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TAUBERIAN THEOREMS AND STABILITY OF SOLUTIONS

OF THE CAUCHY PROBLEM

CHARLES J. K. BATTY, JAN VAN NEERVEN, AND FRANK RÄBIGER

Abstract. Let f : R+ → X be a bounded, strongly measurable function with
values in a Banach space X, and let iE be the singular set of the Laplace trans-

form f̃ in iR. Suppose that E is countable and α
∥∥∫∞

0 e−(α+iη)uf(s + u) du
∥∥

→ 0 uniformly for s ≥ 0, as α↘ 0, for each η in E. It is shown that∥∥∥∥∫ t

0
e−iµuf(u) du− f̃(iµ)

∥∥∥∥→ 0

as t → ∞, for each µ in R \ E; in particular, ‖f(t)‖ → 0 if f is uniformly
continuous. This result is similar to a Tauberian theorem of Arendt and Batty.
It is obtained by applying a result of the authors concerning local stability of
bounded semigroups to the translation semigroup on BUC(R+,X), and it
implies several results concerning stability of solutions of Cauchy problems.

1. Introduction

Let T = {T (t) : t ≥ 0} be a C0-semigroup, with generator A, on a Banach space
X . For x in X , the orbit f(t) := T (t)x has Laplace transform given by the resolvent

f̃(λ) = R(λ,A)x for Reλ > ω, where ω is the growth bound of the semigroup. Thus
Laplace transform theory often has implications for semigroup theory. On the
other hand, one can sometimes apply semigroup results to translations on suitable
function spaces to recover information about Laplace transforms.

In this situation, Tauberian theorems relating Abel, Cesàro and standard con-
vergence of f produce results about the long-time asymptotic behaviour of orbits
of semigroups. A simple example of this is a special case of a Tauberian theorem of
Ingham [17], for which Korevaar [20] has given an elegant proof by contour integra-
tion, and which immediately gives the result that if T is a bounded semigroup and
σ(A) ∩ iR is empty, then ‖T (t)A−1‖ → 0 as t→∞. A more complicated version
of this, initiated in [1], provides an estimate which was exploited in [2] both to
establish a more general Tauberian theorem and to show that if T is a bounded
semigroup, σ(A) ∩ iR is countable and σp(A

∗) ∩ iR is empty, then ‖T (t)x‖ → 0 as
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t→∞, for each x in X . In this case, the Tauberian theorem and the semigroup
theorem, although derived from the same source, are independent results (see the
survey articles [6] and [7] for accounts of developments of the two themes). The
semigroup theorem was obtained independently by Lyubich and Vũ Quôc Phóng
[23], using a completely different functional-analytic method.

For semigroups which are not uniformly bounded, a few results have been ob-
tained [2], [4], [5], [10], [12], showing that ‖T (t)x‖ → 0 for an individual vector
x, assuming that the orbit is bounded and/or uniformly continuous, and also as-
suming global spectral conditions. In a different development using both complex-
analytic and functional-analytic techniques, some complementary results have been
obtained for bounded semigroups, where the spectral conditions apply on a densely
embedded subspace [16], [8]. Recently, we obtained a result for individual orbits of
bounded semigroups, where the spectral condition is truly local as it applies only
to that orbit [9].

In this paper, we reverse the usual direction of flow between Tauberian theo-
rems and asymptotic behaviour of semigroups, and we also unify the two strands
described in the last paragraph. We establish that the results of [9] can be applied

to translation semigroups, by showing that the singular set of f̃ in iR coincides
with the local unitary spectrum at f of the generator of the translation semigroup.
We thereby obtain a new Tauberian theorem for bounded functions whose Laplace
transforms have only countably many singularities on the imaginary axis (Theorem
4.3). The theorem is similar in format to [2, Theorem 4.1], but the conditions are
somewhat different. The result is directly applicable to semigroups and it easily
implies all the semigroup results mentioned above. In addition, it gives new results
for bounded, uniformly continuous orbits of unbounded semigroups (or of ill-posed
Cauchy problems), assuming only local spectral conditions (Section 5). Related
results have been obtained in [4], [12], [25], [29].

In [9], we also obtained local versions of several other related theorems concerning
asymptotic behaviour of bounded semigroups. Our techniques enable us to give
corresponding theorems for Laplace transforms (Theorems 4.1, 4.6 and 4.7). The
Tauberian theorem for Laplace transforms also implies corresponding theorems for
power series, and hence local stability results for single operators (Section 6).

2. A uniform bound

Throughout the paper, X will be a complex Banach space, R+ will be the half-
line [0,∞), C+ will be the half-plane {z ∈ C : Re z > 0}. For z in C and r > 0, we
will put B(z, r) = {w ∈ C : |w − z| < r}.

Let f : R+ → X be strongly measurable, and let f̃ be the Laplace transform of
f :

f̃(z) =

∫ ∞

0

e−tzf(t) dt.

We assume that f̃(z) exists for all z in C+, so f̃ is holomorphic in C+ (usually, f

will be bounded). A point λ = iη in iR is said to be a regular point for f̃ if there
is an open neighbourhood U of λ in C and a holomorphic function g : U → X such

that g(z) = f̃(z) whenever z ∈ U ∩ C+. The singular set iE of f̃ is the set of all
points of iR which are not regular points.
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For s ≥ 0, we shall use the notation fs to denote the translate of f , so fs(t) =
f(s+ t) (t ∈ R+).

Let f : R+ → X be bounded and strongly measurable. The old result of Ingham
[17, Theorem I], or the special case proved in a simple way by Korevaar [20, p.113],

shows that, for each regular point iη of f̃ in iR,

sup
s≥0

∥∥∥∥∫ s

0

e−iηtf(t) dt

∥∥∥∥ <∞.

As we shall see in the first paragraph of the proof of Proposition 2.1, this is es-
sentially the same as saying that sups≥0 ‖gs(iη)‖ < ∞, where gs is a holomorphic

extension of f̃s. We shall need to extend such uniform bounds into the left half-
plane. We do this in the following proposition, using an old technique involving
factors such as 1+ z2/r2, which has already been employed many times in this area
[20], [1], [2], [16], [8], [9].

Proposition 2.1. Let f : R+ → X be bounded and strongly measurable, let E

be the singular set of f̃ and let g : V → X be a holomorphic extension of f̃ to

a connected open neighbourhood V of C+ ∪ i(R \ E). For each s ≥ 0, f̃s has a
holomorphic extension gs : V → X. Moreover, for each λ in V , there exist a
neighbourhood U of λ in V and a constant c such that ‖gs(z)‖ ≤ c for all s ≥ 0 and
all z in U .

Proof. For Re z > 0,

f̃s(z) =

∫ ∞

0

e−tzf(s+ t) dt

=

∫ ∞

s

e−(t−s)zf(t) dt

= esz
(
f̃(z)−

∫ s

0

e−tzf(t) dt

)
.

Thus we may take

gs(z) = esz
(
g(z)−

∫ s

0

e−tzf(t) dt

)
(z ∈ V )

as the holomorphic extension of f̃s.
If Reλ > 0, then we may take r > 0 such that Reλ− 2r ≥ 0. For z in B(λ, r),

‖gs(z)‖ =
∥∥∥f̃s(z)∥∥∥ ≤ ∫ ∞

0

e−rt‖f(s+ t)‖ dt ≤ ‖f‖∞
r

,

so we may take U = B(λ, r) and c = ‖f‖∞/r.
If λ ∈ V and Reλ < 0, then we may take r > 0 such that 2r + Reλ ≤ 0 and

B(λ, r) ⊆ V . For z in B(λ, r),

‖gs(z)‖ ≤M +

∫ s

0

e−r(s−t)‖f‖∞ dt ≤M +
‖f‖∞
r

,

whereM = sup|z−λ|≤r ‖g(z)‖. Thus we may take U = B(λ, r) and c = M+‖f‖∞/r.
Now suppose that λ ∈ iR \ iE. Choose r > 0 such that B(λ, 2r) ⊆ V . Let

hs(z) =

(
1 +

(z − λ)2

4r2

)
gs(z) (z ∈ V ).
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For z = λ+ 2reiθ, where −π/2 < θ < π/2,

‖hs(z)‖ =
∣∣1 + e2iθ

∣∣ ‖f̃s(z)‖
≤ 2 cos θ

∫ ∞

0

e−2rt cos θ‖f(s+ t)‖ dt

≤ 2 cos θ
‖f‖∞

2r cos θ

=
‖f‖∞
r

.

For z = λ+ 2reiθ, where π/2 < θ < 3π/2,

‖hs(z)‖ =
∣∣1 + e2iθ

∣∣ ∥∥∥∥eszg(z)− ∫ s

0

e(s−t)zf(t) dt

∥∥∥∥
≤ 2| cos θ|

(
M +

∫ s

0

e2r(s−t) cos θ‖f(t)‖ dt
)

≤ 2| cos θ|
(
M +

(1− e2rs cos θ)‖f‖∞
2r| cos θ|

)
≤ 2M +

‖f‖∞
r

,

where M = sup|z−λ|≤2r ‖g(z)‖. Thus ‖hs(z)‖ ≤ 2M + ‖f‖∞/r whenever

|z − λ| = 2r. By the Maximum Modulus Principle, ‖hs(z)‖ ≤ 2M + ‖f‖∞/r
whenever |z − λ| ≤ 2r. In particular if |z − λ| < r,

‖gs(z)‖ ≤ ‖hs(z)‖
|1 + (z − λ)2/4r2| ≤

4

3

(
2M +

‖f‖∞
r

)
.

We may therefore take U = B(λ, r) and c =
4

3

(
2M +

‖f‖∞
r

)
.

3. The singular set and the local spectrum

In this section, we shall establish that the singular set of f̃ in iR coincides with
the local unitary spectrum at f of the generator of the translation semigroup on
the space of bounded, uniformly continuous functions.

Let T = {T (t) : t ≥ 0} be a C0-semigroup on a Banach space X , with generator
A and growth bound ω, and let x ∈ X . The local unitary spectrum, σu(A, x), of
A at x is defined to be the set of all points λ in iR such that there do not exist
an open neighbourhood U of λ and a holomorphic function g : U ∪ C+ → X with
g(z) = R(z, A)x = (zI − A)−1x for Re z > ω. For a bounded semigroup, σu(A, x)

is the singular set of f̃ , where f(t) = T (t)x is a mild solution of the associated
(well-posed) Cauchy problem. In Section 5, we shall return to this point in the
more general context of ill-posed Cauchy problems.

Let S = {S(t) : t ≥ 0} be the C0-semigroup of contractions on BUC(R+, X)
defined by

S(t)f = ft, where ft(s) = f(s+ t) (s, t ≥ 0; f ∈ BUC(R+, X)).

Given f in BUC(R+, X), we shall show in Proposition 3.3 that the singular set of

f̃ in iR coincides with σu(D, f), where D is the generator of S.
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Proposition 3.1. Let f : R+ → X be bounded and uniformly continuous, let iE

be the singular set of f̃ , and let g : V → X be a holomorphic extension of f̃ to a
connected open set V containing C+∪i(R\E). For s ≥ 0, let gs be as in Proposition
2.1. Then for each z in V , the map s 7→ gs(z) is uniformly continuous.

Proof. First, suppose that Re z > 0. For δ > 0 and |s− s′| < δ,

‖gs(z)− gs′(z)‖ =

∥∥∥∥∫ ∞

0

e−tz (f(s+ t)− f(s′ + t)) dt

∥∥∥∥
≤ 1

Re z
sup

|t−t′|<δ
‖f(t)− f(t′)‖

→ 0 as δ → 0.

Next, suppose that z ∈ iR \ iE. Then

gs(z) = esz
(
g(z)−

∫ s

0

e−tzf(t) dt

)
.

Now, s 7→ esz is bounded and uniformly continuous. Since t 7→ e−tzf(t) is bounded,
s 7→ g(z)− ∫ s

0
e−tzf(t) dt = e−szgs(z) is uniformly continuous. Moreover, Proposi-

tion 2.1 shows that this map is bounded. Hence s 7→ gs(z) is uniformly continuous.
Finally, suppose that Re z < 0 and z ∈ V . Then s 7→ eszg(z) is uniformly

continuous, so it suffices to check that s 7→ ∫ s
0 e

(s−t)zf(t) dt is uniformly continuous.
Now, for s ≥ s′ ≥ 0,∥∥∥∥∥

∫ s

0

e(s−t)zf(t) dt−
∫ s′

0

e(s
′−t)zf(t) dt

∥∥∥∥∥
=

∥∥∥∥∥
∫ s′

0

(
e(s−t)z − e(s

′−t)z
)
f(t) dt +

∫ s

s′
e(s−t)zf(t) dt

∥∥∥∥∥
≤
∣∣∣esz − es

′z
∣∣∣ ∫ s′

0

e|Re z|t‖f(t)‖ dt+

∫ s

s′
‖f(t)‖ dt

≤ es
′ Re z

∣∣∣e(s−s′)z − 1
∣∣∣ es′|Re z|

|Re z| ‖f‖∞ + (s− s′)‖f‖∞

=


∣∣∣e(s−s′)z − 1

∣∣∣
|Re z| + (s− s′)

 ‖f‖∞

→ 0

as s− s′ → 0.

For f in BUC(R+, X) with singular set iE, let g : V → X be a holomorphic

extension of f̃ to a connected open set V containing C+ ∪ i(R \ E). Propositions
2.1 and 3.1 show that we may define G : V → BUC(R+, X) by

G(z)(s) = gs(z) (s ∈ R+, z ∈ V ).

Proposition 3.2. Let f : R+ → X be bounded and uniformly continuous, and let
G : V → BUC(R+, X) be as above. Then G is holomorphic.
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Proof. Let λ ∈ V , and let r and c be as in Proposition 2.1. For λ′ ∈ B(λ, r),

‖G(λ)(s) −G(λ′)(s)‖ =

∥∥∥∥∥ 1

2πi

∫
|z−λ|=r

(
gs(z)

z − λ
− gs(z)

z − λ′

)
dz

∥∥∥∥∥
≤ r sup

|z−λ|≤r
‖gs(z)‖ sup

|z−λ|=r

∣∣∣∣ 1

z − λ
− 1

z − λ′

∣∣∣∣
≤ c

|λ− λ′|
r − |λ− λ′|

→ 0 as λ′ → λ,

uniformly in s. Thus G : V → BUC(R+, X) is continuous.
Let γ be a closed contour in V . Then(∫

γ

G(z) dz

)
(s) =

∫
γ

gs(z) dz = 0.

By Morera’s Theorem, G is holomorphic.

Proposition 3.3. Let f : R+ → X be bounded and uniformly continuous. Then

σu(D, f) is the set of all singular points of f̃ in iR.

Proof. Suppose that λ in iR is a regular point of R(·, D)f , and let G be a holomor-
phic extension of this function near λ. Let g(z) = G(z)(0). For Re z > 0,

g(z) = (R(z,D)f)(0) =

∫ ∞

0

e−tz(S(t)f)(0) dt =

∫ ∞

0

e−tzf(t) dt = f̃(z).

Thus g is a holomorphic extension of f̃ , so λ is a regular point of f̃ .

Suppose that λ in iR is a regular point of f̃ . Let g : V → X be a holomorphic

extension of f̃ near λ. By Proposition 3.2, there is a holomorphic function G : V →
BUC(R+, X) such that, for Re z > 0 and s ≥ 0,

G(z)(s) = gs(z) =

∫ ∞

0

e−tzf(s+ t) dt =

∫ ∞

0

e−tz(S(t)f)(s) dt = (R(z,D)f)(s).

Thus G extends R(·, D)f , so λ /∈ σu(D, f).

The following example shows that the local unitary spectrum at x of the genera-
tor of a (bounded) semigroup may be much smaller than the imaginary part of the
spectrum of the generator restricted to any closed invariant subspace containing x.
This contrasts with the situation for bounded C0-groups, where the local unitary
spectrum (now defined by means of the resolvent on C\ iR instead of C+) coincides
with the spectrum of the generator on a subspace [29, Propositions 3.4, 3.5].

Example 3.4. Let X = C. There is a function f in C0(R+) such that the linear

span of {ft : t ≥ 0} is dense in C0(R+), but f̃(z) extends to a holomorphic function
for Re z > −1. By Proposition 3.3, σu(D, f) is empty, but the spectrum of the
generator of the translation semigroup S on the closed linear span of the orbit of f
under S is the closed left half-plane.
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To construct such an f , let {f (k) : k = 1, 2, . . .} be a dense subset of the unit
ball of {g ∈ C0(R+) : g(0) = 0} such that each f (k) has support in [0, 2k], and let

f(t) = exp
(−(2n+1 + 2k+1)2

)
f (k)(t− 2n+1 − 2k)

(2n+1 + 2k ≤ t < 2n+1 + 2k+1; k = 1, . . . , n;n = 1, 2, . . . ),

with f(t) = 0 for all remaining t ≥ 0. Then

f̃(z) =

∞∑
n=1

n∑
k=1

exp
(−(2n+1 + 2k)z − (2n+1 + 2k+1)2

)
(f (k))̃ (z).

This series converges locally uniformly to a holomorphic function on C, and the
closed linear span of the translates of f contains each f (k).

4. The Tauberian theorems

We are now in position to give the Tauberian theorems, starting with the case
of bounded, uniformly continuous functions.

Recall that a bounded, uniformly continuous function h : R → X is said to
be almost periodic if h can be approximated uniformly by linear combinations of
functions of the form t 7→ eiatx (a ∈ R, x ∈ X). A function f : R+ → X is said to
be asymptotically almost periodic if there is an almost periodic function h : R → X
such that ‖f(t)− h(t)‖ → 0 as t→∞.

Theorem 4.1. Let f : R+ → X be bounded and uniformly continuous, and suppose

that the singular set iE of f̃ in iR is countable. Suppose also that, for each η in E,

lim
α↘0

αf̃s(α+ iη)(*)

exists, uniformly for s ≥ 0. Then f is asymptotically almost periodic.
If the limit in (∗) is 0, uniformly in s, for each η in E, then ‖f(t)‖ → 0 as

t→∞.

Proof. By Proposition 3.3, σu(D, f) = iE. Condition (*) implies that

lim
α↘0

α

∫ ∞

0

e−(α+iη)tS(t)f dt = lim
α↘0

αR(α+ iη,D)f

exists in BUC(R+, X). By [9, Theorem 6.1], {S(t)f : t ≥ 0} is relatively compact.
By the Glicksberg-de Leeuw Theorem [22, Section 2.4], applied in the closed linear
span Y of {ft : t ≥ 0}, f = g + h, where g, h ∈ Y , ‖S(t)g‖ → 0 and h is in the
closed linear span of the unimodular eigenvectors of S, so h extends to an almost
periodic function on R.

If the limits in (*) are all 0, then h = 0, by [9, Theorem 3.4].

For the real line R, a related result is proved in [25, Theorem 3.9].

Remark. In Theorem 4.1, it suffices that the limits in (*) exist uniformly for s in
some subset Q of R+, where Q has the property that there is a constant d such that
each point of R+ is within distance d of Q (for example, Q = Z+). This follows
from the formula

f̃s(z) = e(s−s
′)z f̃s′(z)−

∫ s

s′
e(s−t)zf(t) dt.
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Now we give an example which shows (in the case β = 0) that the assumption
of uniform convergence in s cannot be omitted from Theorem 4.1, and which also
exhibits (in the case 0 < β < 1/2) the difference between Theorem 4.1 and [1,
Theorem 4.3].

Example 4.2. Let X = C and f(t) = t−β sin
√
t, where 0 ≤ β < 1/2. Then f is

bounded and uniformly continuous. By expanding sin
√
t as a power series in

√
t

and integrating term by term,

f̃(z) =
1

z
3
2−β

∞∑
n=0

(−1)n+1Γ(n+ 3
2 − β)

(2n+ 1)!zn
(Re z > 0).

This function has a holomorphic extension to C \ (−∞, 0], so the singular set of f̃
is {0}.

In the case β = 0,

f̃(z) =

√
πe−1/4z

2z3/2
,

αf̃s(α) = αesα
(√

πe−1/4α

2α3/2
−
∫ s

0

e−αt sin
√
t dt

)
→ 0

as α ↘ 0, for each s ≥ 0. Nevertheless, f(t) does not tend to 0. See [26, p. 608]
and [25, Example 3.12] for other treatments of this example.

In the case 0 ≤ β < 1/2,∫ ((2n+ 3
4 )π)2

((2n+ 1
4 )π)2

f(t) dt ≥ (4n+ 1)π2

2
√

2((2n + 3
4 )π)

β
2

→∞

as n→ ∞. Hence supt≥0

∣∣∣∫ t0 f(s) ds
∣∣∣ = ∞. Thus f does not satisfy the conditions

of [1, Theorem 4.1]. But for 0 < β < 1/2, f does satisfy the conditions of Theorem
4.1 and Theorem 4.3 of this paper.

Next, we give two versions of Theorem 4.1 in which we assume either that f is
bounded or that it is uniformly continuous. Theorem 4.3 should be compared with
[2, Theorem 4.1], and Corollary 4.4 with [5, Theorem 2.3], [10, Theorem 1] and [3,
Theorem 3.5].

Theorem 4.3. Let f : R+ → X be a bounded measurable function, and suppose

that the singular set iE of f̃ in iR is countable. Suppose also that, for each η in E,

lim
α↘0

αf̃s(α+ iη) = 0,(*)

uniformly for s ≥ 0. Then
∫ t
0 e

−iµuf(u) du→ f̃(iµ) as t→∞, for each µ in R\E,

where f̃ is considered to be extended holomorphically near iµ.

Proof. Replacing f(t) by e−iµtf(t), we may first assume that µ = 0. Then replacing

f(t) by f(t)− e−tf̃(0), we may assume that f̃(0) = 0.
Let

g(t) =

∫ t

0

f(u) du = f̃(0)− f̃t(0).
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Then g is uniformly continuous, since f is bounded, and g is bounded, by Proposi-

tion 2.1. For Re z > 0, g̃(z) = f̃(z)/z, whose singularity at z = 0 is removable, so
g̃ has singular set iE. Moreover,

g̃s(z) =
f̃s(z) + g(s)

z
(Re z > 0),

so, for η in E,

lim
α↘0

αg̃s(α+ iη) = 0

uniformly in s, since g is bounded and (*) holds. We may therefore apply Theorem
4.1 to g, and deduce that g(t) → 0 as t→∞.

Remarks. 1. The last statement of Theorem 4.1 can be recovered from Theorem 4.3,

since convergence of
∫ t
0 e

−iµuf(u) du (as t→∞) for some µ in R implies convergence
of f(t) to 0, if f is uniformly continuous.

2. For bounded functions, Abel convergence is equivalent to Cesàro convergence
[15, Theorem 18.3.3]. The corresponding statement for convergence uniformly in s
also holds. Thus the limits in (*) of Theorems 4.1 and 4.3 may be replaced by

lim
t→∞

1

t

∫ t

0

e−iηuf(s + u) du.

Corollary 4.4. Let f : R+ → X be uniformly continuous, and suppose that the

singular set iE of f̃ in iR is countable. Suppose also that, for each η in E,

lim
α↘0

αf̃s(α+ iη) = 0

uniformly for s ≥ 0. Then ‖f(t)‖ → 0 as t→∞.

Proof. We follow the argument of [5, Theorem 2.3], [10, Theorem 1] and [3, Theorem
3.5]. Take δ > 0, and let

g(t) = f(t+ δ)− f(t).

Then g is bounded and uniformly continuous. For Re z > 0,

g̃(z) =

∫ ∞

0

e−tzf(t + δ) dt− f̃(z) = (eδz − 1)f̃(z)− eδz
∫ δ

0

e−tzf(t) dt.

Thus the singular set of g is contained in iE. For η in E,

lim
α↘0

αg̃s(α + iη) = lim
α↘0

αf̃s+δ(α + iη)− lim
α↘0

αf̃s(α+ iη) = 0

uniformly in s. If 0 /∈ E, then Theorem 4.3 can be applied with µ = 0, giving

0 = lim
t→∞

∥∥∥∥∫ t

0

g(u) du− g̃(0)

∥∥∥∥ = lim
t→∞

∥∥∥∥∥
∫ t+δ

t

f(u) du

∥∥∥∥∥ .
Since this holds for all δ > 0 and since f is uniformly continuous, it follows that
‖f(t)‖ → 0, if 0 /∈ E.

Now, suppose that 0 ∈ E. By hypothesis, there exists α > 0 such that ‖αf̃s(α)‖
< 1 for all s ≥ 0. By uniform continuity, there exists κ such that ‖f(s+ t)− f(s)‖
< κ(1 + t) for all s ≥ 0 and t ≥ 0. Now

‖f(s)‖ =

∥∥∥∥αf̃s(α)−
∫ ∞

0

αe−αt(f(s+ t)− f(s)) dt

∥∥∥∥ < 1 + κ + κ/α.
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Thus f is bounded, so the result follows from Theorem 4.1.

Corollary 4.5. Let f : R+ → X be bounded and uniformly continuous, and sup-

pose that the singular set of f̃ is contained in 2πω−1iZ for some ω > 0. Then
‖f(t+ ω)− f(t)‖ → 0 as t→∞.

Proof. Let g(t) = f(t+ω)−f(t). For s ≥ 0, n ∈ Z, and α > 0, a calculation similar
to Corollary 4.4 shows that

‖αg̃s(α + 2πin/ω)‖

=

∥∥∥∥α (eαω − 1) f̃s(α+ 2πin/ω)− αeαω
∫ ω

0

e−(α+2πin/ω)uf(s+ u) du

∥∥∥∥
≤ (eαω − 1) ‖f‖∞ + αeαωω‖f‖∞
→ 0

as α↘ 0, uniformly in s. Thus the result follows from Corollary 4.4.

To conclude this section, we apply other results from [9] to the classical situation
of Laplace transforms.

Theorem 4.6. Let f : R+ → X be bounded and uniformly continuous, and suppose

that the singular set of f̃ in iR is countable. Let Y be the closed linear span of
{ft : t ≥ 0} in BUC(R+, X). For any α > lim supt→∞ ‖f(t)‖, there exists g in Y
such that ‖f − g‖∞ < α and g(t) → 0 as t→∞.

Proof. This follows from Proposition 3.3, [9, Theorem 7.4] and the observation that
the local spectrum of D at f is unchanged by restriction to Y (see the remark after
Theorem 2.2 of [9]).

Recall that a function g in L1(R) is said to be of spectral synthesis with respect to
a closed subset E of R if there is a sequence (gn) in L1(R) such that ‖gn− g‖1 → 0
and, for each n, the Fourier transform ĝn vanishes on some neighbourhood of E in
R. For g in L1(R+), we consider g to be extended to R by putting g(s) = 0 for
s < 0, so it is meaningful to talk of g being of spectral synthesis.

The next result is a local version of [14, Théorème II.7].

Theorem 4.7. Let f : R+ → X be bounded and strongly measurable, and let iE

be the singular set of f̃ in iR. Let g ∈ L1(R+) and suppose that g is of spectral
synthesis with respect to −E. Then∥∥∥∥∫ ∞

0

g(s)f(s+ t) ds

∥∥∥∥→ 0

as t→∞.

Proof. If f is bounded and uniformly continuous, this result follows from Proposi-
tion 3.3 and [9, Theorem 5.1]. We shall use this special case to obtain the general
result.

Suppose that f is bounded and strongly measurable. Let

fn(t) = n

∫ 1/n

0

f(t+ u) du.
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Then fn is bounded and uniformly continuous. For Re z > 0,

f̃n(z) = n

∫ ∞

0

∫ 1/n

0

e−tzf(t+ u) du dt

= n

∫ 1/n

0

∫ ∞

0

e−(t+u)zf(t+ u) dt euz du

= n

∫ 1/n

0

∫ ∞

u

e−tzf(t) dt euz du

= n

∫ 1/n

0

f̃(z)euz du − n

∫ 1/n

0

∫ u

0

e−(t−u)zf(t) dt du

= n

(
ez/n − 1

z

)
f̃(z)− n

∫ 1/n

0

∫ u

0

e−(t−u)f(t) dt du.

Thus the singular set of f̃n is contained in iE. It follows from the first paragraph
that ∥∥∥∥∫ ∞

0

g(s)fn(s+ t) ds

∥∥∥∥→ 0 as t→∞.

But∥∥∥∥∫ ∞

0

g(s)fn(s+ t) ds−
∫ ∞

0

g(s)f(s + t) ds

∥∥∥∥
=

∥∥∥∥∥n
∫ 1/n

0

∫ ∞

0

g(s)f(s+ t + u) ds du−
∫ ∞

0

g(s)f(s+ t) ds

∥∥∥∥∥
=

∥∥∥∥∥n
∫ 1/n

0

∫ ∞

0

(g(s− u)− g(s))f(s + t) ds du

∥∥∥∥∥
≤ ‖f‖∞ sup

0≤u≤1/n

∫ ∞

0

|g(s− u)− g(s)| ds

→ 0 as n→∞ (uniformly in t),

where we make the convention that g(s) = 0 if s < 0. It follows that∥∥∥∥∫ ∞

0

g(s)f(s + t) ds

∥∥∥∥→ 0.

Corollary 4.8. Let f : R+ → X be bounded and strongly measurable, and let iE

be the singular set of f̃ in iR. Let g : R+ → C be measurable, and suppose that∫∞
0 (1 + tα)|g(t)| dt < ∞ for some α > 1/2 and that

∫∞
0 eiηtg(t) dt = 0 for all η in

E. Then ∥∥∥∥∫ ∞

0

g(s)f(s+ t) ds

∥∥∥∥→ 0

as t→∞.

Proof. This follows from Theorem 4.7 and the fact that g is of spectral synthesis
with respect to −E [24, Theorem 11.1].
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5. The Cauchy problem

Consider an abstract inhomogeneous Cauchy problem

u′(t) = Au(t) + f(t) (t ≥ 0), u(0) = x.(ICP)

We assume throughout this section that A is a closed linear operator on a Ba-
nach space X , λI − A is injective for all sufficiently large real λ, x ∈ X and
f ∈ BUC(R+, X). We seek to obtain information about u from assumptions about
A and f . Similar problems have been considered in [4], [12] (homogeneous prob-
lems) and [25] (problems on R).

A mild solution of (ICP) is a continuous function u : R+ → X such that if

v(t) =
∫ t
0
u(s) ds, then v(t) ∈ D(A) and v′(t) = Av(t) + x+

∫ t
0
f(s) ds for all t ≥ 0.

Proposition 5.1. Let u be a bounded, uniformly continuous, mild solution of the
inhomogeneous Cauchy problem (ICP).

1. For Re z > 0, ũ(z) ∈ D(A) and (zI −A)ũ(z) = x+ f̃(z).
2. Suppose that there is a holomorphic function g : C+ → X such that g(z) ∈

D(A) and (zI −A)g(z) = x+ f̃(z) for all z in C+. Then g(z) = ũ(z) for all
z in C+.

Proof. (1). For Re z > 0,

∫ ∞

0

Av(t)e−tz dt =

∫ ∞

0

(
u(t)− x−

∫ t

0

f(s) ds

)
e−tz dt = ũ(z)− z−1x− z−1f̃(z).

Since these integrals are absolutely convergent and A is closed, ṽ(z) ∈ D(A) and

Aṽ(z) = ũ(z)− z−1x− z−1f̃(z).

Now, ũ(z) = zṽ(z), so ũ(z) ∈ D(A) and

Aũ(z) = zũ(z)− x− f̃(z).

(2). For Re z > 0,

(zI −A)g(z) = x+ f̃(z) = (zI −A)ũ(z).

For all sufficiently large real λ, λI − A is injective, so g(λ) = ũ(λ). It follows by
analytic continuation that g(z) = ũ(z) whenever Re z > 0.

Corollary 5.2. Let u be a bounded, uniformly continuous, mild solution of (ICP).
The singular set of ũ in iR is the set of all points λ in iR such that there is no
holomorphic function g : U → X, defined on an open set U containing C+ ∪ {λ},
with g(z) ∈ D(A) and (zI −A)g(z) = x+ f̃(z) for all z in C+.

Theorem 4.1 now has the following formulation for solutions of (ICP). Other
sufficient conditions for the solutions to be asymptotically almost periodic have
been given in [4]. In the case of solutions defined on the whole line R, a sharper
result has been given in [25, Theorem 4.3].

Theorem 5.3. Let u be a bounded, uniformly continuous, mild solution of (ICP).
Suppose that there is a subset E of R such that

1. E is countable,
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2. there is an open set U containing C+ ∪ i(R \ E) and a holomorphic function

g : U → X such that g(z) ∈ D(A) and (zI − A)g(z) = x + f̃(z) for all z in
C+,

3. for each η in E,

lim
α↘0

αũs(α+ iη)

exists, uniformly for s ≥ 0.

Then u is asymptotically almost periodic. If the limits in 3 are all zero, then
‖u(t)‖ → 0 as t→∞.

When the conditions of Theorem 5.3 are satisfied, u = u1 +u2, where ‖u1(t)‖ →
0, u2 extends to an almost periodic function on R, and u1 and u2 belong to the
closed linear span of the translates of u.

In the homogeneous case when f = 0, u1 and u2 are mild solutions of the
homogeneous Cauchy problem and u2 can be approximated uniformly by linear
combinations of functions of the form t 7→ eiµty where µ ∈ R, y ∈ D(A) and
Ay = iµy. In this case, the following result shows that condition (2) of Theorem
5.3 is automatically satisfied when E contains σap(A) ∩ iR, where σap(A) is the
approximate point spectrum of A. Hence Theorem 5.3 extends [12, Theorem 4].

Proposition 5.4. Let u be a bounded, uniformly continuous, mild solution of the
homogeneous Cauchy problem. The singular set of ũ in iR is contained in the
approximate point spectrum σap(A) of A.

Proof. Let Z0 be the Hille-Yosida space [18], [21], consisting of all those y in X
for which there is a bounded, uniformly continuous, mild solution v(t, y) of the
homogeneous Cauchy problem with v(0, y) = y. In the norm

‖y‖Z0 = sup
t≥0

‖v(t, y)‖,

Z0 becomes a Banach space which is isometrically isomorphic to a closed subspace
Y of BUC(R+, X) under the map V given by

(V y)(t) = v(t, y).

Moreover, Y is invariant under the translation semigroup S, and the corresponding
C0-semigroup T0 on Z0 is given by

T0(t)y = v(t, y).

The generator A0 of T0 is the part of A in Z0 and σ(A0) ⊆ σ(A) [11, Theorem 5.5],
[12, Corollary 2].

For Re z > 0, ũ(z) = R(z, A0)x. Hence any singular point λ = iη is in the
topological boundary of σ(A0), and hence in the approximate point spectrum of A0.
Thus there is a sequence (xn) inD(A0) such that ‖xn‖Z0 = 1 and ‖A0xn−λxn‖Z0 →
0. There exist tn ≥ 0 such that ‖T0(tn)xn‖ ≥ 1/2. If we put yn = T0(tn)xn, then
‖yn‖ ≥ 1/2, yn ∈ D(A) and

‖Ayn − λyn‖ ≤ ‖A0yn − λyn‖Z0 ≤ ‖A0xn − λxn‖Z0 → 0.

Thus λ is an approximate eigenvalue of A.

Now, suppose that the homogeneous Cauchy problem is well-posed, so that A
generates a C0-semigroup T = {T (t) : t ≥ 0} on X . Then the assumptions of
this section are satisfied, and mild solutions of the Cauchy problem are of the
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form u(t, x) = T (t)x. For a bounded mild solution u(t, x), the singular set of ũ is
the local unitary spectrum σu(A, x). Thus Theorem 5.3 extends [9, Theorem 6.1]
and [9, Theorem 3.4] from orbits of bounded semigroups to bounded, uniformly
continuous orbits of general semigroups, and Theorem 4.7 permits [9, Theorem 5.1]
to be extended in the same way. We can also extend part of [9, Theorem 7.2], as
follows.

Theorem 5.5. Let T be a trivially asymptotically stable C0-semigroup on X with
generator A (so that lim supt→∞ ‖T (t)y‖ > 0 for all non-zero y in X). Let x ∈ X,
and u(t) = T (t)x. Suppose that u is bounded and uniformly continuous, and that
σu(A, x) is countable. Then T has a complete bounded orbit through x, that is,
there is a bounded family {xt; t ∈ R} in X such that x0 = x and T (s)xt = xs+t (t ∈
R, s ∈ R+).

Proof. Consider the shift semigroup S restricted to the closed subspace Y of
BUC(R+, X) generated by {ut : t ≥ 0}. This subspace consists of orbits of T,
so the shift semigroup is trivially asymptotically stable. By Proposition 3.3 and
[9, Theorem 7.2], S has a complete isometric orbit {vt : t ∈ R} through u in Y .
Putting xt = vt(0) produces the required complete bounded orbit in X .

Examples of unbounded semigroups where results of this type are applicable can
be constructed in a similar way to Example 3.4, but working in weighted spaces
such as

X = {f ∈ C0(R+) : ‖f(t)‖/(1 + t) → 0 as t→∞} .

6. The discrete case

In this section, we adapt our results to the case of power series. As in [5, Section
5], we deduce them from those about Laplace transforms by introducing an auxiliary
function f . In the present context, we need to arrange that f is both bounded and
uniformly continuous.

Suppose that (an)n≥0 is a sequence in X such that lim supn→∞ ‖an‖1/n ≤ 1.
Let h(z) be the power series

h(z) =

∞∑
n=0

anz
n (|z| < 1).

Let E be the singular set of h in the unit circle Γ. For m ≥ 0, let

hm(z) =

∞∑
n=0

an+mz
n =

h(z)−∑m−1
n=0 anz

n

zm
(0 < |z| < 1).

Define f : R+ → X by

f(t) = (n + 1− t)an + (t− n)an+1 (n ≤ t < n + 1;n ≥ 0).



TAUBERIAN THEOREMS AND STABILITY 2101

For Re z > 0,

f̃(z) =

∞∑
n=0

∫ n+1

n

((n + 1− t)an + (t− n)an+1) e
−tz dt

=

∞∑
n=0

ane
−nz

(∫ 1

0

(1− t)e−tz dt
)

+

∞∑
n=0

an+1e
−(n+1)zez

(∫ 1

0

te−tz dt
)

= h(e−z)
(
z + e−z − 1

z2

)
+ (h(e−z)− a0)

(
ez − z − 1

z2

)
= h(e−z)

(
2(cosh z − 1)

z2

)
− a0

(
ez − 1− z

z2

)
.

Thus the singular set iE′ of f̃ in iR is contained in {iη : η ∈ R, e−iη ∈ E}. Moreover,
for η in E′ and m ≥ 0,

lim
α↘0

αf̃m(α+ iη) =

(
lim
r↗1

(1− r)hm(re−iη)
)(

2(1− cos η)

η2

)
,

since (1− e−α)/α→ 1 as α↘ 0.
This enables us to deduce the following results from those in Section 4.

Theorem 6.1. Let (an)n≥0 be a bounded sequence in X, and let h(z) =
∑∞

n=0 anz
n

for |z| < 1. Suppose that the singular set E of h in the unit circle Γ is countable,
and that, for each λ in E,

lim
r↗1

(1 − r)hm(rλ)

exists, uniformly for m ≥ 0. Then there is an almost periodic sequence (bn)n∈Z in
X such that ‖an − bn‖ → 0 as n→∞.

Proof. This follows from Theorem 4.1 and the subsequent remark.

The following Tauberian theorem for power series is more general than [1, The-
orem 2′] and may be compared with [1, Theorem 4].

Theorem 6.2. Let (an)n≥0 be a sequence in X such that supn ‖an − an+1‖ <∞,
and let h(z) =

∑∞
n=0 anz

n for |z| < 1. Suppose that the singular set E of h in the
unit circle Γ is countable, 1 /∈ E, and, for each λ in E,

lim
r↗1

(1− r)hm(rλ) = 0,

uniformly for m ≥ 0. Then
∑∞

n=0 anz
n = h(z) for each z in Γ \ E.

Proof. By Corollary 4.4, ‖an‖ → 0. The conclusion follows from a classical result
of Fatou and Riesz [27, 7.31].

The next result appears in [19, Theorem 4], but we give a proof for completeness.
A sequence (bn)n≥0 in `1(Z+) is said to be of spectral synthesis with respect to a
closed subset E of Γ if, for each ε > 0, there exist a sequence (cn)n∈Z and an
open subset U of Γ containing E, such that

∑∞
n=−∞ cnz

n = 0 for all z in U ,∑
n<0 |cn| < ε and

∑
n≥0 |bn − cn| < ε.

Theorem 6.3. Let (an)n≥0 be a bounded sequence in X, let h(z) =
∑∞

n=0 anz
n

for |z| < 1, and let E be the singular set of h in Γ. Let (bn)n≥0 be a sequence

in `1(Z+) which is of spectral synthesis with respect to E = {λ : λ ∈ E}. Then
‖∑∞

n=0 bnan+k‖ → 0 as k →∞.
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Proof. Let

g(t) = bn (n ≤ t < n+ 1;n ≥ 0).

Then g ∈ L1(R+) and g is of spectral synthesis with respect to {η ∈ R : e−iη ∈
E} = −E′. By Theorem 4.7,

0 = lim
k→∞

∥∥∥∥∫ ∞

0

g(s)f(s + k) ds

∥∥∥∥ = lim
k→∞

∥∥∥∥∥
∞∑
n=0

bnan+k

∥∥∥∥∥ .
Now, let T be a bounded linear operator on X , let x ∈ X , and suppose that

supn ‖T nx‖ <∞. In the context above, we may put an = T nx. Then

h(z) =

∞∑
n=0

znT nx = (I − zT )−1x = z−1(z−1I − T )−1x

for 0 < |z| < ‖T ‖−1.
The local unitary spectrum σu(T, x) is the set of points λ in Γ such that there do

not exist an open neighbourhood U of {z ∈ C : |z| > 1} ∪ {λ} and a holomorphic
function g : U → X with (zI − T )g(z) = x for all z ∈ U . Thus the singular set of
h in Γ is the conjugate of σu(T, x). (Note that for an operator with spectral radius
greater than 1, σu(T, x) may be strictly larger than the unitary part of the local
spectrum in the usual sense of operator theory (see [13, XV.2.6]).) We therefore
obtain the following from Theorem 6.2.

Theorem 6.4. Let T be a bounded linear operator on X, x ∈ X, and suppose that
supn ‖T nx‖ <∞, σu(T, x) is countable, and for each λ ∈ σu(T, x),

lim
r↗1

(1− r)

∥∥∥∥∥
∞∑
n=0

rnλ−nT n+mx

∥∥∥∥∥ = 0,

uniformly for m ≥ 0. Then ‖T nx‖ → 0 as n→∞.
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