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0. Introduction

Let H be a separable real Hilbert space and let E be a separable real Banach space. In this
paper we set up a theory of stochastic convolution for L(H,E)−valued functions which
enables us to study existence and uniqueness of solutions to the stochastic abstract Cauchy
problem

(ACP )
dXt = AXt dt+B dWH

t (t ∈ [0, T ]),

X0 = 0 almost surely.

Here A is the generator of a C0−semigroup {S(t)}t≥0 of bounded linear operators on E,
B ∈ L(H,E) is a bounded linear operator, and {WH

t }t∈[0,T ] is a cylindrical Wiener process
with Cameron-Martin space H.

If E is a separable Hilbert space, it is well known that a weak solution of (ACP) exists
if and only if the positive self-adjoint operator operator QT ∈ L(E∗, E) defined by

QTx
∗ =

∫ T

0

S(t)BB∗S∗(t)x∗ dt (x∗ ∈ E∗)

is trace class (we do not identify E and its dual E∗ here). In this case the weak solution
is unique, and given by the Itô-type convolution integral

Xt =

∫ t

0

S(t− s)B dWH
s (t ∈ [0, T ]).

A detailed account of the theory of the problem (ACP) in Hilbert spaces E is presented in
the recent book by Da Prato and Zabczyk [DZ].

Due to the lack of a satisfactory theory of stochastic integration in Banach spaces, it
seems impossible to give a straightforward extension of this theory to the case where E
is a Banach space. For this one needs additional assumptions on E, such as 2−uniform
smoothness (equivalently, martingale type 2). This approach is worked out in [Nh], [Br1],
[Br3] and the references therein.

From these works it is well known that the solution of (ACP), if it exists, is an
E−valued Ornstein-Uhlenbeck process associated with S and B, i.e. a centred Gaussian
E−valued process {Xt}t∈[0,T ] with covariance given by

E (〈Xt, x
∗〉〈Xs, y

∗〉) =

∫ t∧s

0

[B∗S∗(t− u)x∗, B∗S∗(s− u)y∗]H du.

In certain special situations, vector-valued Ornstein-Uhlenbeck processes have been studied
by various methods by various authors; we mention Antoniadis and Carmona [AC], Millet
and Smolenski [MS] and Röckle [Rö]. However, the problem of giving necessary and
sufficient conditions in terms of S and B for the existence of such a process in the general
case has not been addressed there.
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In this paper we show that it is possible to set up a theory of stochastic convolution in
arbitrary separable real Banach spaces E. Let us briefly outline its main features. Suppose
H is a separable real Hilbert space and Φ : (0, T ]→ L(H,E) is an operator-valued function
satisfying ∫ T

0

‖Φ∗(t)x∗‖2H dt <∞, ∀x∗ ∈ E∗.

We show that the formula

〈QTx∗, y∗〉 =

∫ T

0

[Φ∗(t)x∗,Φ∗(t)y∗]H dt (x∗, y∗ ∈ E∗)

defines a positive symmetric operator QT ∈ L(E∗, E). Knowing this, we can consider
the reproducing kernel Hilbert space (RKHS) HT associated with QT ; this is a Hilbert
subspace of E. Denoting the inclusion operator HT ↪→ E by iT , we have QT = iT ◦ i∗T .
We prove the following result (Theorem 2.6 and Proposition 2.8):

Theorem 0.1. The following assertions are equivalent:

(i) There exists an E−valued centred Gaussian process {ξt}t∈[0,T ] with covariance given
by

E (〈ξt, x∗〉〈ξs, y∗〉) =

∫ t∧s

0

[Φ∗(t− u)x∗,Φ∗(s− u)y∗]H du; (0.1)

(ii) The inclusion iT : HT ↪→ E is γ−radonifying.

An E−valued centred Gaussian process with covariance given by (0.1) will be called an
Ornstein-Uhlenbeck process associated with Φ. Note that the second condition is equivalent
to QT being the covariance operator of a centred Gaussian Borel measure on E.

Our second main result (Theorem 3.3) shows that it is possible to obtain Ornstein-
Uhlenbeck processes by convolution with a cylindrical Wiener process {WH

t }t∈[0,T ]:

Theorem 0.2. Let {WH
t }t∈[0,T ] be a cylindrical Wiener process with Cameron-Martin

space H. If the inclusion iT : HT ↪→ E is γ−radonifying, then there exists a predictable
E−valued Ornstein-Uhlenbeck process {Xt}t∈[0,T ] which satisfies

〈Xt, x
∗〉 =

∫ t

0

〈Φ(t− s) dWH
s , x

∗〉 a.s. (t ∈ [0, T ], x∗ ∈ E∗).

Up to a modification, this process is unique.

This justifies the notation

Xt =

∫ t

0

Φ(t− s) dWH
s .

The weak stochastic convolution on the right hand side is defined in an obvious way (cf.
Section 3).

If A is the generator of a C0−semigroup {S(t)}t≥0 on E and B is a bounded linear
operator from H into E, we can apply these results to the operator-valued function Φ(t) =
S(t) ◦ B ∈ L(H,E). This enables us to derive necessary and sufficient conditions for the
existence of weak solutions for the problem (ACP) and study some of their properties. The
results can be summarized as follows.
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Theorem 0.3. The following assertions are equivalent:

(i) The problem (ACP) has a weak solution {Xt}t∈[0,T ] on [0, T ];
(ii) The inclusion iT : HT ↪→ E is γ−radonifying.

In this situation, the solution is unique, and given by the stochastic convolution

Xt =

∫ t

0

S(t− s)B dWH
s , t ∈ [0, T ].

The process {Xt}t∈[0,T ] has a version with almost surely square integrable trajectories. If
the semigroup generated by A is analytic, then {Xt}t∈[0,T ] has a version with continuous
trajectories.

Recalling that a positive symmetric operator on a Hilbert space E is trace class if and only
if it is the covariance of a centred Gaussian measure on E, we see that our results extend
the known existence and uniqueness results for Hilbert spaces mentioned above.

In the final section we apply our theory to the stochastic heat equation driven by a
homogenous space-time Wiener process,

∂X

∂t
(t, x) = ∆X(t, x) +

∂w

∂t
(t, x), t ∈ [0, T ],

X(0, x) = 0,

X(t, 0) = X(t, 1) = 0.

Some of the questions that led to our research were motivated by the theory of Feyn-
man path integrals and their close relationship to the theory of integrals with respect to
‘Ornstein-Uhlenbeck measures’, i.e. Gaussian measures on spaces of vector-valued func-
tions arising as image measures corresponding to the Cameron-Martin spaces of vector-
valued Gaussian processes. It is known that certain equivalent norms on the Cameron-
Martin space lead to equivalent image measures, cf. [ABB]. In [BN] we apply the results
obtained in the present paper to study equivalence of this type of Gaussian measures in
the abstract framework considered here.

1. Preliminaries

In this section we briefly recall some well known facts concerning (cylindrical) Gaussian
measures. For more details we refer to [VTC], [Schw1], [Schw2], [Kuo].

Let E be a real locally convex topological vector space, with topological dual E ′.
A subset C of E is said to be a cylindrical set if it is of the form C = {x ∈ E :
(〈x, x′1〉, . . . , 〈x, x′n〉) ∈ B} for some n ≥ 1, x′1, . . . , x

′
n ∈ E ′, and a Borel set B ⊂ R n.

The set of all cylindrical subsets of E is an algebra of sets and is denoted by C(E). A cen-
tred cylindrical Gaussian measure on E is a finitely additive set function µ on C(E), whose
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images under the maps x 7→ (〈x, x′1〉, . . . , 〈x, x′n〉) are σ−additive Gaussian measures on
R n, or equivalently, whose images under the maps x 7→ 〈x, x′〉 are σ−additive Gaussian
measures on R .

If F is another locally convex space, and if T : E → F is a continuous linear transfor-
mation, then the image T (µ) := µ ◦ T−1 of a centred cylindrical Gaussian measure on E is
a centred cylindrical Gaussian measure on F .

Let H be a real Hilbert space. By γH we denote the standard centred cylindrical
Gaussian measure on H, i.e. the centred cylindrical Gaussian measure on H whose image
under any of the maps g 7→ ([g, h1]H , . . . , [g, hn]H), with {h1, . . . , hn} orthonormal in H,
is the standard Gaussian measure on R n.

A continuous linear operator Q ∈ L(E ′, E) is called positive if 〈Qx′, x′〉 ≥ 0 for all
x′ ∈ E ′, and symmetric if 〈Qx′, y′〉 = 〈Qy′, x′〉 for all x′ ∈ E ′ and y′ ∈ E ′. To every positive
symmetric operator Q ∈ L(E ′, E) one can associate a real Hilbert space HQ in the following
way. On the range of Q one has a well-defined inner product [·, ·]H given by

[Qx′, Qy′] := 〈Qx′, y′〉 (x′, y′ ∈ E ′).

Denote by HQ the Hilbert space completion of rangeQ with respect to this inner product;
this Hilbert space is called the reproducing kernel Hilbert space (RKHS) associated with Q.
If E is quasi-complete, then the inclusion mapping from rangeQ into E has a continuous
extension to an injective linear map i : HQ → E . In this way, the pair (i,HQ) becomes a
Hilbert subspace of E . Moreover, upon identifying HQ with its dual in the natural way,
we then have the operator identity Q = i ◦ i′. In Section 2 these results will be applied to
the (quasi-complete) product space E = E [0,T ], with E a separable real Banach space.

Conversely, if (i,H) is a real Hilbert subspace of E (i.e. i is a continuous injective
linear map from some real Hilbert space H into E), then Q := i ◦ i′ ∈ L(E ′, E) is positive
and symmetric, and its RKHS equals H.

The relationship between centred cylindrical Gaussian measures and positive symmet-
ric operators in described in the following well known result [VTC, Chapter III].

Proposition 1.1. Let E be a real locally convex topological vector space.

(i) Let H be a real Hilbert space and let T ∈ L(H, E). The image cylindical measure
µ := T (γH) is a centred cylindrical Gaussian measure on E , whose Fourier transform
is given by

∫

E
exp(i〈x, x′〉) dµ(x) = exp

(
−1

2
〈(T ◦ T ′)x′, x′〉

)
(x′ ∈ E ′).

The RKHS HQ associated with the positive symmetric operator Q = T ◦T ′ ∈ L(E ′, E),
equals the range of T , which is a Hilbert space under the inner product

[Tg, Th]HQ = [Pg, Ph]H ,

with P the orthogonal projection in H onto (kerT )⊥, the orthogonal complement in
H of the kernel of T . Moreover, as a map from (kerT )⊥ onto HQ, the operator T is
an isometry.
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(ii) If E is quasi-complete and Q ∈ L(E ′, E) is positive and symmetric, and if µ is a centred
cylindrical Gaussian measure on E with Fourier transform

∫

E
exp(i〈x, x′〉) dµ(x) = exp

(
−1

2
〈Qx′, x′〉

)
(x′ ∈ E ′),

then µ = i(γH), where H is the RKHS of Q and i : H ↪→ E is the natural embedding.

Let E be a real locally convex topological vector space. A measure µ on the σ−algebra
σ(C(E)) generated by the algebra C(E) is called a (centred) Gaussian measure on E if for
all x′ ∈ E ′ the image measure 〈µ, x′〉 := µ ◦ (x′)−1 is a (centred) Gaussian Borel measure
on R . If H is a real Hilbert space, a continuous linear operator T ∈ L(H, E) is said to be
γ−radonifying if the image cylindrical measure T (γH) has a (necessarily unique) countably
additive extension to a Gaussian measure on E . Note that in general the σ−algebra σ(C(E))
is much smaller than the Borel σ−algebra of E .

The following three examples of γ−radonifying operators will be of importance:

• If µ is a centred Gaussian measure on E with RKHS H, then the inclusion map
i : H ↪→ E is γ−radonifying, and we have i(γH) = µ.
• If H and E are Hilbert spaces, then T ∈ L(H, E) is γ−radonifying if and only if T is

a Hilbert-Schmidt operator.
• If G and H are Hilbert spaces and S ∈ L(G,H) and T ∈ L(H, E) are continuous linear

operators, then T ◦ S is γ−radonifying whenever T is γ−radonifying [Bax], [Ram].

As is common, the dual of a Banach space E will be denoted by E∗ rather than E′. We will
frequently use sequential weak∗-approximation arguments in dual Banach spaces. One has
to be careful with this, because a weak∗-dense linear subspace in the dual E∗ of a Banach
space E need not be weak∗-sequentially dense, even if E is separable. A counterexample
is given in [Di]. We get around this in the following way.

Proposition 1.2. Let E be a separable real Banach space and let Y be a linear subspace
of E∗ which is both weak∗-dense and weak∗-sequentially closed. Then Y = E∗.

Proof : The closed unit ball BE∗ is weak∗-compact, hence certainly weak∗-sequentially
closed. It follows that BE∗∩Y is weak∗-sequentially closed. Because the weak∗-topology of
BE∗ is metrizable, BE∗∩Y is actually weak∗-closed. Hence by the Krein-Smulyan theorem
[DS, Theorem V.5.7], Y is weak∗-closed. Since by assumption Y is also weak∗-dense, we
infer that Y = E∗.

As a corollary we record:

Corollary 1.3. Let µ be Borel probability measure on a separable real Banach space E,
and suppose there is a weak∗-dense linear subspace Y of E∗ such that the image measures
〈µ, x∗〉 are Gaussian for all x∗ ∈ Y . Then µ is a Gaussian measure.

Proof : By Zorn’s Lemma there exists a maximal linear subspace Y ′ of E∗ with the
property that 〈µ, x∗〉 is Gaussian for all x∗ ∈ Y ′. Since obviously Y ⊂ Y ′ we see that Y ′

is weak∗-dense.
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Let Y ′′ denote the weak∗-sequential closure of Y ′. Let x∗ ∈ Y ′′ be arbitrary and
suppose that weak∗-limn→∞ x∗n = x∗ in E∗ for some sequence (x∗n) in Y ′. By the dominated
convergence theorem, for the Fourier transforms we have

lim
n→∞

〈µ, x∗n〉̂ (ξ) = lim
n→∞

∫

E

exp(iξ〈y, x∗n〉) dµ(y)

=

∫

E

exp(iξ〈y, x∗〉) dµ(y) = 〈µ, x∗〉̂ (ξ), ∀ξ ∈ R .

As is well known [Nv, Lemme 1.5], this implies that 〈µ, x∗〉 is Gaussian.
We have shown that 〈µ, x∗〉 is Gaussian for all x∗ ∈ Y ′′. By the maximality of Y ′ we

must have Y ′′ = Y ′, and therefore Y ′ is weak∗-sequentially closed. Proposition 1.2 now
finishes the proof.

2. The canonical Ornstein-Uhlenbeck process

Throughout the rest of this paper, H is a separable real Hilbert space and E is a separable
real Banach space. Suppose Φ : (0, T ]→ L(H,E) is an operator-valued function on (0, T ]
with the property that for all x∗ ∈ E∗, t 7→ Φ∗(t)x∗ is a strongly measurable H−valued
function satisfying ∫ T

0

‖Φ∗(t)x∗‖2H dt <∞.

By a standard argument, the mapping E∗ → L2((0, T ];H) given by x∗ 7→ Φ∗(·)x∗ is closed,
hence bounded by the closed graph theorem. The space of all such Φ can be made into a
normed linear space, which we denote by L2((0, T ];H,E), by defining the norm of Φ to be
the operator norm of Φ∗ regarded as an element of L(E∗, L2((0, T ];H)),

‖Φ‖2L2((0,T ];H,E) := sup
‖x∗‖≤1

(∫ T

0

‖Φ∗(t)x∗‖2H dt
)
.

For the rest of this section we fix Φ ∈ L2((0, T ];H,E).

Lemma 2.1. For all x∗ ∈ E∗ the function Φ(·)Φ∗(·)x∗ is a strongly measurable E−valued
function on (0, T ].

Proof : Fix x∗ ∈ E∗. Choose an orthonormal basis (hn) in H. Then, for all t ∈ (0, T ]
and y∗ ∈ E∗,

〈Φ(t)Φ∗(t)x∗, y∗〉 = [Φ∗(t)x∗,Φ∗(t)y∗]H =
∑

n

[Φ∗(t)x∗, hn]H [Φ∗(t)y∗, hn]H ,

which is measurable as a function of t. This shows that Φ(·)Φ∗(·)x∗ is weakly measurable.
Since by assumption E is separable, Pettis’s measurability theorem [DU, Chapter 2] implies
that this function is actually strongly measurable.
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Proposition 2.2. For all x∗ ∈ E∗ and t ∈ (0, T ] there exists a unique element Qtx
∗ ∈ E

satisfying

〈Qtx∗, y∗〉 =

∫ t

0

〈Φ(s)Φ∗(s)x∗, y∗〉 ds, ∀y∗ ∈ E∗.

The linear operators Qt from E∗ to E obtained in this way are bounded, positive and
symmetric.

Proof : Fix t ∈ (0, T ]. Define Qtx
∗ ∈ E∗∗ by

〈y∗, Qtx∗〉 :=

∫ t

0

〈Φ(s)Φ∗(s)x∗, y∗〉 ds =

∫ t

0

[Φ∗(s)x∗,Φ∗(s)y∗]H ds (y∗ ∈ E∗).

Note that this integral is finite by Hölder’s inequality and the integrability assumption on
Φ. By the boundedness of the map x∗ 7→ Φ∗(·)x∗ from E∗ into L2((0, T ];H), the resulting
linear operator Qt : E∗ → E∗∗ is bounded. We must prove that Qt is actually E−valued.

Fix x∗ ∈ E∗ arbitrary. We claim that Qtx
∗ acts weak∗−continuously on the closed

unit ball BE∗ of E∗. By the Krein-Smulyan theorem, this implies that Qtx
∗ belongs to E,

and the proof will be complete.
Assume, for a contradiction, that the claim is not true. Since E is separable, the

closed unit ball of E∗ is weak∗-sequentially compact, and we can find an ε > 0 and a
sequence (y∗n) in BE∗ that weak∗−converges to some y∗ ∈ BE∗ such that

|〈y∗n, Qtx∗〉 − 〈y∗, Qtx∗〉| ≥ ε (n ≥ 0). (2.1)

For each s, the adjoint operator Φ∗(s) is weak∗−continuous from E∗ into H, and hence
weak∗−to−weakly continuous. Therefore, limn Φ∗(s)y∗n = Φ∗(s)y∗ weakly in H for all
s ∈ (0, T ], and

lim
n→∞

〈Φ(s)Φ∗(s)x∗, y∗n〉 = lim
n→∞

[Φ∗(s)x∗,Φ∗(s)y∗n]H

= [Φ∗(s)x∗,Φ∗(s)y∗]H
= 〈Φ(s)Φ∗(s)x∗, y∗〉.

(2.2)

The boundedness of (y∗n) in E∗ implies that the sequence of functions (Φ∗(·)y∗n) is bounded
in L2((0, t];H). Since L2((0, t];H) is reflexive, upon passing to a subsequence we may
assume that (Φ∗(·)y∗n) is weakly convergent in L2((0, t];H) to some limit function f . As
Φ∗(·)x∗ ∈ L2((0, t];H), we then have

lim
n→∞

∫ t

0

〈Φ(s)Φ∗(s)x∗, y∗n〉 ds =

∫ t

0

[Φ∗(s)x∗, f(s)]H ds. (2.3)

The weak convergence Φ∗(·)y∗n → f implies further that there exist convex combinations

z∗n =

Kn∑

k=n

λk,ny
∗
k
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such that Φ∗(·)z∗n → f strongly in L2((0, t], H). Passing, if necessary, to a further subse-
quence of (z∗n), we even have Φ∗(σ)z∗n → f(σ) strongly in H for almost all σ ∈ (0, t]. For
any σ with this property,

lim
n→∞

〈Φ(σ)Φ∗(σ)x∗, z∗n〉 = [Φ∗(σ)x∗, f(σ)]H. (2.4)

On the other hand, because we take z∗n in the convex hull of {y∗k : k ≥ n}, by (2.2) we
have

lim
n→∞

〈Φ(s)Φ∗(s)x∗, z∗n〉 = 〈Φ(s)Φ∗(s)x∗, y∗〉

for all s ∈ (0, t]. From this and (2.4) it follows that

[Φ∗(σ)x∗, f(σ)]H = 〈Φ(σ)Φ∗(σ)x∗, y∗〉

for almost all σ ∈ (0, t]. Combining this with (2.3) we obtain

lim
n→∞

〈y∗n, Qtx∗〉 = lim
n→∞

∫ t

0

〈Φ(σ)Φ∗(σ)x∗, y∗n〉 dσ

=

∫ t

0

[Φ∗(σ)x∗, f(σ)]H dσ

=

∫ t

0

〈Φ(σ)Φ∗(σ)x∗, y∗〉 dσ

= 〈y∗, Qtx∗〉.

But this contradicts (2.1).

This result shows that for all t ∈ (0, T ] we have a well defined bounded linear operator
Qt ∈ L(E∗, E), which can be represented as a Pettis integral by

Qtx
∗ =

∫ t

0

Φ(s)Φ∗(s)x∗ ds (x∗ ∈ E∗).

Clearly Qt is positive and symmetric; by (it, Ht) we denote its RKHS (cf. Section 1 for
the definition). If 0 < s ≤ t ≤ T , then for all x∗ ∈ E∗ we have ‖Qsx∗‖Hs ≤ ‖Qtx∗‖Ht ,
which implies that there is a natural inclusion Hs ↪→ Ht (cf. [Ne1], where it is shown that
in this inclusion is in fact a contraction).

Just as in Lemma 2.1 one proves:

Lemma 2.3. For all t ∈ (0, T ] and x∗ ∈ E∗ the function s 7→ Φ(t − s)Φ∗(s)x∗ is a
strongly measurable E−valued function on (0, t].

For each t ∈ (0, T ] we let Ht = HΦ
t denote the closure in L2((0, T ];H) of its linear subspace

{χ(0,t]Φ
∗(·)x∗ : x∗ ∈ E∗}.
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Lemma 2.4. For each t ∈ (0, T ] there exists a unique bounded linear operator IΦ,t :
Ht → Ht which satisfies

[IΦ,t(χ(0,t]Φ
∗(·)x∗), i∗t y∗]Ht =

∫ t

0

〈Φ(t− s)Φ∗(s)x∗, y∗〉 ds, ∀x∗, y∗ ∈ E∗.

Proof : By the Cauchy-Schwartz inequality and the identity

‖i∗t y∗‖Ht = ‖χ(0,t]Φ
∗(·)y∗‖L2((0,t];H)

we have

∣∣∣
∫ t

0

〈Φ(t− s)Φ∗(s)x∗, y∗〉 ds
∣∣∣ =

∣∣∣
∫ t

0

[Φ∗(s)x∗,Φ∗(t− s)y∗]H ds
∣∣∣

≤ ‖χ(0,t]Φ
∗(·)x∗‖L2((0,T ];H) · ‖χ(0,t]Φ

∗(·)y∗‖L2((0,T ];H)

= ‖χ(0,t]Φ
∗(·)x∗‖Ht · ‖i∗t y∗‖Ht .

It follows that the map

i∗t y
∗ 7→

∫ t

0

〈Φ(t− s)Φ∗(s)x∗, y∗〉 ds

defines a bounded linear functional on Ht of norm ≤ ‖χ(0,t](·)Φ∗(·)x∗‖Ht . By the Riesz
representation theorem, this functional can be identified with an element of Ht; we will
denote it by IΦ,t(χ(0,t]Φ

∗(·)x∗). In this way we obtain a bounded linear operator IΦ,t of
norm ≤ 1 from the linear span of {χ(0,t]Φ

∗(·)x∗ : x∗ ∈ E∗} into Ht. Since this span is
dense in Ht, this proves the result.

From the identity

〈(it ◦ IΦ,t)(χ(0,t]Φ
∗(·)x∗), y∗〉 = [IΦ,t(χ(0,t]Φ

∗(·)x∗), i∗t y∗]Ht

=

∫ t

0

〈Φ(t− s)
(
χ(0,t]Φ

∗(·)x∗
)

(s), y∗〉 ds

and a continuity argument we see that it ◦ IΦ,t can be represented as a Pettis integral by

(it ◦ IΦ,t)g =

∫ t

0

Φ(t− s)g(s) ds (g ∈ Ht).

Noting that f 7→ χ(0,t]f defines a contraction from HT onto Ht, we can define a continuous

linear operator IΦ : HT → E[0,T ] by

(IΦf)(t) :=

{
0, t = 0
(it ◦ IΦ,t)(χ(0,t]f), t ∈ (0, T ]

(f ∈ HT ).

Theorem 2.5. If the embedding iT : HT ↪→ E is γ−radonifying, then the operator
IΦ : HT → E[0,T ] is γ−radonifying.
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Proof : We noted earlier that for each 0 < t ≤ T there is a natural inclusion it,T :
Ht ↪→ HT . Composing this with the inclusion iT : HT ↪→ E we obtain a factorization
it = iT ◦it,T . Since iT is γ−radonifying by assumption, it follows that each of the inclusions
it is γ−radonifying.

Let ν = νΦ := IΦ(γHT ) denote the image cylindrical measure on E [0,T ] under IΦ
of the standard cylindrical Gaussian measure γHT of HT . Let δt : E[0,T ] → E denote
the point evaluation at t, and let νt := δt(ν) be the corresponding image cylindrical
measure on E. By Proposition 1.1 the covariance operator Rt ∈ L(E∗, E) of νt is given by
Rt = δt ◦ IΦ ◦ I ′Φ ◦ δ′t. For y∗ ∈ E∗ and f = Φ∗(·)x∗ ∈ HT we have

[(I ′Φ ◦ δ′t)y∗, f ]HT = 〈(δt ◦ IΦ)f, y∗〉 =

∫ t

0

〈Φ(t− s)Φ∗(s)x∗, y∗〉 ds = [χ(0,t]Φ
∗(t− ·)y∗, f ]HT .

Therefore,

(I ′Φ ◦ δ′t)y∗ = χ(0,t]Φ
∗(t− ·)y∗ (2.5)

and for all x∗, y∗ ∈ E∗ we obtain

〈Rtx∗, y∗〉 = [(I ′Φ ◦ δ′t)x∗, (I ′Φ ◦ δ′t)y∗]HT
= [χ(0,t]Φ

∗(t− ·)x∗, χ(0,t]Φ
∗(t− ·)y∗]HT

=

∫ t

0

〈Φ(s)Φ∗(s)x∗, y∗〉 ds

= 〈Qtx∗, y∗〉.

But Qt is the covariance operator of the Gaussian Borel measure µt := it(γHt), and it
thus follows that νt = µt as cylindrical measures on E. We conclude that νt extends to a
centred Gaussian Borel measure on E.

Now suppose 0 ≤ t1 < ... < tn ≤ T are fixed and consider the canonical projection
δ{t1,...,tn} : E[0,T ] → En, f 7→ (f(t1), ...., f(tn)). Let ν{t1,...,tn} := δ{t1,...,tn}(ν). By a
result of Dudley, Feldman and Le Cam [DFL, Lemma 5], the fact that each νtk extends
to a centred Gaussian Borel measure on E implies that ν{t1,...,tn} extends to a centred
Gaussian Borel measure on En. By the Kolmogorov consistency theorem the projective
limit of these measures exists and defines a probability measure ν̃ on the product σ−algebra
B(E[0,T ]) of E[0,T ]. But since this measure is completely determined by its finite marginals
ν{t1,...,tn} it follows that ν̃ = ν. This proves that ν extends to a Gaussian measure on

(E[0,T ],B(E[0,T ])).

Suppose the embedding iT : HT ↪→ E is γ−radonifying and let νΦ := IΦ(γHT ). By
Theorem 2.5, this is a Gaussian measure on (E [0,T ],B(E[0,T ])). On the resulting probability
space (Ω,F ,P) = (E[0,T ],B(E[0,T ]), νΦ) we consider the canonical process ξ = {ξt}t∈[0,T ]

defined by point evaluation:

ξt(ω) := ω(t), t ∈ [0, T ].

11



Theorem 2.6. Suppose the embedding iT : HT ↪→ E is γ−radonifying. The canonical
process {ξt}t∈[0,T ] is an E−valued Gaussian process with covariance

E (〈ξt, x∗〉〈ξs, y∗〉) =

∫ t∧s

0

[Φ∗(t− u)x∗,Φ∗(s− u)y∗]H du.

Proof : We compute, using (2.5) and Proposition 1.1,

E (〈ξt, x∗〉〈ξs, y∗〉) = [I ′Φ(x∗ ⊗ δt), I ′Φ(y∗ ⊗ δs)]HT
= [(I ′Φ ◦ δ′t)x∗, (I ′Φ ◦ δ′s)y∗]HT

=

∫ t∧s

0

[Φ∗(t− u)x∗,Φ∗(s− u)y∗]H du.

Definition 2.7. An E−valued stochastic process {Xt}t∈[0,T ] will be called an Ornstein-
Uhlenbeck process associated with the operator-valued function Φ ∈ L2((0, T ];H,E) if it is
centred Gaussian with covariance given by

E (〈Xt, x
∗〉〈Xs, y

∗〉) =

∫ t∧s

0

[Φ∗(t− u)x∗,Φ∗(s− u)y∗]H du.

The canonical process {ξt}t∈[0,T ] of Theorem 2.6 will be called the canonical Ornstein-
Uhlenbeck process associated with Φ.

We close this section with the following converse of Theorem 2.6:

Proposition 2.8. Suppose {Xt}t∈[0,T ] is an Ornstein-Uhlenbeck process with respect to
a function Φ ∈ L2((0, T ];H,E). Then the inclusion mapping iT : HT ↪→ E is γ−radonify-
ing.

Proof : Let µT denote the distribution of the E−valued random variable XT . Then µT
is a centred Gaussian Borel measure on E, whose covariance operator RT ∈ L(E∗, E)
satisfies

〈RTx∗, x∗〉 = E (〈XT , x
∗〉2) =

∫ T

0

[Φ∗(T − u)x∗,Φ∗(T − u)x∗]H du = 〈QTx∗, x∗〉.

This implies that QT = RT , from which we infer that QT is the covariance operator of µT .
On the other hand, QT = iT ◦ i∗T is the covariance operator of image cylindical measure
iT (γHT ). Since a cylindical measure is uniquely determined by its covariance operator,
it follows that iT (γHT ) = µT as cylindical measures. This implies that iT (γHT ) has a
σ−additive extension to a Borel measure on E, and thus iT is γ−radonifying.
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3. Stochastic convolution

As before we let E be a separable real Banach space and H a separable real Hilbert space.

In this section we shall investigate under which conditions it is possible to define a
stochastic convolution of an operator-valued function Φ : (0, T ]→ L(H,E) with respect to
a cylindrical Wiener process {WH

t }t∈[0,T ] with Cameron-Martin space H. We start with
a definition.

Definition 3.1. Let (Ω,F , {Ft}t∈[0,T ],P) be a filtered probability space. A cylindrical
Wiener process with Cameron-Martin space H is a family {WH

t }t∈[0,T ] of bounded linear
operators from H into L2(P) with the following properties:

(i) For all h ∈ H, {WH
t h}t∈[0,T ] is a real-valued Brownian motion adapted to {Ft}t∈[0,T ];

(ii) For all t, s ∈ [0, T ] and h, g ∈ H we have

E (WH
t h ·WH

s g) = (t ∧ s)[h, g]H.

Instead of WH
t h we will usually write [WH

t , h].

Consider an operator-valued function Φ ∈ L2((0, T ];H,E) (we recall that this space has
been defined at the beginning of Section 2) and let {WH

t }t∈[0,T ] be a cylindrical Wiener
process with Cameron-Martin space H. We briefly outline how to define, for all x∗ ∈ E∗,
a stochastic Itô type integral ∫ T

0

〈Φ(s) dWH
s , x

∗〉.

If Φ(s) = χ(t0,t1](s)U for some fixed U ∈ L(H,E), we put

∫ T

0

〈Φ(s) dWH
s , x

∗〉 := [WH
t1 , U

∗x∗]− [WH
t0 , U

∗x∗].

Extending this definition by linearity, we obtain a stochastic integral for L(H,E)−valued
step functions. For such a step function Φ it is straightforward to verify that

E





(∫ T

0

〈Φ(s) dWH
s , x

∗〉
)2


 = ‖Φ∗(·)x∗‖2L2((0,T ];H). (3.1)

The construction is completed by the following observation:

Lemma 3.2. For each Φ ∈ L2((0, T ];H,E) and x∗ ∈ E∗ there exists a sequence of step
functions (Φn) in L2((0, T ];H,E) such that

lim
n→∞

‖Φ∗(·)x∗ − Φ∗n(·)x∗‖L2((0,T ];H) = 0.
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Proof : Let H ′ be the closed linear subspace in H generated by the set {Φ∗(t)x∗ : t ∈
(0, T ]}. Choose a sequence (φn) in L2((0, T ];H ′) consisting of step functions of the form

φn(·) =

Nn∑

j=1

χ(tn,j ,tn,j+1](·)⊗ h′n,j

such that limn→∞ φn(·) = Φ∗(·)x∗ almost surely and in L2((0, T ];H ′). There is no loss
in generality to assume that each h′n,j is in the linear span of {Φ∗(t)x∗ : t ∈ (0, T ]}, say

h′n,j =
∑Nn,j
k=1 Φ∗(tn,j,k)x∗. Defining Un,j :=

∑Nn,j
k=1 Φ(tn,j,k), and

Φn(·) =

Nn∑

j=1

χ(tn,j ,tn,j+1](·)⊗ Un,j ,

we have Φ∗n(·)x∗ = φn(·) and the lemma follows.

For all t ∈ (0, T ] and Φ ∈ L2((0, T ];H,E) we have χ(0,t]Φ ∈ L2((0, T ];H,E). This
allows us to define

∫ t

0

〈Φ(s) dWH
s , x

∗〉 :=

∫ T

0

〈χ(0,t](s)Φ(s) dWH
s , x

∗〉.

For the rest of this section we fix Φ ∈ L2((0, T ];H,E) and a cylindrical Wiener process
{WH

t }t∈[0,T ] with Cameron-Martin space H. As before we let

QTx
∗ =

∫ T

0

Φ(s)Φ∗(s)x∗ ds

and denote by HT the RKHS associated with QT ; for the natural embedding map iT :
HT ↪→ E we then have QT = iT ◦ i∗T .

Theorem 3.3. If the inclusion iT : HT ↪→ E is γ−radonifying, then there exists a
predictable E−valued process {Xt}t∈[0,T ], adapted to the filtration {Ft}t∈[0,T ], such that
for all x∗ ∈ E∗ and t ∈ [0, T ] we have

〈Xt, x
∗〉 =

∫ t

0

〈Φ(t− s) dWH
s , x

∗〉 a.s. (3.2)

Up to a modification this process is unique. For all x∗, y∗ ∈ E∗ and 0 ≤ s, t ≤ T we have

E (〈Xt, x
∗〉〈Xs, y

∗〉) =

∫ t∧s

0

[Φ∗(t− u)x∗,Φ∗(s− u)y∗]H du, (3.3)

i.e., the process {Xt}t∈[0,T ] is an Ornstein-Uhlenbeck process associated with Φ.
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Proof : Uniquess up to a modification is obvious from the Hahn-Banach theorem and the
separability of E.

Let j : E ↪→ Ẽ be a continuous dense embedding of E into a separable real Hilbert
space Ẽ. As is well known, such a pair (j, Ẽ) always exists (for instance, let (x∗n) be
a weak∗-dense sequence in the dual unit ball BE∗ , let (λn) be a summable sequence of
strictly positive real numbers and define Ẽ to be the completion of E with respect to the
inner product [x, y]Ẽ :=

∑∞
n=1 λn〈x, x∗n〉〈y, x∗n〉; cf. [Kuo, p. 154]).

For t ∈ (0, T ] define Φ̃(t) ∈ L(H, Ẽ) by

Φ̃(t) := j ◦ Φ(t).

It is immediate that Φ̃ ∈ L2((0, T ];H, Ẽ). For t ∈ (0, T ] let Q̃t ∈ L(Ẽ∗, Ẽ) be defined by

Q̃tx̃
∗ :=

∫ t

0

Φ̃(s)Φ̃∗(s)x̃∗ ds.

We have Q̃t = j ◦Qt ◦ j∗. Let (̃iT , H̃T ) denote the RKHS associated with Q̃T . The map
kT : Q̃T x̃

∗ 7→ QTx
∗ extends to an isometry from H̃T onto HT , and we have ĩT = j ◦iT ◦kT .

It follows that ĩT is γ−radonifying (cf. Section 1).
The space Ẽ being a Hilbert space, we may define an Ẽ−valued process {X̃t}t∈[0,T ]

by the Hilbert space-valued stochastic Itô convolution integral

X̃t =

∫ t

0

Φ̃(t− s) dWH
s

(cf. [DZ, Chapter 4]); this process is predictable and adapted to the filtration {Ft}t∈[0,T ].

We denote by µ̃t the distribution of the Ẽ−valued random variable X̃t. This is a
centred Gaussian Borel measure on Ẽ. By the theory of stochastic convolutions in Hilbert
spaces, {X̃t}t∈[0,T ] is an Ornstein-Uhlenbeck process associated with the function Φ̃; in

particular the covariance operator of µ̃t equals Q̃t.
By a theorem of Kuratowski [VTC, Chapter 1], jE is a Borel subset of Ẽ. We are

going to show that µ̃t(jE) = 1.
Since by assumption the inclusion map iT : HT ↪→ E is γ−radonifying, the remark

preceding Lemma 2.3 and the results mentioned in Section 1 show that for each t ∈ (0, T ]
the inclusion map it : Ht ↪→ E is γ−radonifying as well. Let νt := it(γHt) and let
ν̃t := j(νt); these are centred Gaussian Borel measures on E and Ẽ, respectively. The
covariance operator R̃t of ν̃t is given by

〈R̃tx̃∗, x̃∗〉 =

∫ t

0

[Φ̃∗(s)x̃∗, Φ̃∗(s)x̃∗]H ds = 〈Q̃tx̃∗, x̃∗〉.

It follows that R̃t = Q̃t. Since a centred Gaussian Borel measure is completely determined
by its covariance, we conclude that ν̃t = µ̃t. But from ν̃t = j(νt) it follows that ν̃t(jE) =
νt(E) = 1. This proves that µ̃t(jE) = 1.
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As a consequence we have X̃t ∈ jE almost surely. This allows us to define an
Ft−measurable E−valued random variable Xt by insisting that jXt = X̃t. The resulting
adapted process {Xt}t∈[0,T ] is predictable.

The distribution µt of Xt is a probability Borel measure on E which satisfies j(µt) =
µ̃t. For all x∗ ∈ E∗ of the form x∗ = j∗x̃∗ for some x̃∗ ∈ Ẽ∗ we have 〈µt, x∗〉 = 〈µ̃t, x̃∗〉,
the right hand side being a centred Gaussian Borel measure on R . Because the subspace
j∗Ẽ∗ is weak∗-dense in E∗, the measure µt is centred Gaussian by Corollary 1.3.

Next we prove (3.2). First note that for all x∗ = j∗x̃∗ with x̃∗ ∈ Ẽ∗ we have

〈Xt, x
∗〉 = 〈X̃t, x̃

∗〉 =

∫ t

0

〈Φ̃(t− s) dWH
s , x̃

∗〉 =

∫ t

0

〈Φ(t− s) dWH
s , x

∗〉.

Therefore the subspace Y consisting of all x∗ ∈ E∗ for which (3.2) holds is weak∗-dense.
In order to prove that Y = E∗, by Proposition 1.2 it suffices to check that Y is weak∗-
sequentially closed.

Let (x∗n) be a sequence in Y converging to some x∗ ∈ E∗ in the weak∗-topology. We
will show that x∗ ∈ Y .

First we note that for all t ∈ (0, T ] we have limn→∞ Φ∗(t)x∗n = Φ∗(t)x∗ weakly in
H. The sequence (x∗n) being bounded, the sequence (Φ∗(·)x∗n) is bounded in L2((0, T ];H).
Upon passing to a weakly convergent subsequence we may assume that limn→∞ Φ∗(·)x∗n =
f weakly for some f ∈ L2((0, T ];H). By a convex combination argument as in the proof
of Proposition 2.2, we find a sequence (y∗n) in Y such that limn→∞ y∗n = x∗ weak∗ and
limn→∞ Φ∗(·)y∗n = f strongly in L2((0, T ];H). Upon passing to a pointwise a.e. convergent
subsequence we conclude that

f = lim
n→∞

Φ∗(·)y∗n = Φ∗(·)x∗ a.e.

Next we note that

〈Xt, x
∗〉 = lim

n→∞
〈Xt, y

∗
n〉 = lim

n→∞

∫ t

0

〈Φ(t− s) dWH
s , y

∗
n〉 a.e. (3.4)

But by (3.1), which in view of Lemma 3.2 extends to arbitrary Φ ∈ L2((0, T ];H,E),

lim
n→∞

E
(∫ t

0

〈Φ(t− s) dWH
s , y

∗
n − x∗〉

)2

= lim
n→∞

‖Φ∗(·)(y∗n − x∗)‖2L2((0,T ];H) = 0.

Therefore,

lim
n→∞

∫ t

0

〈Φ(t− s) dWH
s , y

∗
n〉 =

∫ t

0

〈Φ(t− s) dWH
s , x

∗〉 in L2(P). (3.5)

Upon passing once more to pointwise a.e. convergent subsequence if necessary, we conclude
that (3.2) follows from (3.4) and (3.5).
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It remains to show that (3.3) holds, i.e. that {Xt}t∈[0,T ] is an Ornstein-Uhlenbeck

process associated with Φ. Let j∗ỹ∗ ∈ j∗Ẽ∗ be fixed and let Y denote the set of all x∗ ∈ E∗
such that

E (〈Xt, x
∗〉〈Xs, j

∗ỹ∗〉) =

∫ t∧s

0

[Φ∗(t− u)x∗,Φ∗(s− u)j∗ỹ∗]H du (3.6)

holds for all t, s ∈ [0, T ]. Since {X̃t}t∈[0,T ] is an Ornstein-Uhlenbeck process with values

in Ẽ we have j∗Ẽ∗ ⊂ Y and therefore Y is a weak∗-dense linear subspace of E∗. By the
dominated convergence theorem it is also weak∗-sequentially closed. Hence by Proposition
1.2, Y = E∗.

Let Z denote the set of all y∗ ∈ E∗ such that (3.3) holds for all x∗ ∈ E∗ and all
t, s ∈ [0, T ]. By what we already know, j∗Ẽ∗ ⊂ Z and therefore Z is a weak∗-dense
linear subspace of E∗. Once more the dominated convergence theorem shows that Z is
also weak∗-sequentially closed, and therefore Z = E∗. This proves the {Xt}t≥0 is an
Ornstein-Uhlenbeck process with covariance given by (3.3).

Remark. By the Kolmogorov scheme, to the process {Xt}t∈[0,T ] one can associate a canon-

ical process on the probability space (E [0,T ], ν), where ν is the measure obtained as the
projective limit of the finite-dimensional distributions of {Xt}t∈[0,T ]. In this way we just
obtain the canonical process {ξt}t∈[0,T ] of Section 2.

Definition 3.4. The predictable E−valued process {Xt}t∈[0,T ] constructed in Theorem
3.3 will be called the stochastic convolution of Φ with respect to {WH

t }t∈[0,T ]; notation:

Xt =

∫ t

0

Φ(t− s) dWH
s .

4. Path regularity

In this section we discuss path regularity of the stochastic convolution process

Xt =

∫ t

0

Φ(t− s) dWH
s

under the assumptions that {WH
t }t∈[0,T ] is a cylindrical Wiener process with Cameron-

Martin space H and Φ ∈ L2((0, T ];H,E) is such that the embedding iT : HT ↪→ E is
γ−radonifying.

We begin with some preparations. As before µt denotes the distribution of Xt; this
is the centred Gaussian Borel measure on E whose covarariance operator is Qt. The
following inequality is a direct consequence of [Nh, Lemma 28] and the observation that
‖Qtx∗‖Ht ≤ ‖QTx∗‖HT whenever 0 < t ≤ T :
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Proposition 4.1. If 0 < t ≤ T , then
∫

E

‖x‖2 dµt(x) ≤
∫

E

‖x‖2 dµT (x).

Proposition 4.2. The process {Xt}t∈[0,T ] has a strongly measurable modification such
that for almost all ω ∈ Ω, ∫ T

0

‖Xt(ω)‖2 dt <∞.

Proof : The process {Xt}t∈[0,T ] has a predictable, and therefore a progressively measur-
able, modification. Hence by Fubini’s theorem, the paths of this modification are strongly
measurable almost surely, and by Proposition 4.1 we have for almost all ω ∈ Ω,

∫

Ω

∫ T

0

‖Xt(ω)‖2 dt dP(ω) =

∫ T

0

∫

Ω

‖Xt(ω)‖2 dP(ω) dt

=

∫ T

0

∫

E

‖x‖2 dµt(x) dt

≤ T
∫

E

‖x‖2 dµT (x) <∞.

This shows that the non-negative extended-real valued function ω 7→
∫ T

0
‖Xt(ω)‖2 dt is

integrable, and therefore almost surely finitely-valued.

It is well-known that if E is a Hilbert space, the stochastic convolution processes
{Xt}t≥0 is mean square continuous (cf. [DZ, Theorem 5.2]). In the Banach space case,
{Xt}t∈[0,T ] is mean square continuous as well; for the proof we refer to [BGN].

We shall now give a sufficient condition for the existence of a continuous version for
{Xt}t∈[0,T ].

Proposition 4.3. Assume there exist θ ∈ (0, 1] and L ≥ 0 such that for all 0 ≤ s < t ≤ T
and x∗ ∈ E∗ we have:

(i)

∫ t−s

0

‖Φ∗(u)x∗‖2H du ≤ L(t− s)θ‖x∗‖2;

(ii)

∫ s

0

‖Φ∗(t− s+ u)x∗ − Φ∗(u)x∗‖2H du ≤ L(t− s)θ‖x∗‖2.

Then the process {Xt}t∈[0,T ] has a continuous modification.

Proof : Let x∗ ∈ E∗ and r > 0 be arbitrary and fixed. Let {ξt}t∈[0,T ] denote the canonical
Ornstein-Uhlenbeck process associated with Φ. Observing that Xt −Xs and ξt − ξs have
the same distribution, we have

E |〈Xt −Xs, x
∗〉|r =

∫

Ω

|〈Xt(ω)−Xs(ω), x∗〉|r dP(ω)

=

∫

R
|τ |r d〈(x∗ ⊗ (δt − δs)), ν〉(τ)

=
1√
2π

∫

R
‖I ′Φ(x∗ ⊗ (δt − δs))‖rHT |τ |r exp

(
−τ2/2

)
dτ.
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Recalling that I ′Φ(x∗ ⊗ δt) = χ(0,t] Φ∗(t− ·)x∗, for t ≥ s we have

‖I ′Φ(x∗ ⊗ (δt − δs))‖2HT

=

∫ s

0

‖Φ∗(t− u)x∗ − Φ∗(s− u)x∗‖2H du+

∫ t

s

‖Φ∗(t− u)x∗‖2H du.

Hence by (i) and (ii),

‖I ′Φ(x∗ ⊗ (δt − δs))‖2HT ≤ 2L|t− s|θ‖x∗‖2

for all t, s ∈ [0, T ]. It follows that

E |〈Xt −Xs, x
∗〉|r ≤M |t− s|rθ/2‖x∗‖r (4.1)

for some M ≥ 0 and all t, s ∈ [0, T ]. In particular,

E |〈Xt −Xs, x
∗〉|2 ≤M |t− s|θ

for all t, s ∈ [0, T ] and x∗ ∈ E∗ with ‖x∗‖ ≤ 1.
To finish the proof we proceed as in [MS, Proposition 3.1] and check that the assump-

tions of [Ca, Proposition 5] are satisfied. The existence of a continuous modification then
follows. For the convenience of the reader we give the details.

First we consider the Gaussian process XT = {〈XT , x
∗〉}x∗∈U indexed by the closed

unit ball U of E∗. This process has weak∗-continuous paths. Putting

Γ(t, s;x∗, y∗) :=

∫ t∧s

0

[Φ∗(t− u)x∗,Φ∗(s− u)y∗]H du,

for 0 ≤ t ≤ T we have

Γ(t, t;x∗ − y∗, x∗ − y∗) =

∫ t

0

‖Φ∗(v)(x∗ − y∗)‖2H dv

≤
∫ T

0

‖Φ∗(v)(x∗ − y∗)‖2H dv

= 〈QT (x∗ − y∗), (x∗ − y∗)〉
= E |〈XT , x

∗ − y∗〉|2.

This verifies the first condition of [Ca, Proposition 5].
Next, noting that the function (t, s) 7→ M

2
(tθ + sθ−|t− s|θ) is symmetric and positive

definite, there exists a centred real-valued Gaussian process {Yt}t∈[0,T ] with

E (YtYs) =
M

2

(
tθ + sθ − |t− s|θ

)
.
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Then,
E |Yt − Ys|2 = M |t− s|θ.

This process being Gaussian, we have

E |Yt − Ys|2p = Cp|t− s|θp

and by taking p large enough we see that it has a continuous modification. By the com-
putations above, for 0 ≤ s ≤ t ≤ T and x∗ ∈ U we have

Γ(t, t;x∗, x∗)− 2Γ(t, s;x∗, x∗)+Γ(s, s;x∗, x∗)

= E |〈Xt −Xs, x
∗〉|2 ≤M |t− s|θ = E |Yt − Ys|2.

This verifies the second condition of [Ca, Proposition 5].

In particular, it follows from this proposition that the process {Xt}t∈[0,T ] has a continuous
modification if there exists a constant M such that

‖Φ(t)− Φ(s)‖ ≤M |t− s|, t, s ∈ (0, T ].

Remark 4.4. If the conditions (i) and (ii) in Proposition 4.3 hold for a single x∗ ∈ E∗,
then {〈Xt, x

∗〉}t∈[0,T ] admits a continuous version. This follows upon taking r large in
in (4.1) and applying the Kolmogorov-Chentsov theorem. In particular, if there exists a
constant M such that

‖Φ(t)x∗ − Φ(s)x∗‖ ≤M |t− s|, t, s ∈ (0, T ],

then the process {〈Xt, x
∗〉}t∈[0,T ] has a continuous modification.

5. Weak solutions of the stochastic Cauchy problem

In this section we will apply our theory to the study of the following stochastic abstract
Cauchy problem:

(ACP )
dXt = AXt dt+B dWH

t (t ∈ [0, T ]),

X0 = 0 a.s.

Here A is the generator of a C0−semigroup S = {S(t)}t≥0 on a separable real Banach
space E, B is a bounded linear operator from a separable real Hilbert space H into E, and
{WH

t }t∈[0,T ] is a cylindrical Wiener process with Cameron-Martin space H.
In this setting we may define an operator-valued function Φ : (0, T ]→ L(H,E) by

Φ(t) = S(t) ◦B (t ∈ (0, T ]).

Clearly we have Φ ∈ L2((0, T ];H,E). The operators Qt ∈ L(E∗, E) are given by

Qtx
∗ =

∫ t

0

S(s)QS∗(s)x∗ ds (x∗ ∈ E∗, t ∈ (0, T ]),

where Q = B ◦ B∗. This integral can be shown to exist in the sense of Bochner [Ne1],
but this will not play a role in what follows. As before we let (iT , HT ) denote the RKHS
associated with QT .
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Definition 5.1. A weak solution of (ACP) is a predictable E−valued stochastic process
{Xt}t∈[0,T ] such that for all x∗ ∈ D(A∗) the function s 7→ 〈Xs, A

∗x∗〉 is almost surely
integrable on [0, T ] and

〈Xt, x
∗〉 =

∫ t

0

〈Xs, A
∗x∗〉 ds+ [WH

t , B
∗x∗] (t ∈ [0, T ]). (5.1)

Remark. Although we do not assume that a weak solution {Xt}t∈[0,T ] has a (weakly)
continuous version, it is an immediate consequence of our definition and Definition 3.1
that for every x∗ ∈ D(A∗) the process {〈Xt, x

∗〉}t∈[0,T ] does have a continuous version.

The proof of our main result depends on the following extension result for C0−semigroups
[Ne2]:

Proposition 5.2. There exists a separable real Hilbert space Ẽ, a continuous and dense
embedding j : E ↪→ Ẽ, and a C0−semigroup S̃ on Ẽ such that j ◦ S(t) = S̃(t) ◦ j for all
t ≥ 0.

Theorem 5.3. If the embedding iT : HT ↪→ E is γ−radonifying, then the process
{Xt}t∈[0,T ] defined by stochastic convolution,

Xt =

∫ t

0

S(t− s)B dWH
s (t ∈ [0, T ])

is a weak solution of (ACP). This process has a strongly measurable modification that
satisfies ∫ T

0

‖Xt‖2 dt <∞

almost surely.

Proof : By Proposition 4.2, with Φ(t) = S(t) ◦ B, the process {Xt}t∈[0,T ] has a strongly

measurable modification which satisfies
∫ T

0
‖Xt‖2 dt <∞ almost surely.

Let j : E ↪→ Ẽ denote the embedding of Proposition 5.2 and let S̃ denote the
C0−extension of S to Ẽ. By the theory of (ACP) in Hilbert spaces [DZ, Chapter 5],
the Ẽ−valued process {X̃t}t∈[0,T ] defined by the Hilbert space stochastic Itô convolution
integral

X̃t =

∫ t

0

S̃(t− s)B̃ dWH
s ,

where B̃ = j ◦B, is a weak solution of the problem

dX̃t = ÃX̃t dt+ B̃ dWH
t (t ∈ [0, T ])

X̃0 = 0 a.s.

in Ẽ, where Ã is the generator of S̃. As we have seen in the proof of Theorem 3.3, for all
t ∈ [0, T ] we have X̃t = jXt.
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For all ṽ∗ ∈ D(Ã∗) we have j∗ṽ∗ ∈ D(A∗) and A∗(j∗ṽ∗) = j∗(Ã∗ṽ∗). This implies
that for all elements in v∗ ∈ D(A∗) of the form v∗ = j∗ṽ∗ for some ṽ∗ ∈ D(Ã∗) we have

〈Xt, v
∗〉 = 〈X̃t, ṽ

∗〉 =

∫ t

0

〈X̃s, Ã
∗ṽ∗〉 ds+ [WH

t , B̃
∗ṽ∗]

=

∫ t

0

〈Xs, A
∗v∗〉 ds+ [WH

t , B
∗v∗] (t ∈ [0, T ]).

(5.2)

Fix λ ∈ %(A). Let Y denote the set of all v∗ ∈ E∗ such that (5.1) holds for the element
x∗ := (λ− A∗)−1v∗ ∈ D(A∗). By the above, Y is a linear subspace of E∗ containing the
weak∗-dense subspace j∗Ẽ∗.

We will show next that Y is weak∗-sequentially closed. Let (x∗n) be a sequence in Y
converging weak∗ to some x∗ ∈ E∗. Then y∗n := (λ− A∗)−1x∗n belongs to D(A∗) and the
sequence (y∗n) converges weak∗ to y∗ := (λ− A∗)−1x∗. Hence for all ω we have

lim
n→∞

〈Xt(ω), y∗n〉 = 〈Xt(ω), y∗〉. (5.3)

Moreover, from A∗y∗n = A∗(λ − A∗)−1x∗n = λ(λ − A∗)−1x∗n − x∗n we see that (A∗y∗n)
converges weak∗ to λ(λ−A∗)−1x∗− x∗ = A∗y∗. By dominated convergence, for all ω ∈ Ω
we have

lim
n→∞

∫ t

0

〈Xs(ω), A∗y∗n〉 ds =

∫ t

0

〈Xs(ω), A∗y∗〉 ds. (5.4)

The weak∗-to-weak continuity of B∗ implies that B∗y∗n → B∗y∗ weakly in H. Since
bounded linear operators are weakly continuous, it follows that

lim
n→∞

[WH
t , B

∗y∗n] = [WH
t , B

∗y∗] weakly in L2(P). (5.5)

On the other hand, combining (5.2) with (5.3) and (5.4), it follows that for all ω ∈ Ω the
limit

lim
n→∞

[WH
t , B

∗y∗n] (ω) =: Y (ω)

exists. With a convex combination argument as in the proof of Proposition 2.2, together
with (5.5) this shows that Y = [WH

t , B
∗y∗] a.e. Hence for almost all ω ∈ Ω we have

lim
n→∞

[WH
t , B

∗y∗n] (ω) = [WH
t , B

∗y∗] (ω). (5.6)

By (5.2), (5.3), (5.4), (5.6) and dominated convergence we finally obtain

〈Xt, y
∗〉 = lim

n→∞
〈Xt, y

∗
n〉 = lim

n→∞

(∫ t

0

〈Xs, A
∗y∗n〉 ds+ [WH

t , B
∗y∗n]

)

=

∫ t

0

〈Xs, A
∗y∗〉 ds+ [WH

t , B
∗y∗]

almost everywhere. This shows that x∗ ∈ Y , and Y is weak∗-sequentially closed as claimed.
By Proposition 1.2, Y = E∗ and the proof is complete.
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Remark. As we noted above, the fact that {Xt}t∈[0,T ] is a weak solution implies that for
each x∗ ∈ D(A∗), the scalar process {〈Xt, x

∗〉}t∈[0,T ] has a continuous modification. This
can also be seen more directly from the observation in Remark 4.4. Indeed, if x∗ ∈ D(A∗),
the identity

S∗(t)x∗ − x∗ =

∫ t

0

S∗(s)A∗x∗ ds

shows that the orbit t 7→ S∗(t)x∗ is Lipschitz continuous on the bounded interval [0, T ].

Theorem 5.3 admits the following converse:

Theorem 5.4. Suppose (ACP) admits a weak solution {Xt}t∈[0,T ]. Then the embedding
iT : HT ↪→ E is γ−radonifying and {Xt}t∈[0,T ] is an Ornstein-Uhlenbeck process.

Proof : Let j : E ↪→ Ẽ and S̃ be as in Proposition 5.2. By the results of [BRS], Ẽ may
be densely embedded into another separable real Hilbert space E in such a way that S̃
extends to a C0−semigroup S on E and the embedding j̃ : Ẽ ↪→ E is Hilbert-Schmidt.
Let j := j̃ ◦ j.

The operator B := j ◦B = j̃ ◦ B̃ : H → E is Hilbert-Schmidt, being the composition
of the bounded operator B̃ = j ◦ B and the Hilbert-Schmidt operator j̃. It follows that
Q := B ◦B∗ is trace class. Define the positive selfadjoint operator QT on E by

QTh =

∫ T

0

S(s)QS
∗
(s)hds (h ∈ E).

Then it easy to check (cf. [Ne1]) that QT is trace class as well.
It now follows from the general theory of stochastic equations in Hilbert spaces [DZ,

Chapter 5] that the stochastic convolution process X t =
∫ t

0
S(t− s)B dWH

s is the unique
weak solution to the problem

dXt = AXt dt+B dWH
t (t ∈ [0, T ]),

X0 = 0 a.s.

But the process {jXt}t∈[0,T ] is a weak solution of this problem as well, and hence by

uniqueness it follows that Xt = jXt for all t ∈ [0, T ]. We conclude that {jXt}t∈[0,T ] is an

E−valued Ornstein-Uhlenbeck process, this being true for {X t}t∈[0,T ]. This implies that

for all x∗, y∗ ∈ E∗ and t, s ∈ [0, T ] we have

E (〈Xt, j
∗
x∗〉, 〈Xs, j

∗
y∗〉) = E (〈Xt, x

∗〉, 〈Xs, y
∗〉)

=

∫ t∧s

0

[B
∗
S
∗
(t− u)x∗, B

∗
S
∗
(s− u)y∗]H du

=

∫ t∧s

0

[B∗S∗(t− u)(j
∗
x∗), B∗S∗(s− u)(j

∗
y∗)]H du.

(5.7)

The linear subspace Y = {j∗x∗ : x∗ ∈ E∗} is weak∗-dense in E∗, as j is a dense embedding.
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We claim that {Xt}t∈[0,T ] is a Gaussian process. To see this, fix t ∈ [0, T ] and

let µt and µt be the distributions of Xt and Xt, respectively. These are Borel probability
measures on E and E, respectively, and we have µt = j(µt). Moreover, because {Xt}t∈[0,T ]

is an Ornstein-Uhlenbeck process, hence a Gaussian process, the measure µt is a Gaussian
measure. Hence for all y∗ = j

∗
x∗ in the weak∗-dense subspace Y of E∗, the image measures

〈µt, y∗〉 = 〈µt, x∗〉 are Gaussian on R . By Corollary 1.3, this implies that µt is Gaussian,
and the claim is proved.

The process {Xt}t∈[0,T ] being Gaussian, the weak second moments E (〈Xt, x
∗〉2) are

finite for all t ∈ [0, T ] and x∗ ∈ E∗. Departing from (5.7), the proof that {Xt}t∈[0,T ] is an
Ornstein-Uhlenbeck process now proceeds along the lines of the proof of Theorem 3.3.

Concerning uniqueness of weak solutions, we have the following result:

Theorem 5.5. Let X(0) = {X(0)
t }t∈[0,T ] and X(1) = {X(1)

t }t∈[0,T ] be two weak solutions

of the problem (ACP). Then X(0) and X(1) are versions of each other.

Proof : This follows immediately by embedding E into a Hilbert space E in the way
described in the proof of Theorem 5.4 and the fact that the corresponding uniqueness
result for weak solutions holds in the Hilbert space setting.

So far, we were concerned only with solutions on a finite time interval [0, T ]. By obvi-
ous modifications, the theory extends to the interval [0,∞). In particular, a weak global
solution of (ACP) exists if and only if for all T > 0 the associated inclusion mapping
iT : HT ↪→ E is γ−radonifying; in this case the solution is unique, and given by stochastic
convolution.

Under this assumption, for each t > 0 we let µt = it(γHt) denote the corresponding
centred Gaussian measure on E; we futher set µ0 = δ0, the Dirac measure concentrated
at 0. For each t ≥ 0 we define a linear contraction P (t) on the space Bb(E) of bounded
real-valued Borel functions on E by the formula

P (t)f(x) =

∫

E

f(S(t)x+ y) dµt(y) (x ∈ E, f ∈ Bb(E)).

From the identity
Qt+s = Qt + S(t)QsS

∗(t)

we see that
µt+s = µt ∗ S(t)µs,

from which it easily follows that P (t + s) = P (t) ◦ P (s) for all t, s ≥ 0. Thus the family
{P (t)}t≥0 is a semigroup of contractions on Bb(E). This semigroup has been studied in
some detail in [Ne1] from a functional-analytic point of view. We conclude this section by
showing that it arises as the transition semigroup of the weak solution of the stochastic
Cauchy problem (ACP):

Proposition 5.6. Let {Xt}t≥0 be a weak solution of the problem (ACP). For all t ∈ [0, T ]
we have, for almost all x ∈ E,

P (t)f(x) = E (f(Xt,x)),

where Xt,x := S(t)x+Xt.
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Proof : Fix t ∈ [0, T ]. Recalling that µt is the distribution of Xt, for almost all x ∈ E we
have

E (f(Xt,x)) =

∫

Ω

f(Xt,x(ω)) dP(ω)

=

∫

Ω

f(S(t)x+Xt(ω)) dP(ω)

=

∫

E

f(S(t)x+ y) dµt(y)

= P (t)f(x).

We point out that the weak solution is always a Markov process. This can be seen directly
as in the proof of Proposition 5.6 or by using the fact that this is true for the Hilbert space
case and using the extension argument of Theorem 5.5.

6. The analytic case

The results of the previous section do note take into account possible regularization effects
of the semigroup S. We will present now a result in this direction for the case where
S is an analytic semigroup. Roughly speaking it turns out that if S maps E into some
smaller space F , then under some natural assumptions the weak solution of (ACP) is also
F−valued.

Theorem 6.1. Suppose that F and E are separable real Banach spaces, with F contin-
uously embedded in E. Let SE = {SE(t)}t≥0 be a C0 semigroup on E, with generator AE
such that for all t > 0, SE(t)E ⊂ F . Denote by SEF (t) the operator SE(t), regarded as a
bounded linear operator from E into F , and let SF (t) denote the restriction of SEF (t) to
F .

Let B be a bounded linear operator from a separable real Hilbert space H into E,
and let Q = B ◦ B∗. Let QT ∈ L(F ∗, F ) be the positive symmetric operator defined by
the Pettis integral

QTx
∗ =

∫ T

0

SEF (t)QS∗EF (t)x∗ dt (x∗ ∈ F ∗).

Let (iT , HT ) be the RKHS associated with QT . We assume:

(i) For each x∗ ∈ F ∗, the function t 7→ B∗S∗EF (t)x∗ is strongly measurable and

∫ T

0

‖B∗S∗EF (t)x∗‖2H dt <∞; (6.1)
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(ii) The semigroup SF = {SF (t)}t≥0 is an analytic C0-semigroup on F , with generator
AF , and there exist λ ∈ %(AF ) and θ ∈ (0, 1] such that

∫ T

0

‖(λ−AF )θSEF (t)‖2L(E,F ) dt <∞; (6.2)

(iii) The embedding iT : HT ↪→ F is γ−radonifying.

Under these assumptions there exists an F−valued stochastic process {Xt}t∈[0,T ] with
covariance

E (〈Xt, x
∗〉〈Xs, y

∗〉) =

∫ t∧s

0

[B∗S∗EF (t− u)x∗, B∗S∗EF (s− u)y∗]H du (x∗, y∗ ∈ F ∗).
(6.3)

This process has a continuous modification. As an E−valued process, it is a weak solution
to the stochastic abstract Cauchy problem

dXt = AEXt dt+B dWH
t , t ∈ [0, T ],

X0 = 0.
(6.4)

Proof : By (i), (iii), and Theorem 3.3 applied to the L(H,F )−valued function t 7→
SEF (t)◦B, there exists an F−valued process Ornstein-Uhlenbeck process {Xt}t∈[0,T ] with
covariance given by (6.3) and we have

〈Xt, x
∗〉 =

∫ t

0

〈SEF (t− s)B dWH
s , x

∗〉 (t ∈ [0, T ], x∗ ∈ F ∗).

We shall prove that the process {Xt}t∈[0,T ] has a continuous version. We argue as in [MS,
Remark 3.2]. Fix λ ∈ %(AF ) and θ ∈ (0, 1] as in assumption (ii). For all x∗ ∈ F ∗ we have

‖B∗S∗EF (t− s+ u)x∗ −B∗S∗EF (u)x∗‖H
≤ ‖B∗‖L(E∗,H) ‖x∗‖ ‖SF (t− s)SEF (u)− SEF (u)‖L(E,F )

≤ ‖B∗‖L(E∗,H) ‖x∗‖ ‖ (SF (t− s)− I) (λ−AF )−θ‖L(F,F ) ‖(λ−AF )θSEF (u)‖L(E,F )

≤ C ‖x∗‖(t− s)θ ‖(λ− AF )θSEF (u)‖L(E,F ).

Hence by (6.2),
∫ s

0

‖B∗S∗EF (t− s+ u)x∗ − B∗S∗EF (u)x∗‖2H du

≤ C2 ‖x∗‖2(t− s)2θ

∫ T

0

‖(λ− AF )θSEF (u)‖2L(E,F ) du <∞.

By Proposition 4.3, it follows that the process {Xt}t≥0 has a continuous modification.
Let j : F ↪→ E denote the inclusion mapping. It remains to check that the E−valued

process defined by X̃t = jXt (t ∈ [0, T ]) is a weak solution of (6.4). Let x̃∗ ∈ E∗ be given
and let x∗ := j∗x̃∗. Recalling that j ◦ SEF (t) = SE(t) we have

〈X̃t, x̃
∗〉 = 〈Xt, x

∗〉 =

∫ t

0

〈SEF (t− s)B dWH
s , x

∗〉 =

∫ t

0

〈SE(t− s)B dWH
s , x̃

∗〉.

Hence, by Theorem 5.3 and the uniqueness part of Theorem 3.3, {X̃t}t∈[0,T ] is a weak
solution of (6.4).
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For F = E this reduces to:

Corollary 6.2. If A generates an analytic semigroup, then the weak solution {Xt}t∈[0,T ]

admits a continous version.

Consider the stochastic heat equation driven by spatio-temporal white noise:

∂X

∂t
(t, x) = ∆X(t, x) +

∂w

∂t
(t, x), t ≥ 0,

X(0, x) = 0,

X(t, 0) = X(t, 1) = 0.

(6.5)

As an application of Theorem 6.1 we will show that for any β ∈ [0, 1
2 ), this problem has a

unique weak solution with a continuous modification taking values in the space of Hölder
continuous functions of exponent β. This result has been obtained by entirely different
methods in [Br3]; see [Wa]. Extensions of this equation with more general types of noise
have been discussed in, e.g., [DaS], [PZ] and [BP].

By a weak solution of (6.5) we understand a weak solution to the problem

dXt = ∆Xt + dWt, t ≥ 0,

X0 = 0,
(6.6)

where ∆ is the Dirichlet Laplacian in E = L2[0, 1] and {Wt}t∈[0,T ] is a cylindrical Wiener
process with Cameron-Martin space H = E = L2[0, 1].

For β ∈ [0, 1] let

cβ0 [0, 1] = {u ∈ cβ [0, 1] : u(0) = u(1) = 0},

where cβ [0, 1] is the little Hölder space of all continuous functions f on [0, 1] for which

‖f‖cβ [0,1] := sup
t∈[0,1]

|f(t)|+ sup
0≤s<t≤1

|f(t)− f(s)|
(t− s)β <∞

and

lim
δ↓0

sup
|t−s|≤δ

|f(t)− f(s)|
(t− s)β = 0.

Theorem 6.3. The problem (6.5) has a unique global weak solution {Xt}t≥0. For each

t ≥ 0 the random variable Xt takes values in cβ0 [0, 1] almost surely. As a cβ0 [0, 1]−valued
process, {Xt}t≥0 has a continuous modification.

Proof : For p ∈ [1,∞), let Ap = ∆ be the Laplacian on Lp[0, 1] with Dirichlet boundary

conditions, i.e. D(Ap) = H1,p
0 [0, 1] ∩ H2,p[0, 1], and let Sp denote the heat semigroup on

Lp[0, 1], i.e. the analytic C0-semigroup on Lp[0, 1] generated by Ap.
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Let T > 0 be arbitrary. As is well-known, see e.g. [DZ], the RKHS corresponding to
the selfadjoint operator RT ∈ L(L2[0, 1]) defined by

RT f =

∫ T

0

S∗2(t)S2(t)f dt (f ∈ L2[0, 1]),

equals H1,2
0 [0, 1]. The inclusion H1,2

0 [0, 1] ↪→ L2[0, 1] is Hilbert-Schmidt and hence γ−ra-
donifying. Hence (6.5), and therefore (6.6), has a unique global weak solution {Xt}t≥0.

Fix α ∈ (0, 1
4
) and 2 < p < ∞ such that 2α > 1

p
. We are going to check first

that Theorem 6.1 applies, with H = E = L2[0, 1], B : H → E the identity operator,
F = H2α,p

0 [0, 1], and SE = S2.
The restriction S2α,p of Sp to H2α,p

0 [0, 1] is strongly continuous and analytic on

H2α,p
0 [0, 1]. Notice that, with the notation of Theorem 6.1, S2α,p equals the semigroup

SF . Let A2α,p be its generator. Put 2δ := 1
2
− 1

p
and note that 2(α + δ) < 1 since we

assume that α ∈ (0, 1
4
). Choose θ ∈ (0, 1] so small that 2(α + δ + 2θ) < 1. Suppressing

subscripts we then have, with a suitable choise of 0 < η < δ + θ,

‖S(t)‖L(L2[0,1],Lp[0,1]) ≤ Ct−η (t ∈ (0, 1]),

‖S(t)‖L(Lp[0,1],H2α,p
0 [0,1]) ≤ Ct−α (t ∈ (0, 1]),

‖(−A2α,p)
θS(t)‖L(Lp[0,1],H2α,p

0 [0,1]) ≤ Ct−α−θ (t ∈ (0, 1]).

The first of these estimates follows from

‖S(t)f‖L∞[0,1] ≤ C‖S(t)f‖
H

2(δ+θ),2
0 [0,1]

≤ C ′t−δ−θ‖f‖L2[0,1], t > 0,

and interpolation; here we use that by assumption δ + θ > 1
4
, so that H

2(δ+θ),2
0 [0, 1] ↪→

L∞[0, 1] by the Sobolev embedding theorem. The second and third estimate follow from
general results about analytic semigroups.

The first two estimates show that assumption (i) of Theorem 6.1 holds. From the first
and third estimate we infer that

∫ 1

0

‖(−A2α,p)
θS(t)‖2L(L2[0,1],H2α,p

0 [0,1])
dt ≤ C

∫ 1

0

t−2(α+η+θ) dt <∞,

which shows that assumption (ii) of Theorem 6.1 is satisfied (cf. the remark following
the formulation of the theorem). By [Br1] and a closed subspace argument, the inclusion
i2α,p : H1,2

0 [0, 1] ↪→ H2α,p
0 [0, 1] is γ−radonifying; this verifies assumption (iii) of Theorem

6.1. Hence by Theorem 6.1 the weak solution {Xt}t≥0 of (6.5) has a modification that is

a continuous H2α,p
0 [0, 1]−valued process with covariance

E (〈Xt, ϕ〉〈Xs, ψ〉) =

∫ t∧s

0

[i∗2α,pS
∗
2α,p(t− u)ϕ, i∗2α,pS

∗
2α,p(s− u)ψ]H1,2

0 [0,1] du

for all t, s ≥ 0 and ϕ, ψ ∈ (H2α,p
0 [0, 1])∗.

Now fix β ∈ [0, 1
2 ). Choose α ∈ (0, 1

4) and p > 2 in such a way that 2α > β+ 1
p . By the

Sobolev embedding theorem we then have a continuous inclusion H2α,p
0 [0, 1] ↪→ cβ0 [0, 1].

Combining this with the above, it follows that {Xt}t≥0 takes values in cβ0 [0, 1], and that

is continuous as a cβ0 [0, 1]−valued process.
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