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LOCAL SPECTRA AND INDIVIDUAL STABILITY OF

UNIFORMLY BOUNDED C0-SEMIGROUPS

CHARLES J. K. BATTY, JAN VAN NEERVEN, AND FRANK RÄBIGER

Abstract. We study the asymptotic behaviour of individual orbits T (·)x of a
uniformly bounded C0-semigroup {T (t)}t≥0 with generator A in terms of the

singularities of the local resolvent (λ− A)−1x on the imaginary axis. Among
other things we prove individual versions of the Arendt-Batty-Lyubich-Vũ the-
orem and the Katznelson-Tzafriri theorem.

1. Introduction

A C0-semigroup T = {T (t)}t≥0 on a Banach space X is said to be uniformly
stable if limt→∞ ‖T (t)x‖ = 0 for all x ∈ X . In 1988, Arendt and Batty [1] and
Lyubich and Vũ [17] proved the following result.

Theorem A. Let T be a uniformly bounded C0-semigroup on a Banach space X,
with generator A. If

(i) σ(A) ∩ iR is countable,
(ii) σp(A

∗) ∩ iR = ∅,
then T is uniformly stable.

Here, σ(A) denotes the spectrum of A and σp(A
∗) is the point spectrum of the

adjoint A∗ of A. Examples show that none of the assumptions can be relaxed, so
this result is optimal in some sense. A little later Esterle, Strouse and Zouakia [10]
and Vũ [21] each gave a proof of the following continuous parameter version of the
Katznelson-Tzafriri theorem (see [15] for the discrete case).

Theorem B. Let T be a uniformly bounded C0-semigroup on a Banach space X,
with generator A. If f ∈ L1(R+) is of spectral synthesis with respect to iσ(A) ∩ R,

then limt→∞ ‖T (t)f̂(T)‖ = 0.

Here, f̂(T) is the bounded operator on X defined by

f̂(T)x :=

∫ ∞

0

f(t)T (t)x dt, x ∈ X.
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This result is different from the first in that there are no restrictions on the spectrum
of A, but stability is only obtained for certain orbits. For the history of these and
related results we refer to [3].

In this paper we address the problem whether individual versions of the above
theorems hold. Such versions can be found e.g. in [1], [4], [8], [9], however there the
assumed spectral conditions are all global. Our main idea is to relate the asymp-
totic behaviour of an individual orbit T (·)x to the behaviour of the local resolvent
R(λ,A)x near the imaginary axis; here R(λ,A) = (λ − A)−1 is the resolvent of
A at the point λ. More precisely, we define the local unitary spectrum σu(A, x)
of x to be the set of points λ0 ∈ iR to which λ 7→ R(λ,A)x cannot be extended
holomorphically, and study the relationship between the asymptotic behaviour of
T (·)x and the local unitary spectrum of x.

It turns out that, for a given x ∈ X , assumption (i) in the Arendt-Batty-Lyubich-
Vũ theorem can be relaxed to countability of the local unitary spectrum of x, in
which case we have limt→∞ ‖T (t)x‖ = 0. This is proved in Section 3, where it is
also shown how to localize assumption (ii) to a certain ergodic condition on the
orbit of x.

As a consequence of our individual Arendt-Batty-Lyubich-Vũ theorem we obtain
the following stability result: a uniformly bounded C0-semigroup on X is uniformly
stable if σp(A

∗) = ∅ and there exists a dense subspace Z ⊂ X such that the local
unitary spectrum of each z ∈ Z is countable. This generalizes results of Huang
[12] and Batty [5], where among other things it was assumed that the local unitary
spectrum is contained in a fixed countable set for all z ∈ Z. Huang [12] conjectured
that a result of this type might characterize uniform stability. In Section 4 we refute
this conjecture by providing an example of a uniformly stable semigroup with the
property that the local unitary spectrum of each non-zero x ∈ X is all of iR.

Also the Katznelson-Tzafriri theorem admits an individual version. Assuming
that T is uniformly bounded and f is of spectral synthesis with respect to iσu(A, x),

we show that limt→∞ ‖T (t)f̂(T)x‖ = 0. This is proved in Section 5.
Our individual stability results depend on a theorem, proved in Section 2, which

shows that the local unitary spectrum does not enlarge when passing to elements in
the closed T-invariant subspace generated by x, provided the semigroup is isometric.
The proof of this depends on a construction which was already exploited in [1] and
[5] and goes back to Carleman.

In Sections 6 and 7 we apply our results to obtain an individual version of a
result of Lyubich and Vũ [22] on almost periodicity of C0-semigroups and of a
recent quantitative stability result of Batty, Brzeźniak and Greenfield [6].

In [7], we show that the results of this paper can be extended to individual
bounded, uniformly continuous orbits of an arbitrary (possibly unbounded) C0-
semigroup. That this is possible is a non-trivial fact and depends on another
analytic extension result for local resolvents, by means of which the unbounded
case is reduced to the bounded case. Moreover we apply our theory to derive a
new Tauberian theorem for the Laplace transform of certain bounded X-valued
functions.

2. The main extension theorem

In this paper T = {T (t)}t≥0 always denotes a uniformly bounded C0-semi-
group on a Banach space X and A its generator. If x ∈ X , then the map
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R : {Reλ > 0} → X : λ 7→ R(λ,A)x is holomorphic. The local unitary spec-
trum σu(A, x) of x is the set of points λ ∈ iR to which R cannot be extended
holomorphically. Clearly σu(A, x) ⊂ σ(A) ∩ iR, and an easy application of the
uniform boundedness principle yields

σ(A) ∩ iR =
⋃
x∈X

σu(A, x).

For a given x ∈ X let Xx be the closed linear span of the orbit {T (t)x : t ≥ 0}.
Then Xx is T-invariant and we denote by Tx = {Tx(t)}t≥0 the restriction of T to
Xx and by Ax the generator of Tx.

For our main extension theorem we need the following lemma based on [17,
Lemma]. Recall that a bounded operator T on X is an isometry if ‖Tx‖ = ‖x‖ for
all x ∈ X .

Lemma 2.1. Let T be a C0-semigroup of isometries on a Banach space X, with
generator A. Let x ∈ X and let F be a holomorphic extension of λ 7→ R(λ,A)x to a
connected neighbourhood V of {Reλ ≥ 0} \ σu(A, x). Then ‖F (λ)‖ ≤ |Reλ|−1‖x‖
for all λ ∈ V \iR.

Proof. From the identity

e−λtT (t)R(λ,A)x = R(λ,A)x −
∫ t

0

e−λsT (s)x ds,

valid for Reλ > 0, and the uniqueness theorem for analytic functions we have

e−λtT (t)F (λ) = F (λ) −
∫ t

0

e−λsT (s)x ds, λ ∈ V.

Since T is isometric, it follows that

e−Reλt‖F (λ)‖ = e−Reλt‖T (t)F (λ)‖

≤ ‖F (λ)‖ +

∫ t

0

e−Reλs‖T (s)x‖ ds

= ‖F (λ)‖ +

(∫ t

0

e−Reλs ds

)
‖x‖

= ‖F (λ)‖ +
e−Reλt − 1

−Reλ
‖x‖.

This yields the desired inequality for all λ ∈ V with negative real part. For
Reλ > 0 the conclusion follows by estimating the Laplace integral R(λ,A)x =∫∞
0

e−λsT (s)x ds.

With the notation introduced above we obtain the following extension theorem.

Theorem 2.2. Let T be a C0-semigroup of isometries on a Banach space X, with
generator A. For each x ∈ X there exists a connected neighbourhood W of {Reλ ≥
0} \ σu(A, x) such that λ 7→ R(λ,A)z admits an Xx-valued holomorphic extension
to W for all z ∈ Xx. In particular σ(Ax) ∩ iR = σu(A, x).

Proof. Let V be a connected neighbourhood of {Reλ ≥ 0} \ σu(A, x) such that
λ 7→ R(λ,A)x admits a holomorphic extension F to V . Denote by Z the linear
span of the orbit {T (t)x : t ≥ 0}. Fix z ∈ Xx = Z and choose a sequence (zn) ⊂ Z
with zn → z. Since T (t)F (λ) is a holomorphic extension of R(λ,A)T (t)x to V for
each t ≥ 0 we see that each R(λ,A)zn admits a holomorphic extension Fn(λ) to V .
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For λ0 ∈ iR\σu(A, x) we choose r(λ0) > 0 such that the closure of the open ball
B(λ0, r(λ0)) of radius r(λ0) and centre λ0 is contained in V . Let B denote the
union of all balls B(λ0,

1
2r(λ0)), λ0 ∈ iR\σu(A, x), and put W = {Reλ > 0} ∪ B.

Then W ⊂ V and W is a connected neighbourhood of {Reλ ≥ 0}\σu(A, x). In
order to prove that R(λ,A)z extends holomorphically to W , it suffices to show that
it extends to each B(λ0,

1
2r(λ0)).

So let λ0 ∈ iR\σu(A, x) and r = r(λ0) as above be fixed. By rescaling T, we
may assume that λ0 = 0. We claim that the functions Fn are bounded on B(0, 1

2r),
uniformly in n. Once this has been shown, from the fact that R(λ,A)zn → R(λ,A)z
for Reλ > 0 it follows by Vitali’s theorem that the functions Fn converge, uniformly
on compacta, to a holomorphic function F on B(0, 1

2r). This F is the desired
extension of R(λ,A)z.

Define the continuous functions fn : B(0, r) → X by

fn(λ) :=

(
1 +

λ2

r2

)
Fn(λ).

Each fn is holomorphic in B(0, r). By virtue of Lemma 2.1, for λ = reiθ ∈
∂B(0, r)\iR we have

‖fn(λ)‖ ≤
∣∣∣∣1 +

λ2

r2

∣∣∣∣ · 1

|Reλ| ‖zn‖ = |1 + e2iθ| · 1

r| cos θ| ‖zn‖ =
2

r
‖zn‖.

Therefore, by the maximum modulus theorem,

sup
λ∈B(0,r)

‖fn(λ)‖ ≤ 2

r
‖zn‖.

It follows that

sup
n

sup
λ∈B(0, r2 )

‖Fn(λ)‖ = sup
n

sup
λ∈B(0, r2 )

r2

|r2 + λ2| ‖fn(λ)‖

≤ sup
n

sup
λ∈B(0, r2 )

2r

|r2 + λ2| ‖zn‖ ≤
8

3r
sup
n
‖zn‖.

This proves the claim.
So far we have shown that for z ∈ Xx the local resolvent R(λ,A)z has a holo-

morphic extension Fz to W . If Reλ > 0 then the resolvent of A and Ax can
be represented as the Laplace transform of T and Tx, respectively, and hence
R(λ,A)z = R(λ,Ax)z. Let q : X → X/Xx be the quotient map. Then qFz(λ) is a
holomorphic extension of qR(λ,A)z and qFz(λ) = 0 for Reλ > 0. Thus qFz(λ) = 0
on W , i.e. Fz is Xx-valued on W . Hence Fz is a holomorphic extension of R(λ,Ax)z.
This implies

σu(A, x) = σu(Ax, x) ⊂
⋃

z∈Xx

σu(Ax, z) ⊂ σu(A, x).

Thus σ(Ax) ∩ iR =
⋃
z∈Xx

σu(Ax, z) = σu(A, x).

Remarks. (a) The last part of the proof shows that for a C0-semigroup T on X
and x ∈ X one always has σu(A, x) = σu(Ax, x).

(b) The theorem cannot be extended to contraction semigroups; this is shown
by a counterexample in [7] for the left translation semigroup on X = C0(R+).
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3. An individual Arendt-Batty-Lyubich-Vũ theorem

In this section we present an individual version of the Arendt-Batty-Lyubich-Vũ
theorem. First we ‘localize’ the conditions imposed in Theorem A and then we
show that from the local conditions we obtain convergence to 0 of an individual
orbit.

If T is a uniformly bounded C0-semigroup on X , with generator A, and if x ∈ X
is given, then it is natural to replace the countability condition on σ(A) ∩ iR by
the countability of σu(A, x). In order to localize the condition σp(A

∗) ∩ iR = ∅
we observe that convergence of T (t)x to 0 as t → ∞ also follows if we apply
Theorem A to the restriction Tx of T to Xx. Thus we may replace the condition
σp(A

∗) ∩ iR = ∅ by σp(A
∗
x) ∩ iR = ∅. To characterize the latter condition in terms

of the orbit through x we need the following lemma.

Lemma 3.1. Let T be a uniformly bounded C0-semigroup on X, with generator
A, and let x ∈ X. Then σp(A

∗
x) ∩ iR ⊂ σu(A, x).

Proof. Let λ0 ∈ σp(A
∗
x)∩iR. Without loss of generality we may assume λ0 = 0. Let

0 6= x∗ ∈ D(A∗x) be such that A∗xx∗ = 0. Then T ∗x (t)x∗ = x∗ for all t ≥ 0, and hence
〈x∗, x〉 = 〈x∗, T (t)x〉 for all t ≥ 0. Since the linear span of the set {T (t)x : t ≥ 0}
is dense in Xx, we must have 〈x∗, x〉 =: α 6= 0. Then for all Reλ > 0 we obtain

0 = 〈A∗xx∗, R(λ,A)x〉 = 〈x∗, AR(λ,A)x〉 = 〈x∗, λR(λ,A)x − x〉.
Hence,

〈x∗, R(λ,A)x〉 =
1

λ
〈x∗, x〉 =

α

λ
, for all Reλ > 0.

This shows that limλ↓0 ‖R(λ,A)x‖ = ∞, and hence λ 7→ R(λ,A)x has no holomor-
phic extension to 0.

From this lemma we obtain the following reformulation of the condition σp(A
∗
x)∩

iR = ∅ in terms of the orbit through x.

Proposition 3.2. Let T be a uniformly bounded C0-semigroup on X, with gener-
ator A. Then for x ∈ X the following assertions are equivalent:

(i) σp(A
∗
x) ∩ iR = ∅.

(ii) lim
α↓0

α

∫ ∞

0

e−(α+λ)tT (t)x dt = 0 for all λ ∈ σu(A, x).

Proof. (i) ⇒ (ii): Fix λ ∈ σu(A, x). Since λ /∈ σp(A
∗
x), the Hahn-Banach theorem

implies that D := {(λ − Ax)y : y ∈ D(Ax)} is dense in Xx. If α > 0, then∫∞
0 e−(α+λ)tT (t)z dt = R(α+ λ,A)z, z ∈ X , and supα>0 ‖αR(α+ λ,A)‖ <∞ (see

[19, 1.5.3, 1.5.4]). Thus for z = (λ−Ax)y ∈ D we obtain

lim
α↓0

α

∫ ∞

0

e−(α+λ)tT (t)z dt = lim
α↓0

αR(α + λ,A)(λ −A)y

= lim
α↓0

αy − α2R(α + λ,A)y = 0.

Since (αR(α + λ,A))α>0 is uniformly bounded and D is dense in Xx, assertion (ii)
follows.

(ii) ⇒ (i): Suppose there is λ ∈ σp(A
∗
x) ∩ iR with corresponding eigenvector

0 6= x∗ ∈ D(A∗x). Then e−λtT ∗x (t)x∗ = x∗ for all t ≥ 0, and λ ∈ σu(A, x) by Lemma
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3.1. Thus

〈x∗, x〉 = lim
α↓0

α

∫ ∞

0

e−αt〈e−λtT ∗x (t)x∗, x〉 dt

= lim
α↓0

〈x∗, α
∫ ∞

0

e−(α+λ)tT (t)x dt〉 = 0.

Hence 〈x∗, T (t)x〉 = 〈T ∗x (t)x∗, x〉 = eλt〈x∗, x〉 = 0 for all t ≥ 0. Since the linear span
of {T (t)x : t ≥ 0} is dense in Xx this implies x∗ = 0 which is a contradiction.

Remarks. (a) Since T is uniformly bounded, in assertion (ii) the convergence of
the Abel means α

∫∞
0

e−(α+λ)tT (t)x dt as α ↓ 0 is equivalent to the convergence of

the Cesàro means 1
t

∫ t
0
e−λsT (s)x ds as t→∞ (see [16, 2.1.5]).

(b) One always has σp(A
∗
x) ∩ iR ⊂ σp(A

∗). In fact, without loss of gener-
ality let 0 ∈ σp(A

∗
x) ∩ iR with corresponding eigenvector 0 6= x∗ ∈ X∗

x. Let
z∗ ∈ X∗ be a Hahn-Banach extension of x∗. Then for each t > 0, 〈z∗t , z〉 :=
1
t

∫ t
0 〈z∗, T (s)z〉 ds, z ∈ X , defines a linear form z∗t ∈ X∗, and supt>0 ‖z∗t ‖ <∞. If

u∗ is a weak∗-cluster point of (z∗t )t>0 (as t → ∞), then T ∗(t)u∗ = u∗ for all t ≥ 0
and the restriction of u∗ to Xx coincides with x∗. Hence A∗u∗ = 0 and u∗ 6= 0, i.e.
0 ∈ σp(A

∗).

In order to prove our individual version of the Arendt-Batty-Lyubich-Vũ theorem
we need the following construction due to Lyubich and Vũ [17]. Let T be a C0-
semigroup of contractions on X and let l be the seminorm on X defined by

l(x) := lim
t→∞ ‖T (t)x‖.

This seminorm defines a norm l0 on the quotient space Y0 := X/ker l by means of

l0(x+ ker l) := l(x).

Let Y be the completion of Y0 with respect to this norm. The operator π : X → Y
given by

πx := x+ ker l

is contractive and has dense range.
On Y0 we define the linear operatorsU0(t) by U0(t)πx = πT (t)x. These operators

extend to bounded linear operators U(t) on Y and we have the following properties
(see [17], [21, Lemma 3.1]):

(i) U = {U(t)}t≥0 is a C0-semigroup of isometries on Y , and U(t)π = πT (t) for
all t ≥ 0. If B is the generator of U, then πD(A) ⊂ D(B) and Bπx = πAx
for all x ∈ D(A),

(ii) limt→∞ ‖T (t)x‖ = ‖πx‖ for all x ∈ X ,
(iii) σ(B) ⊂ σ(A).

Furthermore, if σ(A) ∩ iR is a proper subset of iR, then

(iv) U extends to a C0-group of isometries.

The triple (Y, π,U) is called the isometric limit (semi)group associated with T.
If T itself is a semigroup of isometries, then U = T and (iv) can be written as

follows (see also [3, Proposition 3.2]).

Proposition 3.3. Let T be a C0-semigroup of isometries on X, with generator A.
If σ(A) ∩ iR 6= iR, then T extends to a group of isometries and σ(A) ⊂ iR.

Now we come to our local version of the Arendt-Batty-Lyubich-Vũ theorem.
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Theorem 3.4. Let T be a uniformly bounded C0-semigroup on a Banach space X,
with generator A. Let x ∈ X and assume that

(i) σu(A, x) is countable,

(ii) lim
α↓0

α

∫ ∞

0

e−(α+λ)tT (t)x dt = 0 for all λ ∈ σu(A, x).

Then limt→∞ ‖T (t)x‖ = 0.

Proof. By renorming X with the equivalent norm |||x||| := supt≥0 ‖T (t)x‖ we may
assume that T is a semigroup of contractions. Let (Y, π,U) be the isometric limit
semigroup associated with T. In view of the properties of (Y, π,U), the theorem is
proved if we can show that y := πx = 0.

Let F (λ) denote the holomorphic extension of R(λ,A)x to a connected neigh-
bourhood V of {Reλ ≥ 0}\σu(A, x). The map πF (λ) defines a holomorphic ex-
tension of R(λ,B)y to V , where B is the generator of U. In particular σu(B, y) ⊂
σu(A, x). Let Yy be the closed linear span of the orbit {U(t)y : t ≥ 0} and let By

be the generator of the restriction Uy of U to Yy. Then Theorem 2.2 implies that
σ(By) ∩ iR = σu(B, y) ⊂ σu(A, x), so σ(By) ∩ iR is countable. On the other hand,
for all λ ∈ σu(B, y) ⊂ σu(A, x) we have

lim
α↓0

α

∫ ∞

0

e−(α+λ)tUy(t)y dt = lim
α↓0

π

(
α

∫ ∞

0

e−(α+λ)tT (t)x dt

)
= 0.

Hence σp(B
∗
y) ∩ iR = ∅ by Proposition 3.2. Now Theorem A applied to Uy yields

limt→∞ ‖Uy(t)y‖ = 0. Since U is a semigroup of isometries we obtain y = πx =
0.

As an application of Theorem 3.4 and the Remark after Proposition 3.2 we obtain
the following sufficient condition for uniform stability.

Corollary 3.5. Let T be a uniformly bounded C0-semigroup on a Banach space
X, with generator A. Assume that

(i) there is a dense subspace Z ⊂ X such that σu(A, z) is countable for each
z ∈ Z,

(ii) σp(A
∗) ∩ iR = ∅.

Then T is uniformly stable.

These hypotheses are fulfilled in the following situation (see [5, Theorem 5]).

Corollary 3.6. Let T be a uniformly bounded C0-semigroup on a Banach space
X, with generator A. Let V be a C0-semigroup on another Banach space Z, with
generator B, and let C : Z → X be a bounded operator with dense range such that
T (t)C = CV (t) for all t ≥ 0. If σ(B) ∩ iR is countable and σp(A

∗) ∩ iR = ∅, then
T is uniformly stable.

Proof. By assumption, for all z ∈ Z the map λ 7→ R(λ,B)z has a holomorphic
extension Fz(λ) to a neighbourhood of {Reλ ≥ 0}\iE, where iE := σ(B) ∩ iR
is countable. The representation of the resolvents as a Laplace transform yields
CR(λ,B)z = R(λ,A)Cz for Reλ sufficiently large. It follows that CFz(λ) is a
holomorphic extension of R(λ,A)Cz to a neighbourhood of {Reλ ≥ 0}\iE. Thus,
the assumptions of Corollary 3.5 are satisfied.

If the local unitary spectrum is empty we obtain the following result.
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Corollary 3.7. Let T be a uniformly bounded C0-semigroup on a Banach space X,
with generator A. Let x ∈ X be such that σu(A, x) = ∅. Then limt→∞ ‖T (t)x‖ = 0.

This also follows from [2, Theorem 3.5] or [2, Theorem 3.7]. By [1, Example
2.5 (b)], in Theorem 3.4 and Corollary 3.7 it is not enough to assume only bound-
edness of the orbit T (·)x. However, in [7] we show for arbitrary C0-semigroups
that Theorem 3.4 is still true if the orbit is assumed to be bounded and uniformly
continuous.

4. A counterexample

A uniformly stable semigroup T with generator A always satisfies σp(A
∗)∩ iR =

∅. Thus in view of Corollary 3.5 one might ask whether the existence of a dense set
of vectors with countable local unitary spectrum is necessary for uniform stability
of a C0-semigroup T. In a slightly stronger form, this was conjectured by Huang
[12, p. 190].

In the following example we construct a uniformly stable C0-semigroup such that
for every non-zero vector x the local unitary spectrum is the whole imaginary axis.
In particular this shows that the converse of Theorem 3.4 and Corollary 3.5 is not
true and gives a negative answer to the conjecture of Huang.

Example 4.1. Let X = L1(R+, w(t) dt), where w : R+ → R+ satisfies

(i) w is non-increasing,
(ii) limt→∞ w(t) = 0,
(iii) for each a > 0 there exists a constant c > 0 such that w(t) ≥ ce−at for all

t ≥ 0.

Let T be the C0-semigroup on X defined by T (t)f(s) := f(s− t) for s ≥ t ≥ 0 and
0 else, and let A denote its generator. By (i) and (ii), for all f ∈ X we have

lim
t→∞ ‖T (t)f‖ = lim

t→∞

∫ ∞

t

|f(s− t)|w(s) ds = lim
t→∞

∫ ∞

0

|f(s)|w(s + t) ds = 0,

so T is uniformly stable. We will prove that 0 is the only element in X whose local
resolvent can be extended across some point of the imaginary axis.

By (ii), for Reλ < 0 the function

gλ(s) :=
eλs

w(s)
, s ≥ 0,

is bounded, so hλ(s) := eλs defines an element of X∗. For all f ∈ X and t ≥ 0 we
have

〈hλ, T (t)f〉 =

∫ ∞

t

f(s− t)eλs ds

=

∫ ∞

0

f(s)eλ(s+t) ds

= eλt
∫ ∞

0

f(s)eλs ds

= eλt〈hλ, f〉.
Thus,

T ∗(t)hλ = eλthλ, t ≥ 0,

so hλ ∈ D(A∗) and A∗hλ = λhλ.
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Now suppose f ∈ X is such that λ 7→ R(λ,A)f has a holomorphic extension F
to a connected neighbourhood V of some point λ0 ∈ iR. For λ ∈ V with Reλ > 0,

R(1, A)f = F (λ) + (λ − 1)R(1, A)F (λ).

By analytic continuation,

R(1, A)f = F (λ) + (λ− 1)R(1, A)F (λ) = (λ−A)R(1, A)F (λ)

for all λ ∈ V . Hence, for all λ ∈ V with Reλ < 0,∫ ∞

0

eλs(R(1, A)f)(s) ds = 〈hλ, R(1, A)f〉 = 〈(λ −A∗)hλ, R(1, A)F (λ)〉 = 0.

As a function of λ, the first of these expressions is holomorphic on {Reλ < 0} and
vanishes in {Reλ < 0} ∩ V . Therefore,∫ ∞

0

eλs(R(1, A)f)(s) ds = 0, for all Reλ < 0.

By the uniqueness of the Laplace transform, this implies that R(1, A)f = 0. Hence
f = 0 by the injectivity of R(1, A).

5. An individual Katznelson-Tzafriri theorem

In this section we prove an individual version of the Katznelson-Tzafriri theorem.
If T is a uniformly bounded C0-semigroup on X and f ∈ L1(R+) then

f̂(T)x :=

∫ ∞

0

f(t)T (t)x dt, x ∈ X,

defines a bounded operator f̂(T ) on X . Accordingly, if T is a uniformly bounded

C0-group and f ∈ L1(R), we define an operator f̂(T) on X by means of

f̂(T)x :=

∫ ∞

−∞
f(t)T (t)x dt, x ∈ X.

As usual the Fourier transform f̂ of f ∈ L1(R) is given by

f̂(s) =

∫ ∞

−∞
e−istf(t) dt, s ∈ R.

Recall that a function f ∈ L1(R) is of spectral synthesis with respect to a closed
subset E ⊂ R if there exists a sequence (fn) ⊂ L1(R) such that

(i) limn→∞ ‖f − fn‖1 = 0,

(ii) each of the Fourier transforms f̂n vanishes on a neighbourhood of E.

By regarding L1(R+) as a closed subspace of L1(R), this concept extends to func-
tions in L1(R+).

Finally we need the following well-known fact from spectral theory of isometric
groups. If U is a C0-group of isometries on a Banach space X , with generator B,

and if f ∈ L1(R) is such that f̂ vanishes in a neighbourhood of iσ(B), then f̂(U) = 0

(see [11]). Thus by approximation we obtain f̂(U) = 0 for every f ∈ L1(R) which
is of spectral synthesis with respect to iσ(B).

Now we can show the following individual version of Theorem B.
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Theorem 5.1. Let T be a uniformly bounded C0-semigroup on a Banach space X,
with generator A, and let x ∈ X. Then

lim
t→∞ ‖T (t)f̂(T)x‖ = 0

for each f ∈ L1(R+) which is of spectral synthesis with respect to iσu(A, x).

Proof. Let f ∈ L1(R+) be of spectral synthesis with respect to iσu(A, x). We

may assume that iσu(A, x) is a proper subset of R (otherwise f̂ = 0, and hence
f = 0). By renorming X we can assume that T is a semigroup of contractions.
Let (Y, π,U) be the isometric limit semigroup associated with T and let B be the
generator of U. If y := πx then σu(B, y) ⊂ σu(A, x). Let Yy be the closed linear
span of the orbit of U through y and let By be the generator of the restriction
Uy of U to Yy. Theorem 2.2 implies that σ(By) ∩ iR = σu(B, y) ⊂ σu(A, x). By
Proposition 3.3, Uy extends to a group of isometries (which we denote again by Uy)

and σ(By) ⊂ σu(A, x). Thus our above discussion yields f̂(Uy) = 0. In particular,

0 = f̂(Uy)πx = πf̂(T)x, i.e. limt→∞ ‖T (t)f̂(T)x‖ = 0.

6. Countable local spectrum and relative compactness of an orbit

A C0-semigroup T on X is called (weakly) almost periodic if for each x ∈ X the
orbit {T (t)x : t ≥ 0} is relatively (weakly) compact. Lyubich and Vũ [22, Theorem
2] have shown that if in Theorem A the assumption σp(A

∗) ∩ iR is replaced by a
certain ergodic condition on T, then the semigroup T is almost periodic (see also
[8, Theorem 8]). More precisely, the following holds.

Let T be a uniformly bounded C0-semigroup on a Banach space X, with generator
A. If σ(A) ∩ iR is countable, then the following assertions are equivalent:

(i) T is almost periodic.
(ii) T is weakly almost periodic.

(iii) lim
α↓0

α

∫ ∞

0

e−(α+λ)tT (t)x dt exists for all x ∈ X and all λ ∈ iR.

It is easy to see that in (iii) it suffices to require the convergence of the Abel
means α

∫∞
0 e−(α+λ)tT (t)x dt as α→ 0 only for λ ∈ σ(A)∩ iR. The previous result

has the following individual version.

Theorem 6.1. Let T be a uniformly bounded C0-semigroup on a Banach space X,
with generator A. Let x ∈ X be such that σu(A, x) is countable. Then the following
assertions are equivalent:

(i) The set {T (t)x : t ≥ 0} is relatively compact.
(ii) The set {T (t)x : t ≥ 0} is relatively weakly compact.

(iii) lim
α↓0

α

∫ ∞

0

e−(α+λ)tT (t)x dt exists for all λ ∈ σu(A, x).

Proof. Clearly (i) ⇒ (ii), and (ii) ⇒ (iii) is a well-known result from ergodic theory
(see [16, 2.1.5]).

(iii)⇒ (i): By renormingX we may assume that T is a semigroup of contractions.
Let Xc ⊂ X be the closed subspace of all vectors z ∈ X having a relatively compact
orbit {T (t)z : t ≥ 0}. The space Xc is invariant under T. If q : X → X/Xc is the
quotient map, then T induces a C0-semigroup of contractions T/ = {T/(t)}t≥0 on
X/Xc by means of T/(t)q(z) := q(T (t)z), z ∈ X (see [18, A-I.3.3]). The generator
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A/ of T/ satisfies R(λ,A/)q = qR(λ,A) for Reλ > 0. Thus

σu(A/, qx) ⊂ σu(A, x).

On the other hand if λ ∈ σu(A, x), then xλ := limt→∞ 1
t

∫ t
0
e−λsT (s)x ds satisfies

T (t)xλ = eλtxλ for all t ≥ 0. Thus xλ ∈ Xc, and hence

lim
α↓0

α

∫ ∞

0

e−(α+λ)tT/(t)qx dt = q

(
lim
α↓0

α

∫ ∞

0

e−(α+λ)tT (t)x dt

)
= 0

for all λ ∈ σu(A/, qx) ⊂ σu(A, x). Now we can apply Theorem 3.4 to T/ and qx
and obtain

lim
t→∞ ‖T/(t)qx‖ = 0.

For fixed ε > 0 we can find t0 ≥ 0 and z ∈ Xc such that ‖T (t0)x − z‖ < ε. Thus
‖T (t + t0)x − T (t)z‖ < ε for all t ≥ 0. If BX := {x ∈ X : ‖x‖ ≤ 1} denotes the
unit ball of X , then

{T (t)x : t ≥ 0} ⊂ Cε + εBX ,

where Cε := {T (t)x : 0 ≤ t ≤ t0} ∪ {T (t)z : t ≥ 0} is compact. Since this holds
for every ε > 0 the orbit {T (t)x : t ≥ 0} is precompact, and hence relatively
compact.

The uniform boundedness assumption cannot be weakened to boundedness of
T (·)x, as is shown by the example mentioned at the end of Section 3.

7. A quantitative individual stability result

In [6, Theorem 5.3] it was proved that if T is a semigroup of contractions such
that σ(A) ∩ iR is countable, then

lim
t→∞ ‖T (t)x‖ = inf{‖x− z‖ : z ∈ X0}, x ∈ X,

where X0 = {z ∈ X : limt→∞ ‖T (t)z‖ = 0}. If T is trivially asymptotically stable,
i.e. X0 = {0}, then T extends to a group of isometries (see [6, Theorem 4.8]). In
this section, we apply our previous results to obtain an analogue for an individual
orbit.

First we recall the following notion from harmonic analysis. A closed set E ⊂ R
is a set of spectral synthesis if every function f ∈ L1(R) whose Fourier transform

f̂ vanishes on E is of spectral synthesis with respect to E (see Section 5). It is
well-known that every countable closed set in R is a set of spectral synthesis (see
[14, VIII.7.3]).

The following lemma is a local version of [6, Proposition 4.6].

Lemma 7.1. Let T be a trivially asymptotically stable C0-semigroup of contrac-
tions on X, with generator A. Let x ∈ X be such that σu(A, x) is countable and
the linear span of the orbit through x is dense in X. Then there is a contractive
algebra homomorphism ξ : L1(R) → L(X) with the following properties:

(i) ξ(f) = f̂(T) for all f ∈ L1(R+),
(ii) ξ(gt) = T (t)ξ(g) for all g ∈ L1(R) and t ≥ 0, where gt := g( · − t),
(iii) if ĝ ≡ 0 on iσu(A, x) for g ∈ L1(R), then ξ(g) = 0.
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Proof. Let (Y, π,U) be the isometric limit semigroup associated with T and let
B be the generator of U. The linear span of the orbit of U through πx is dense
in Y . Thus Theorem 2.2 implies that E := iσ(B) ∩ R = iσu(B, x) ⊂ iσu(A, x)
is countable. By property (iv) of the isometric limit semigroup (see Section 3)
U extends to a group of isometries which we denote again by U. In particular,
iσ(B) = iσ(B) ∩ R = E.

Let f ∈ L1(R). Since E is countable, a result of Esterle, Strouse and Zouakia
[10, Lemme 3.8] (see also [6, Proposition 2.1], or [13, Théorème 2] for the discrete

case) implies that for each ε > 0 there exists h ∈ L1(R+) such that ĥ|E = f̂ |E
and ‖h‖1 ≤ (1 + ε)‖f‖1. Again by the countability of E we obtain that h − f is
of spectral synthesis with respect to E. Then (h− f )̂ (U) = 0 (see Section 5), i.e.

f̂(U) = ĥ(U). Thus f̂(U)π = ĥ(U)π = πĥ(T), and hence f̂(U)πz ∈ πX for all
z ∈ X . Since T is trivially asymptotically stable, π : X → Y is injective. So we
may define

ξ(f)z := π−1f̂(U)πz = ĥ(T)z, z ∈ X.

Then ‖ξ(f)z‖ = ‖ĥ(T)z‖ ≤ ‖h‖1‖z‖ ≤ (1 + ε)‖f‖1‖z‖ for z ∈ X . So ξ : L1(R) →
L(X) is a contraction. It follows directly from the construction that ξ is an algebra
homomorphism and that (i) and (ii) hold.

Let g ∈ L1(R) be such that ĝ vanishes on iσu(A, x) ⊃ iσ(B) = E. Since E is
countable it is a set of spectral synthesis, and as above we obtain that ĝ(U) = 0.
Thus ξ(g) = π−1ĝ(U)π = 0, which proves property (iii).

For a given C0-semigroup T on X and x ∈ X , a map η : R → X is called a
complete orbit through x if

(i) η(0) = x,
(ii) T (t)η(s) = η(t + s) for all t ≥ 0 and s ∈ R.

It follows from (i) and (ii) that η(t) = T (t)x for all t ≥ 0, so η is an extension of
T (·)x to negative t.

Now we are in a position to prove the main result of this section. It is a local
version of [6, Theorem 4.8]. Our argument simplifies the proof given there, so that
we feel justified in presenting it in detail. Recall that Tx is the restriction of T to
the closed linear span Xx of the orbit through x.

Theorem 7.2. Let T be a trivially asymptotically stable C0-semigroup of contrac-
tions on X, with generator A. Let x ∈ X be such that σu(A, x) is countable. Then
Tx extends to a C0-group of isometries. In particular for every z ∈ Xx there is a
complete isometric orbit through z.

Proof. By the Remark after Theorem 2.2 we have σu(A, x) = σu(Ax, x). Thus
without loss of generality we may assume that X = Xx.

Fix z ∈ X . Let f ∈ L1(R) be such that its Fourier transform has compact
support K. For t ∈ R we define

ηf (t) := ξ(ft)z,

where ξ is given as in the previous lemma and ft := f( · − t). Fix ε > 0. By a
well-known result from harmonic analysis (see [20, 2.6.8]) we can choose h ∈ L1(R)

such that ĥ ≡ 1 on K and ‖h‖1 ≤ 1 + ε. Then ĥf̂ = f̂ and

ηf (t) = ξ(ft)z = ξ((h ∗ f)t)z = ξ(ht ∗ f)z = ξ(ht)ξ(f)z, t ∈ R,
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where ∗ denotes the convolution. So

sup
t∈R

‖ηf (t)‖ ≤ (1 + ε)‖ξ(f)z‖.

Lemma 7.1 implies ηf (t) = ξ(ft)z = T (t)ξ(f)z = T (t)ηf(0) for t ≥ 0. Hence ηf is
a complete bounded orbit through ηf (0) = ξ(f)z and

sup
t∈R

‖ηf (t)‖ = ‖ξ(f)z‖.

Since T is trivially asymptotically stable ηf is the unique extension of T (·)ξ(f)z to
a complete bounded orbit.

We claim that there is a sequence (fn) ⊂ L1(R) such that the Fourier transform
of each fn is compactly supported and

lim
n→∞ ‖z − ξ(fn)z‖ = 0.

There is a slight abuse of notation here; the subscript n indexes the sequence (fn)
and does not mean the translate of f with respect to n.

To prove the claim, fix ε > 0. By taking a suitable non-negative function sup-
ported in a small interval [0, δ] we can find an h ∈ L1(R+) with ‖h‖1 = 1 such

that ‖z − ĥ(T)z‖ ≤ ε/2. Since the functions whose Fourier transform has compact
support are dense in L1(R) (see [14, VI.1.12]) we can find g ∈ L1(R) such that ĝ
has compact support and ‖h− g‖1 ≤ ε/(2 + ‖z‖). Then

‖z − ξ(g)z‖ ≤ ‖ξ(h− g)z‖+ ‖z − ξ(h)z‖
≤ ‖h− g‖1 ‖z‖+ ‖z − ĥ(T)z‖ ≤ ε.

This proves the claim.
For each n, let ηn(·) denote the unique complete orbit through ξ(fn)z constructed

above. Then ηn(·) − ηm(·) is the unique complete orbit through ξ(fn − fm)z and
hence

sup
t∈R

‖ηn(t)− ηm(t)‖ = ‖ξ(fn − fm)z‖ = ‖ξ(fn)z − ξ(fm)z‖.

Noting that the right hand side tends to 0 as n,m → ∞, we can define z(t) :=
limn→∞ ηn(t). Then z(·) is a complete bounded orbit through limn→∞ ηn(0) =
limn→∞ ξ(fn)z = z and

sup
t∈R

‖z(t)‖ ≤ lim sup
n→∞

‖ξ(fn)z‖ = ‖z‖.

Define

U(t)z := z(t), t ∈ R.

Then U(t) is a well-defined linear operator on X . Morover U(t)U(−t) = I and
‖U(t)‖ ≤ 1 for t ∈ R, and U(t) = T (t) for t ≥ 0. It follows that U is an isometric
group extending T.

If T is a semigroup of contractions we can use the previous theorem to obtain a
formula for the limit limt→∞ ‖T (t)x‖. For this we need the following lemma which
is proved in [6, Proposition 4.3]. Recall that X0 = {z ∈ X : limt→∞ ‖T (t)z‖ = 0}.
Lemma 7.3. Let T be a C0-semigroup of contractions on X and let T/ be the
quotient semigroup on X/ := X/X0. Then for all x ∈ X,

lim
t→∞ ‖T/(t)(x +X0)‖ = lim

t→∞ ‖T (t)x‖.
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In particular, T/ is trivially asymptotically stable.

Now we come to the announced local version of [6, Theorem 5.3].

Theorem 7.4. Let T be a C0-semigroup of contractions on a Banach space X,
with generator A. Let x ∈ X be such that σu(A, x) is countable. Then

lim
t→∞ ‖T (t)x‖ = inf{‖x− z‖ : z ∈ X0}.

Proof. Let Z := Xx be the closed linear span of the orbit through x and S := Tx

the restriction of T to Z, with generator B. Then σu(A, x) = σu(B, x) (see the
remark after Theorem 2.2). Denote by S/ the quotient semigroup on Z/ := Z/Z0,
where Z0 := {z ∈ Z : limt→∞ ‖S(t)z‖ = 0} ⊂ X0. Lemma 7.3 implies that S/ is a
trivially asymptotically stable C0-semigroup of contractions. If B/ is the generator
of S/ and q : Z → Z/ is the quotient map, then R(λ,B/)q = qR(λ,B) for all
Reλ > 0 (see [18, A-III.4.2]). Thus σu(B/, qx) ⊂ σu(B, x). Finally, the linear span
of the orbit of S/ through qx is dense in Z/. Hence, by Theorem 7.2, S/ extends
to a group of isometries, and by Lemma 7.3,

lim
t→∞ ‖T (t)x‖ = lim

t→∞ ‖S/(t)(x + Z0)‖ = ‖x+ Z0‖
≥ ‖x+X0‖.

On the other hand, since T is contractive, for all z ∈ X0 we have

lim
t→∞ ‖T (t)x‖ = lim

t→∞ ‖T (t)(x− z)‖ ≤ ‖x− z‖.
Taking the infimum over all z ∈ X0, it follows that

lim
t→∞ ‖T (t)x‖ ≤ ‖x+X0‖.

Hence

lim
t→∞ ‖T (t)x‖ = ‖x+X0‖ = inf{‖x− z‖ : z ∈ X0}.
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