‖T‖ ‖Q‖1 ‖T ∗‖ = ‖T‖2 ‖Q‖1 .
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The family P = {P (t)}t≥0 of linear operators, defined on the space Bb(H) of
bounded Borel functions f on H , by

P (t)f(x) =

∫

H

f(S(t)x+ y) dµt(y), x ∈ H,

is called the Ornstein-Uhlenbeck semigroup associated with S and Q. If S(t) = I ,
t ≥ 0, then Qt = tQ and the measures µt are given by µt(B) = µ(B/

√
t).

Thus we recover the Wiener semigroup discussed in the previous section, with
µ = N(0, Q) (the Assumption implies that Qt , hence also Q , is trace class).
Similarly, if S(t) = e−t/2I , t ≥ 0, we recover the classical Ornstein-Uhlenbeck
semigroup.

The operators P (t), t ≥ 0, form the transition semigroup corresponding
to the Ornstein-Uhlenbeck process X given by the formula

X(t, x) := S(t)x+

∫ t

0

S(t− s) dWQ(s),

where WQ(t) is a Q -Wiener process on some probability space (Ω,F ,P) such
that

E [WQ(t), x][WQ(s), y] = (t ∧ s) [Qx, y], t, s ≥ 0; x, y ∈ H.
Thus, for all f ∈ Bb(H) we have

P (t)f(x) = E(f(X(t, x))), x ∈ H, t ≥ 0.

It is known that the process X(t, x) is Gaussian and Markov [7, Chapters 5 and
9]. For more details on these concepts see e.g. [7, Chapter 4].

The formula for P (t) easily implies that P maps BUC(H) into itself.
In contrast to the situation for the Wiener semigroup, however, the Ornstein-
Uhlenbeck semigroup P is generally not strongly continuous on all of BUC(H).
The closed subspace of all f ∈ BUC(H) on which P acts in a strongly continuous
way depends on the semigroup S and is denoted by BUCS(H). We show first
that the strong continuity on BUC(H) actually implies that S(t) = I for all
t ≥ 0.

Theorem 2.1. The identity BUCS(H) = BUC(H) holds if and only if
S(t) = I for all t ≥ 0.

Proof. Define the operators R(t) on BUC(H) by

R(t)f(x) := f(S(t)x), x ∈ H, t ≥ 0.

The family R = {R(t)}t≥0 is the transition semigroup of the degenerate process
X(t, x) = S(t)x , t ≥ 0, corresponding to Q = 0. First we prove the following
lemma:

Lemma 2.2. If for some t0 ≥ 0 and all f ∈ BUC(H) we have

lim
h↓0
‖R(t0 + h)f − R(t0)f‖ = 0,

then S(t0 + s) = S(t0) for all s ≥ 0 .
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Proof. Define, for each y ∈ H , the function ey by

ey(x) := ei[y,x], x ∈ H.

The real and imaginary parts of ey belong to BUC(H) and therefore,

sup
x∈H
|R(t0 + s)ey(x)− R(t0)ey(x)| → 0 as s ↓ 0.

But

sup
x∈H
|R(t0 + s)ey(x)−R(t0)ey(x)| = sup

x∈H
|ei[y,S(t0+s)x−S(t0)x] − 1|

= sup
x∈H
|ei[S∗(t0+s)y−S∗(t0)y,x] − 1|.

(2.1)

Taking x := γ(S∗(t0+s)y−S∗(t0)y), where γ ∈ R is an arbitrary fixed constant,
one obtains

sup
x∈H
|R(t0 + s)ey(x)−R(t0)ey(x)| ≥ sup

γ∈R
|eiγ‖S∗(t0+s)y−S∗(t0)y‖2 − 1| = 2

whenever ‖S∗(t0 + s)y − S∗(t0)y‖ 6= 0. Thus (2.1) implies that for all y ∈ H
there exists s0 ≥ 0 such that

S∗(t0 + s)y = S∗(t0)y, 0 ≤ s ≤ s0.

But then the semigroup property implies that S∗(t0+s)y = S∗(t0)y for all s ≥ 0,
and since this is true for all y ∈ H the lemma follows.

We now continue the proof of Theorem 2.1. It follows from the lemma that the
semigroup R is strongly continuous for t > 0 on BUC(H) if and only if A = 0.
On the other hand it is well-known, cf. [5], that a function f ∈ BUC(H) belongs
to BUCS(H) if and only if

lim
h↓0
‖R(h)f − f‖ = 0,

so the subspaces of BUC(H) of strong continuity of P and R coincide and by
Lemma 2.2 the theorem follows.

The theorem shows that there is no point of studying norm continuity of P
for t > 0 in BUC(H), except if A = 0 in which case the semigroup P is
the transition semigroup of the Wiener process discussed in Section 1. For this
reason, we will restrict our considerations to the closed subspace BUCS(H) of
BUC(H) where P is strongly continuous.

We need the following generalization of Lemma 1.1.

Lemma 2.3. If ν is a finite signed Borel measure on H , then ‖ν‖(BUCS(H))∗ =
var (ν) .

Proof. The inequality ‖ν‖(BUCS(H))∗ ≤ var (ν) is obvious. To prove the
opposite inequality we can assume, without any loss of generality, that var (ν) =
1. By Lemma 1.1, for arbitrary ε > 0 there exists f0 ∈ BUC(H) with ‖f0‖ ≤ 1
such that 〈ν, f0〉 ≥ 1− ε . For δ > 0 define

fδ(x) =
1

δ

∫ δ

0

P (s)f0(x) ds, x ∈ H.
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Then fδ ∈ BUC(H), ‖fδ‖ ≤ 1, and for all x ∈ H and t ∈ (0, δ) we have

|P (t)fδ(x)− fδ(x)| = 1

δ

∣∣∣∣∣

∫ δ+t

t

P (s)f0(x) ds−
∫ δ

0

P (s)f0(x) ds

∣∣∣∣∣ ≤
2t

δ
.

Hence ‖P (t)fδ − fδ‖ ≤ 2t/δ , which shows that fδ ∈ BUCS(H).
By inner regularity of the measure ν , the supremum of ν(K), with K

ranging over all compact subsets of H , equals 1. To prove the lemma it is
therefore enough to show that fδ tends to f0 , uniformly on compact sets, as δ
tends to 0. Define

ξ(t) =

∫ t

0

S(t− s) dWQ(s),

and note that

|fδ(x)− f0(x)| = 1

δ

∣∣∣∣∣

∫ δ

0

E
(
f0(S(s)x+ ξ(s)) − f0(x)

)
ds

∣∣∣∣∣ .

Moreover, for arbitrary γ > 0,

E|f0(S(s)x+ ξ(s)) − f0(x)| = E
(
|f0(S(s)x+ ξ(s)) − f0(x)|

∣∣χAs,γ + χAcs,γ
)
,

where

As,γ = {ω; |ξ(s, ω)| ≤ γ}, Acs,γ = {ω; |ξ(s, ω)| > γ}.

Let us fix a compact set K and note that S(s)x→ x as s ↓ 0, uniformly on K .
Taking into account that f0 is uniformly continuous, for arbitrary ε > 0 one can
find γ > 0 and s0 > 0 such that for all s ∈ (0, s0) and all x ∈ K ,

E
(
|f0(S(s)x+ ξ(s)) − f0(x)|

∣∣χAs,γ
)
< ε.

On the other hand, by Chebyshev’s inequality and [7, Theorem 5.2],

P(Acs,γ) ≤ 1

γ2
E(|ξ(s)|2) =

1

γ2

∫ s

0

Trace (S(r)QS∗(r)) dr.

It is therefore clear that P(Acs,γ) can be made small by taking s small enough.
Thus there exists s1 ∈ (0, s0) such that for all x ∈ K and for all s ∈ (0, s1):

E
(
|f0(S(s)x+ ξ(s)) − f0(x)|

∣∣χAcs,γ
)
< ε.

This proves the required uniform convergence and completes the proof of the
lemma.

The main result of the present section is the following theorem listing sufficient
conditions for the norm discontinuity of Ornstein-Uhlenbeck semigroups. Recall
that the pseudo-inverse, notation B−1 , of a bounded linear operator B from a
Hilbert space H into another Hilbert space H ′ is defined by D(B−1) = ImB
and B−1h′ is the element in {h ∈ H : Bh = h′} of minimal norm.
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Theorem 2.4. Let t0 > 0 and h > 0 be fixed. We have

‖P (t0 + h)− P (t0)‖BUCS(H) = 2

provided at least one of the following three conditions is satisfied:

(i) ImQ
1/2
t0 6= Im Q

1/2
t0+h ;

(ii) For some x ∈ H , S(t0 + h)x− S(t0)x 6∈ ImQ
1/2
t0

;

(iii) ImQ
1/2
t0+h = ImQ

1/2
t0

, but the operator
(
Q
−1/2
t0

Q
1/2
t0+h

)(
Q
−1/2
t0

Q
1/2
t0+h

)∗− I
is not Hilbert-Schmidt on ImQ

1/2
t0

.

For the proof we need the following result on Gaussian measures due to Feldman
and Hajek (cf. [7, Theorem 2.23]).

Lemma 2.5. Let µ = N(mµ, Qµ) and ν = N(mν , Qν) be Gaussian measures
on a Hilbert space H . Then either µ ⊥ ν or µ and ν are absolutely continuous
with respect to each other. The second of these possibilities happens if and only
if the following two conditions are satisfied:

(i) ImQ
1/2
µ = ImQ

1/2
ν , and the operator (Q

−1/2
µ Q

1/2
ν )(Q

−1/2
µ Q

1/2
ν )∗ − I is

Hilbert-Schmidt on ImQ
1/2
µ ;

(ii) mµ −mν ∈ ImQ
1/2
µ .

We now prove Theorem 2.4. Assume that condition 2.4 (i) holds. Then by the
Feldman-Hajek lemma the measures µt0+h = N(0, Qt0+h) and µt0 = N(0, Qt0)
are singular. But for arbitrary f ∈ BUCS(H),

P (t0 + h)f(0) = 〈µt0+h, f〉 and P (t0)f(0) = 〈µt0 , f〉.

Consequently, for arbitrary f ∈ BUCS(H) of norm not exceeding 1,

‖P (t0 + h)− P (t0)‖BUCS(H) ≥ |〈µt0+h − µt0 , f〉|.

Since the total variation of µt0+h − µt0 equals 2, the result follows by Lemma
2.3.

If 2.4 (ii) holds then measures µxt0+h = N(S(t0 + h)x,Qt0+h) and µxt0 =
N(S(t0)x,Qt0), are singular and the argument of 2.4 (i) applies.

Finally if 2.4 (iii) holds, then Lemma 2.5 (i) is violated.

Applications of the theorem are postponed to the next sections.

Let us comment on the conditions 2.4 (i), (ii), and (iii). If one assumes that

sup
t>0

∫ t

0

TraceS(s)QS∗(s) ds <∞,

then

Q∞x :=

∫ ∞

0

S(s)QS∗(s)x ds, x ∈ H, (2.2)

defines a positive, self-adjoint trace class operator Q∞ on H and therefore it
is the covariance of the centered Gaussian measure µ∞ = N(0, Q∞) on H [7,
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Theorem 11.7]. Moreover, µ∞ is an invariant measure for P . If one further
assumes the null controllability condition

ImS(t) ⊂ ImQ
1/2
t ∀t > 0, (2.3)

then it can be shown that

ImQ
1/2
t = ImQ1/2

∞ , ∀t > 0,

and that the operators
(
Q
−1/2
t Q

1/2
t+h

)(
Q
−1/2
t Q

1/2
t+h

)∗ − I are Hilbert-Schmidt [6],
[7, Theorem 11.13]. It follows that if (2.2) and (2.3) are satisfied, then none of
the conditions (i), (ii), or (iii) of Theorem 2.4 are satisfied and the theorem is
not applicable. We do not know whether in this situation P is norm continuous
for t > 0. In this connection it is instructive to recall the situation when the
space BUCS(H) is replaced by an Lp−space. It is known (cf. [2]) that under
conditions (2.2) and (2.3), for each p ∈ [1,∞) the semigroup PA has a unique
extension to a C0 -contraction semigroup on Lp(H,µ∞), and if p ∈ (1,∞) this
semigroup is compact, hence norm continuous for t > 0.

3. Self-adjoint commutative systems

As a first application of the general theorem from the previous section we will con-
sider Ornstein-Uhlenbeck processes with a self-adjoint semigroup S which com-
mutes with Q . Our result covers, for instance, the classical Ornstein-Uhlenbeck
semigroup corresponding to S(t) = e−tI , t ≥ 0.

Theorem 3.1. Suppose that S is self-adjoint and commutes with Q . For a
fixed t0 > 0 , each of the following conditions implies that

‖PA(t0 + h)− PA(t0)‖BUCS(H) = 2

for all h > 0 :

(i) The operator S(2t0) does not map ImQ
1/2
t0 into itself;

(ii) The operator S(2t0) maps ImQ
1/2
t0 into itself, but with respect to the

norm of ImQ
1/2
t0

the restriction S(2t0)|ImQ
1/2
t0

is not Hilbert-Schmidt.

Proof. First observe that S(t)Qs = QsS(t) and S(t)Q
1/2
s = Q

1/2
s S(t) for all

s > 0 and t > 0. Let us fix an arbitrary h > 0.

Step 1 - If ImQ
1/2
t0+h 6= ImQ

1/2
t0

we have ‖P (t0 + h) − P (t0)‖BUCS(H) = 2 by

Theorem 2.4 (i).

Step 2 - In the rest of the proof we assume that ImQ
1/2
t0+h = ImQ

1/2
t0

.

We claim that ImQ
1/2
h = ImQ

1/2
t0

. To start the proof of this claim, we

first recall the elementary fact [7, Proposition B1] that ImQ
1/2
s ⊂ ImQ

1/2
t if and

only if there exists a constant k > 0 such that

[Qsx, x] ≤ k[Qtx, x], ∀x ∈ H.

In particular, from the definition of the operators Qt it is clear that ImQ
1/2
s ⊂

ImQ
1/2
t whenever t ≥ s . Hence if h ∈ [t0, t0+h] the claim obviously follows from

the assumption ImQ
1/2
t0+h = ImQ

1/2
t0 . Therefore we will assume that 0 < h ≤ t0 .
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Choose a positive integer k such that kh ≥ t0 . By induction on the

identity Qt = Qh + S(h)Qt−hS(h) we have Qkh =
∑k−1
j=0 S(jh)QhS(jh). Hence

for all x ∈ H ,

[Qkhx, x] =

k−1∑

j=0

[S(jh)QhS(jh)x, x]

=
k−1∑

j=0

‖Q1/2
h S(jh)x‖2 =

k−1∑

j=0

‖S(jh)Q
1/2
h x‖2

≤M‖Q1/2
h x‖2 = M [Qhx, x],

where M :=
∑k−1
j=0 ‖S(jh)‖ . This shows that ImQ

1/2
kh ⊂ ImQ

1/2
h . But from

0 < h < kh we also have ImQ
1/2
kh ⊃ ImQ

1/2
h , and hence ImQ

1/2
kh = ImQ

1/2
h .

But then t0 ∈ [h, kh] implies that also ImQ
1/2
t0

= ImQ
1/2
h and the claim is

proved.

Step 3 - Let us assume that the operator T :=
(
Q
−1/2
t0 Q

1/2
t0+h

)(
Q
−1/2
t0 Q

1/2
t0+h

)∗− I
from Theorem 2.4 (iii) is Hilbert-Schmidt on ImQ

1/2
t0 . The theorem is proved if

we can show that this implies that S(2t0) restricts to a Hilbert-Schmidt operator

on ImQ
1/2
t0

, i.e. that neither (i) or (ii) holds.
From

Tx =
(
Q
−1/2
t0

Q
1/2
t0+h

)(
Q
−1/2
t0

Q
1/2
t0+h

)∗
x− x

= Q
−1/2
t0 Qt0+hQ

−1/2
t0 x− x

= Q
−1/2
t0 S(t0)QhS(t0)Q

−1/2
t0 x, x ∈ ImQ

1/2
t0 ,

we see that T extends to a Hilbert-Schmidt operator on ImQ
1/2
t0

if and only if
the map

T1 : Qt0x 7→ S(t0)QhS(t0)x = QhS(2t0)x, x ∈ H,

extends to a Hilbert-Schmidt operator on ImQ
1/2
t0

. In the above identities we
used the algebraic relation Qt0+h = Qt0 +S(t0)QhS(t0), which in particular im-

plies that S(t0)QhS(t0) maps H into Im (Qt0+h−Qt0) ⊂ ImQ
1/2
t0+h+ ImQ

1/2
t0 =

ImQ
1/2
t0 , showing that the vector Q

−1/2
t0 S(t0)QhS(t0)Q

−1/2
t0 x is well-defined if

x ∈ ImQ
1/2
t0

.

From Step 2 and [7, Proposition B.1] it follows that Qt0Q
−1
h : Qhy 7→

Qt0y , y ∈ H , extends to a (Banach space) isomorphism of ImQ
1/2
t0 onto itself.

Thus, T1 extends to a Hilbert-Schmidt operator on ImQ
1/2
t0

if and only if

T2 : Qt0x 7→ (Qt0Q
−1
h )T1Qt0x = Qt0S(2t0)x = S(2t0)Qt0x, x ∈ H,

extends to a Hilbert-Schmidt operator on ImQ
1/2
t0 . But since ImQt0 is dense in

ImQ
1/2
t0

, this can only happen if S(2t0) maps ImQ
1/2
t0

into itself and defines a
Hilbert-Schmidt operator on this space.
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Remark 3.2. The above proof essentially shows this: if S is self-adjoint and
commutes with Q , and if t0 > 0 and h > 0 are such that the measures µt0 and

µt0+h are equivalent, then S leaves Ht0 := ImQ
1/2
t0 invariant and the restriction

of S(2t0) to this space is Hilbert-Schmidt. In oder to understand this better,
observe the restriction S(t0)|Ht0 is self-adjoint on Ht0 , so that

S(2t0)|Ht0 =
(
S(t0)|Ht0

) (
S(t0)|Ht0

)∗
.

Thus, in some sense Theorem 3.1 is analogous to the well-known results (cf. [3])
that in the presence of an invariant measure µ∞ , one always has that (i) S

always leaves H∞ = ImQ
1/2
∞ invariant and (ii) equivalence of the measures µt0

and µ∞ implies that the operator (S(t0)|H∞) (S(t0)|H∞)
∗

is Hilbert-Schmidt on
H∞ .

4. Hyperbolic systems

Let Λ be a non-negative self-adjoint unbounded operator on a Hilbert space H .
Define

H = D(Λ1/2)⊕H
and

S(t) :=

(
cos tΛ1/2 Λ−1/2 sin tΛ

1
2

−Λ1/2 sin tΛ1/2 cos tΛ1/2

)
, t ≥ 0.

Then S = {S(t)}t≥0 extends to a C0 -group on H . If Λ = −∆ then S is the
wave semigroup.

The infinitesimal generator A of S is of the form

A =

(
0 I
−Λ 0

)

with domain D(A) = D(Λ)⊕D(Λ1/2).
Ornstein-Uhlenbeck processes with the operator A of the introduced

form are called hyperbolic systems. The first coordinate of the process satisfies a
stochastic equation which is second order in time, see e.g. [7], [8]. Since S is in
fact a C0 -group, it is easy to check (cf. [8, Theorem 9.2.1] that the corresponding
linear equation has a solution if and only if the covariance operator Q of the noise
is trace class.

Theorem 4.1. Transition semigroups corresponding to hyperbolic systems are
not eventually norm continuous in BUCS(H) .

Proof. We are going to check that S fulfills condition (ii) of Theorem 2.4 for
all t0 > 0 and h > 0. We claim that it is enough to show that the operator
S(h)− I is not compact. Indeed, if condition (ii) of Theorem 2.4 fails for some

t0 > 0 and h > 0, then Im (S(t0 + h) − S(t0)) ⊂ ImQ
1/2
t0

. By general results

on abstract Wiener spaces [13, Section 1.4], the inclusion map it0 : ImQ
1/2
t0 ⊂ H

is compact. By composition, it then follows that S(t0 + h) − S(t0) is compact
as an operator on H . But since S(t0 + h) − S(t0) = S(t0)(S(h) − I) and the
operator S(t0) is invertible, it follows that S(h)− I is compact.

In order to prove that S(h)−I is not compact we need then the following
simple fact.
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Lemma 4.2. Let (λn) ⊂ R>0 be a sequence of positive real numbers such that
limn→∞ λn = ∞ , and let I ⊂ [0, 1) be Borel subset with non-zero Lebesgue
measure. Then the set of all s > 0 for which

#{n ≥ 1 : sλn mod 1 ∈ I} =∞ (4.1)

is dense in (0,∞) .

Proof. Fix 0 < a < b <∞ ; we check the existence of an s ∈ (a, b) for which
(4.1) holds.

For a given λ > 0 define

Jλ := {s ∈ (a, b) : sλ mod 1 ∈ I}.

Denoting by bγc the integer part of a real number γ and by |J | the Lebesgue
measure of a set J , we clearly have

|Jλ| ≥
b(b− a)λc

λ
|I|.

Hence by dominated convergence and Fubini’s theorem,

∫ b

a

(
lim sup
N→∞

1

N

N∑

n=1

χI(sλn mod 1)
)
ds

≥ lim inf
N→∞

∫ b

a

( 1

N

N∑

n=1

χI (sλn mod 1)
)
ds

= lim inf
N→∞

1

N

N∑

n=1

∫ b

a

χI(sλn mod 1) ds

≥ lim inf
N→∞

1

N

N∑

n=1

b(b− a)λnc
λn

|I| = (b− a) |I|

.

It follows that the set of all s ∈ (a, b) such that lim sup
N→∞

1

N

N∑

n=1

χI(sλn mod 1) > 0

has positive measure. But in order that this limes superior should be positive
for some s we certainly need that

#{n ≥ 1 : χI(sλn mod 1) = 1} =∞,

which is the same as (4.1).

The conclusion of the theorem is the direct consequence of the next lemma:

Lemma 4.3. The set of all t > 0 such that S(t)− I is not compact is dense
in (0,∞) .

Proof. Let π(dλ) denote the spectral measure on H corresponding to Λ.
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Then for arbitrary x ∈ H we have, with z := Λ1/2x ,

∥∥∥∥S(t)

(
x
0

)
−
(
x
0

)∥∥∥∥
2

H
= ‖Λ1/2(cos tΛ1/2x− x)‖2 + ‖ sin tΛ1/2x‖2

=

∫ ∞

0

(cos t
√
λ− 1)2 〈π(dλ)z, z〉

+

∫ ∞

0

(sin t
√
λ)2 〈π(dλ)z, z〉

= 2

∫ ∞

0

(1− cos t
√
λ) 〈π(dλ)z, z〉

= 2

∫ ∞

0

(1− cos tλ) 〈π̃(dλ)z, z〉

=: ‖Btz‖2,

where π̃(dλ) is the spectral measure corresponding to Λ1/2 .

Let λn → ∞ be a strictly increasing sequence of elements in σ(Λ1/2).
For t > 0 and γ ∈ (0, 2) let

It,γ := {λ > 0 : 1− cos tλ > γ}.

Denoting λt,γ := min{λ ≥ 0 : 1− cos tλ = γ} we see that

λ ∈ It,γ if and only if
tλ

2π
mod 1 ∈

(
tλt,γ
2π

, 1− tλt,γ
2π

)
=

(
λ1,γ

2π
, 1− λ1,γ

2π

)
.

Hence by Lemma 4.2, for γ ∈ (0, 2) fixed we can always find a dense set
J ⊂ (0,∞) (depending on γ ) such that It,γ ∩ σ(Λ1/2) is an infinite set for

all t ∈ J . Fix t ∈ J and let It,γ ∩ σ(Λ1/2) = {λnj : j = 1, 2, ...} ; of course the
index set (nj) depends on γ and t . Choose closed intervals Ij such that for
each j we have λnj ∈ Ij ⊂ It,γ . These intervals are disjoint. Let πj denote the

spectral projection corresponding to Ij ∩ σ(Λ1/2) and let zj ∈ H be a norm one
vector contained in the range Hj := πjH . Since 1− cos tλ > γ for λ ∈ Ij ∪ Il it
follows that

1

2
‖Bt(zj − zl)‖2 ≥ 2γ, j 6= l.

Noting that the part of Λ1/2 in Hj is invertible, we can find xj ∈ D(Λ1/2) such

that Λ1/2xj = zj . Then ‖(xj , 0)‖H = 1 and for all j 6= l we have

∥∥∥∥S(t)

(
xj − xl

0

)
−
(
xj − xl

0

)∥∥∥∥
2

H
≥ 4γ.

This proves that S(t)− I fails to be compact in H for each t ∈ J .

The proof of the lemma shows a little more: noting that ‖zj − zl‖ =
√

2 by
orthogonality of Hj and Hl (or by replacing zj − zl by zj ) we see that

‖S(t)− I‖2H ≥ 2γ,

and since γ ∈ (0, 2) was arbitrary this gives, for all t in the dense set J ⊂ (0,∞),

‖S(t)− I‖H ≥ 2.
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Also, inspection of the proof of the lemma shows that we can quantify the dense
set of t , but this will not be needed.

We cannot expect S(t) − I to be non-compact for all t > 0: Let H = l2 and
Λen := n2en (where en is the nth unit vector) with maximal domain. Then on
H we have

S(t)

(
en
em

)
=

(
cosnt en +m−1 sinmt em
−n sinnt en + cosmt em

)
∀n,m = 1, 2, ...;

in particular,

S(2πk)

(
en
em

)
=

(
en
em

)
, ∀k ∈ N, n,m = 1, 2, ...

Hence, S(2πk)− I = 0 for all k ∈ N .

5. Norm discontinuity of the stopped semigroup

Let X be an Ornstein-Uhlenbeck process on some probability space (Ω,F ,P)
with values in H . Fix an open set V ⊂ H and denote by τx the first exit time
of V ,

τVx (ω) := inf{t ≥ 0 : X(t, x)(ω) 6∈ V }.

In order to avoid measurability problems, in this section we impose the following

Assumption: The Ornstein-Uhlenbeck process X has continuous trajectories.

This Assumption guarantees that τx is a random variable and in fact a stopping
time. It is well-known that X always has a continuous modification if Q is trace
class, and more generally if there exists a real number α > 0 such that for all
t > 0, ∫ t

0

s−α TraceS(s)QS∗(s) ds <∞;

cf. [7, Section 5.3].

The stopped transition semigroup PV associated with X and V is defined by

PV (t)f(x) = E(f(X(t, x))|τVx > t).

Clearly P V (t) is a linear contraction on Bb(V ), P V (0) = I and we have
PV (t)P V (s) = P V (t + s). Thus PV is a contraction semigroup on Bb(V );
cf. [4], [10], [11]. It is not clear however under what conditions it is a semigroup
on BUC(V ). We denote by BUCS(V ) the smallest closed subspace of Bb(V )
which is invariant under PV and contains all functions g of the form

g(x) =

∫ t

0

PV (s)f(x) ds, f ∈ BUC(V ), t > 0, x ∈ V.

We have the following generalization of Theorem 2.4.
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Theorem 5.1. Assume that one of the conditions of Theorem 2.4 is satisfied.
Then

‖P V (t0 + h)− P V (t0)‖BUCS(V ) = P(τVx > t0 + h) + P(τVx > t0).

Proof. With our definition of the space BUCS(V ), Lemma 2.3 has a straight-
forward extension to finite, signed measures ν on V with the same proof. Thus if
ν is a finite, signed Borel measure on V , then ‖ν‖(BUCS(V ))∗ = var (ν). Letting

µx,Vt (Γ) = P V (t)χΓ, Γ ∈ B(V ),

then
µx,Vt (Γ) = P(X(t, x) ∈ Γ and τVx > t).

Consequently, if the measures µxt0+h and µxt0 are singular and therefore supported

by disjoint sets, the same is true for the measures µx,Vt0+h and µx,Vt0 .
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