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Abstract. We introduce the class of vector measures of bounded -variation
and study its relationship with vector-valued stochastic integrals with respect
to Brownian motions.
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1. Introduction

It is well known that stochastic integrals can be interpreted as vector measures,
the identification being given by the identity

F(A) = /AquB.

Here, the driving process B is a (semi)martingale (for instance, a Brownian mo-
tion), and ¢ is a stochastic process satisfying suitable measurability and integrabil-
ity conditions. This observation has been used by various authors as the starting
point of a theory of stochastic integration for vector-valued processes.

Let X be a Banach space. In [5] we characterized the class of functions ¢ :
(0,1) — X which are stochastically integrable with respect to a Brownian motion
(Wt)tejo,1) as being the class of functions for which the operator Ty : L?(0,1) — X,

1
T,f = / F(B)o(t) dt,
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belongs to the operator ideal v(L?(0,1), X) of all y-radonifying operators. Indeed,
we established the It6 isomorphism

1 2
EH/@ deH = 1T4 12 £2(0.1), x)-

The linear subspace of all operators in v(L?(0,1), X) of the form T = T} for some
function f : (0,1) — X is dense, but unless X has cotype 2 it is strictly smaller than
v(L%(0,1), X). This means that in general there are operators T € v(L?(0,1), X)
which are not representable by an X-valued function. Since the space of test func-
tions 2(0,1) embeds in L?(0,1), by restriction one could still think of such op-
erators as X-valued distributions. It may be more intuitive, however, to think
of T as an X-valued vector measure. We shall prove (see Theorem 2.3 and the
subsequent remark) that if X does not contain a closed subspace isomorphic to
co, then the space y(L2(0,1), X) is isometrically isomorphic in a natural way to
the space of X-valued vector measures on (0, 1) which are of bounded ~y-variation.
This gives a ‘measure theoretic’ description of the class of admissible integrands
for stochastic integrals with respect to Brownian motions. The condition ¢y € X
can be removed if we replace the space of y-radonifying operators by the larger
space of all y-summing operators (which contains the space of all v-radonifying
operators isometrically as a closed subspace).

Vector measures of bounded ~y-variation behave quite differently from vector
measures of bounded variation. For instance, the question whether an X-valued
vector measure of bounded ~v-variation can be represented by an X-valued function
is not linked to the Radon-Nikodym property, but rather to the type 2 and cotype
2 properties of X (see Corollaries 2.5 and 2.6).

In section 3 we consider yet another class of vector measures whose variation
is given by certain random sums, and we show that a function ¢ : (0,1) — X
is stochastically integrable with respect to a Brownian motion (W;)ic(o,1] on a
probability space (2,P) if and only if the formula F(A) := fA ¢ dW defines an
L?(2; X )-valued vector measure F in this class.

2. Vector measures of bounded ~-variation

Let (S,X) be a measurable space, X a Banach space, and (y,)n>1 a sequence of
independent standard Gaussian random variables defined on a probability space
(Q,Z,P).

Definition 2.1. We say that a countably additive vector measure F' has bounded
y-variation with respect to a probability measure p on (S, X) if | F||v, (.:x) < 00,
where

N 1
F(A,) 112\2
1F I, sy += sup (E|| 32 === ),
e nz::l V N(An)
the supremum being taken over all finite collections of disjoint sets Ay,..., Ay € &
such that u(A,) >0foralln=1,...,N.
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It is routine to check (e.g. by an argument similar to [4, Proposition 5.2])
that the space V,(u; X) of all countably additive vector measures F' : ¥ — X
which have bounded ~-variation with respect to p is a Banach space with respect
to the norm | - ||y (4;x)- Furthermore, every vector measure which is of bounded
~-variation is of bounded 2-semivariation.

In order to give a necessary and sufficient condition for a vector measure
to have bounded 7-variation we need to introduce the following terminology. A
bounded operator T' : H — X, where H is a Hilbert space, is said to be -
summing if there exists a constant C' such that for all finite orthonormal systems
{h1,...,hn} in H one has

N 2
E[| > 9n Tha| < 2.

n=1
The least constant C' for which this holds is called the vy-summing norm of T,
notation ||T|,_(x,x)- With respect to this norm, the space oo (H, X) of all v-
summing operators from H to X is a Banach space which contains all finite rank
operators from H to X. In what follows we shall make free use of the elementary
properties of y-summing operators. For a systematic exposition of these we refer
to [2, Chapter 12] and the lecture notes [4].

Theorem 2.2. Let o/ be an algebra of subsets of S which generates the o-algebra
Y, and let F : o/ — X be a finitely additive mapping. If, for some 1 < p < o0,
T:LP(u) — X is a bounded operator such that

F(A)=Tls, Acd,

then F' has a unique extension to a countably additive vector measure on X which
is absolutely continuous with respect to . If T : L*(u) — X is «y-summing, then
the extension of F' has bounded ~y-variation with respect to p and we have

HF||V~,(M;X) < HT||%O(L2(H):X)'

Proof. We define the extension F : ¥ — X by F(A) := T1a4, A € 3. To see that
F' is countably additive, consider a disjoint union A = Un>1 A, with A,,A € X.
Then limy_ o 1uN71 4, =1lain L?(u) and therefore

N N
lim Y F(A,) = Jim T D 1a, =Tla=F(A).
n=1

N—o0
n=1

The absolute continuity of F is clear. To prove uniqueness, suppose F : ¥ — X
is another countably additive vector measure extending F'. For each z* € X*,
(F,z*) and (F,z*) are finite measures on ¥ which agree on 7, and therefore by
Dynkin’s lemma they agree on all of . This being true for all z* € X*, it follows
that FF = F by the Hahn-Banach theorem.

Suppose next that T': L?(u) — X is y-summing, and consider a finite col-
lection of disjoint sets A, ..., Ay in ¥ such that pu(4,) >0 foralln=1,...,N.
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The functions f,, = 14, /1/1(A,) are orthonormal in L?(u1) and therefore

N 2 N 2

= DoCAN SET) Y L e
It follows that I has bounded 7-variation with respect to 1 and that || F|lv. (u:x) <
T llyoe 22 ), 2)-
Theorem 2.3. For a countably additive vector measure F' : ¥ — X the following
assertions are equivalent:

(1) F has bounded ~y-variation with respect to i;

(2) There exists a y-summing operator T : L*(u) — X such that

F(A)=Tl,, A€,
In this situation we have
||F||V~,(M;X) = ||T||’YDO(L2(H)!X).

Proof. (1)=>(2): Suppose that F' has bounded ~-variation with respect to u. For
a simple function f = Zf:f:l cnla,, where the sets A, € ¥ are disjoint and of
positive p-measure, define

N
Tf:=Y cnF(An)
n=1

By the Cauchy-Schwarz inequality, for all 2* € X™* we have

(1.2 = 8 32 meyT) So 0 L AE)
< (g Z% en/iA[ ) (e z% Ll
(Z |c"| e ) ||FHV’Y(/”';X) flz* |l

= HfHLz I v, oy 127

It follows that 7" is bounded and ||T'|| #(L2(u),x) < [|F|lv; (u;x)- To prove that T is
~v-summing we shall first make the simplifying assumption that the o-algebra X
is countably generated. Under this assumption there exists an increasing sequence
of finite o-algebras (3,),>1 such that ¥ = \/n>1 Y.,. Let P, be the orthogonal
projection in L%(u) onto L?(X,,u) and put T, := T o P,. These operators are
of finite rank and we have lim, .., T, — T in the strong operator topology of
L(L2 (), X).

Fix an index n > 1 for the moment. Since ¥, is finitely generated there
exists a partition S = UN_1 Aj, where the disjoint sets Aj,..., Ay generate ¥,,.
Assuming that p(A4;) > Ofor allj=1,...,M and u(A;) =0forj =M+1,...,N,

2)§
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the functions g; = 14,/v/1(4;), 7 = 1,..., M, form an orthonormal basis for
L?(3,,p) and

1T ll3 220y, ) = W0l 220 . )

M 9 M F(A) 9
=B S To| =] 02| < IFIR g,
Jj=1 j=1 :U(An) !

the first identity being a consequence of [4, Corollary 5.5] and the second of [4,
Lemma 5.7]. It follows that the sequence (T},),>1 is bounded in oo (L% (1), X). By
the Fatou lemma, if {fi,..., fx} is any orthonormal family in L?(y), then

k 9 k 9

E| > wTs|| <timinfB|| S wTufs||” <ITal? (22 < IFI, )
J=1 Jj=1

This proves that T is y-summing and || T'[|,_(z2(u).x) < [[F]lv; (s x)-

It remains to remove the assumption that ¥ is countably generated. The
preceding argument shows that if we define T" in the above way, then its restriction
to L?(X', ) is y-summing for every countably generated o-algebra ¥’ C ¥, with
a uniform bound

1T [|yoo (22 (27,00 < E v, i)
Since every finite orthonormal family { f1, ..., fx} in L?(p1) is contained in L?(3, p)
for some countably generated o-algebra ¥/ C ¥, we see that

& 2 2 2
E| > uThl| <ITI2 s < NP1, gy
j=1

It follows that 7' is y-summing and [|T'][,__(z2(),x) < [ F]lv; (usx)-
(2)=(1): This implication is contained in Theorem 2.2. O

By a theorem of Hoffmann-Jgrgensen and Kwapien [3, Theorem 9.29], if X
is a Banach space not containing an isomorphic copy of ¢, then for any Hilbert
space H one has

’700(H7X) = ’7(H,X)7
where by definition v(H, X) denotes the closure in v (H, X) of the finite rank
operators from H to X. Since any operator in this closure is compact we obtain:

Corollary 2.4. If X does not contain an isomorphic copy of co and F : ¥ — X
has bounded y-variation with respect to u, then F' has relatively compact range.

Using the terminology of [5], a theorem of Rosiniski and Suchanecki [6] asserts
that if X has type 2 we have a continuous inclusion L?(u; X) — v(L?(u), X) and
that if X has cotype 2 we have a continuous inclusion oo (L2 (), X) — L?(p; X).
In both cases the embedding is contractive, and the relation between the operator
T and the representing function ¢ is given by

Tf=/5f¢du, f e L),
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If dim L?(u) = oo, then in the converse direction the existence of a continuous
embedding L*(1; X) < 7oo(L? (1), X) (vespectively v(L*(u), X) — L?(u; X)) ac-
tually implies the type 2 property (respectively the cotype 2 property) of X.

Corollary 2.5. Let X have type 2. For all ¢ € L?(u; X) the formula

F(A) ::/Amm, Aey,

defines a countably additive vector measure F' : % — X which has bounded -
variation with respect to . Moreover,

1 (v, (s x) < N[22 (i) -
If dim L? (i) = oo, this property characterises the type 2 property of X .
Proof. By the theorem of Rosiniski and Suchanecki, ¢ represents an operator T' €
Y(L?(p), X) such that T14 = [, ¢du = F(A) for all A € . The result now

follows from Theorem 2.2. The converse direction follows from Theorem 2.3 and
the preceding remarks. O

Corollary 2.6. Let X have cotype 2. If F' : ¥ — X has bounded ~y-variation with
respect to u, there exists a function ¢ € L?(u; X) such that

F(A):/Aqbdu, Acy.

Moreover,
||¢HL2(/1,;X) < ”FHVW(M;X)-
If dim L?(u) = oo, this property characterises the cotype 2 property of X.

Proof. By Theorem 2.3 there exists an operator T € voo(L?(p), X) such that
F(A) =T14 forall A € 3. Since X has cotype 2, X does not contain an isomorphic
copy of ¢g and therefore the theorem of Hoffmann-Jgrgensen and Kwapien implies
that T € v(L?*(u), X). Now the theorem of Rosifiski and Suchanecki shows that
T is represented by a function ¢ € L?(u; X). The converse direction follows from
Theorem 2.2 and the remarks preceding Corollary 2.5. (]

3. Vector measures of bounded randomised variation

Let (S,X) be a measurable space and (r,),>1 a Rademacher sequence, i.e., a

sequence of independent random variables with P(r,, = £1) = %
Definition 3.1. A countably additive vector measure F' : ¥ — X is of bounded
randomised variation if || F||yx(,;x) < oo, where

o

the supremum being taken over all finite collections of disjoint sets A1, ..., Ay € 3.

IF

N
Vr(usX) = Sup (EH Z rn F'(An)
n=1
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Clearly, if F' is of bounded variation, then F' is of bounded randomised varia-
tion. The converse fails; see Example 1. If X has finite cotype, standard comparison
results for Banach space-valued random sums [2, 3] imply that an equivalent norm
is obtained when the Rademacher variables are replaced by Gaussian variables.

It is routine to check that the space V*(u; X) of all countably additive vector
measures F' : 3 — X of bounded randomised variation is a Banach space with
respect to the norm || - |

V(X))

In Theorem 3.2 below we establish a connection between measures of bounded
randomised variation and the theory of stochastic integration. For this purpose
we need the following terminology. A Brownian motion on (Q, #,P) indexed by
another probability space (S, %, i) is a mapping W : ¥ — L2?(Q) such that:

(i) For all A € 3 the random variable W (A) is centred Gaussian with variance
E(W(A))* = u(A);

(ii) For all disjoint A, B € ¥ the random variables W(A) and W (B) are inde-
pendent.

A strongly p-measurable function ¢ : S — X is stochastically integrable with
respect to W if for all #* € X* we have (¢,z*) € L?(u) (i.e, f belongs to L?(u)
scalarly) and for all A € ¥ there exists a strongly measurable random variable
Y4 : © — X such that for all z* € X* we have

(Y, z*) =/A<¢,as*>dw

almost surely. Note that each Y, is centred Gaussian and therefore belongs to
L?(Q; X) by Fernique’s theorem; the above equality then holds in the sense of
L?(Q). We define the stochastic integral of ¢ over A by fA ¢dW :=Y,. For more
details and various equivalent definitions we refer to [5].

Theorem 3.2. Let W : ¥ — L2*(Q) be a Brownian motion. For a strongly p-
measurable function ¢ : S — X the following assertions are equivalent:

(1) ¢ is stochastically integrable with respect to W ;

(2) ¢ belongs to L?(u) scalarly and there exists a countably additive vector mea-
sure F': ¥ — X, of bounded ~y-variation with respect to w, such that for all
x* € X* we have

<F(A),x*>=/A<¢,x*>du, Aes

(3) ¢ belongs to L?(u) scalarly and there exists a countably additive vector mea-
sure G+ Y — L2(2; X) of bounded randomised variation such that for all
x* € X* we have

(G(A), ") = /A (6.a%)dW, AcEE.
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In this situation we have

1
1E0v, (xy = IGllveuin2@:x)) = H / (deH )2

Proof. (1)<(2): This equivalence is immediate from Theorem 2.3 and the fact,
proven in [5], that ¢ is stochastically integrable with respect to W if and only
there exists an operator T € y(L?(u), X) such that

Tf:/sfwu, f e L),

In this case we also have

Tl = (] [ oav])’

In view of Theorem 2.3, this proves the identity

1Pl = (B[ [ oaw ).
(1)=(3): Define G : ¥ — L%*(Q; X) by
=/ pdW, Ael.
A

By the y-dominated convergence theorem [5], G is countably additive. To prove
that G is of bounded randomised variation we consider disjoint sets A1,..., Ay €
. If (7n)n>1 is a Rademacher sequence on a probability space (Q,.Z,P), then by
randomisation we have

Pt

L2(Q X) _EEH Z:T”/ ¢dWH
ZEH; [ o]

with equality if Ui\;l A, = S. In the second identity we used that the X-valued
random variables [ A, ¢ dW are independent and symmetric. The final inequality
follows by, e.g., covariance domination [5] or an application of the contraction
principle. It follows that G is a countably additive vector measure of bounded
randomised variation and

(Gl = (] [ oaw )’

(3)=-(1): This is immediate from the definition of stochastic integrability. O

Ezample 1. f W is a standard Brownian motion on (€, .%,P) indexed by the
Borel interval ([0, 1], %, m), then W is a countably additive vector measure with
values in L?(Q) which is of bounded randomised variation, but of unbounded
variation. The first claim follows from Theorem 3.2 since W(A) = [, 1dW for all
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Borel sets A. To see that W is of unbounded variation, note that for any partition
O=thg<t1 < - <ty_1 <ty =1 we have

N N
S IW (s t)) 2y = 3 /T = .
n=1 n=1

The supremum over all possible partitions of [0, 1] is unbounded.
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