
Variational Principles in the Linear Theory 
of Viscoelasticity 

M. E. GURTIlV 

Communicated by E. STERNBERG 

1. Introduction 

The object of this paper  is to supply generalizations to linear quasi-static 
viscoelasticity theory of certain variational principles which characterize the 
solution of the mixed boundary-value problem of classical elastostatics. This 
problem consists in finding a " s t a t e "  - -  i.e. a displacement, strain, and stress 
field - -  which satisfies the governing field equations in a given region of space 
and meets the standard mixed boundary conditions. The relevant field equations 
consist of the displacement-strain relations, the stress-strain relations, and the 
stless equations of equilibrium; whereas the boundary conditions involve the 
prescription of displacements over a portion of the boundary and of surface 
tractions o~ver the remainder. 

Two of the most important  variational principles applicable to the foregoing 
problem are the principle of s tat ionary potential  energy and the principle of 
s tat ionary comPlementary energyL The former asserts that  the variation of the 
"potential  energy" over the set of all kinematically admissible states ~ is zero at 
a certain state i / a n d  only i[ tha t  state is a solution of the mixed problem under 
consideration. 

On the other hand the principle of s tat ionary complementary energy asserts 
that  the variation of the "complementary  energy" over the set of all statically 
admissible stress fields 8 is zero at a certain stress field il  that  stress field belongs 
to the solution of the mixed problem. SOUTHWELL [21 and LANGHAAR [~ proved 
a converse of this theorem on the  assumption tha t  the tractions are prescribed 
over the entire boundary and the region is simply connected: the variat ion of 
the "complementary  energy" over  the set of all statically admissible stress fields 

1 See, for example, SOKOLNIKOFF [1] (Articles t07, 108). If the elastic constants 
are such that the strain energy density is a positive definite function of the strains, 
then these variational principles imply corresponding minimum principles: 

2 By a kinematically admissible state we mean a state that  satisfies the dis- 
placement-strain relations, the stress-strain relations, and the displacement boundary 
conditions. 

3 By a statically admissible stress field we mean a stress field that  meets the 
stress equations of equilibrium as well as the traction boundary conditions. 
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is zero at a stress field only i! that  stress field belongs to the solution of the 
problem at hand. For the case in which displacements are prescribed over a 
portion of the boundary a similar converse follows from an elementary generaliza- 
tion 4 of a theorem due to DORN & SCHILD [41. 

Various extensions of the preceding variational principles of elastostatics have 
been established in which the class of admissible states is subjected to weaker 
restrictions. One extension of this kind was given by HELLINGER [51 and was 
later independently discovered in a somewhat stronger form by  REISSNER [G 1, E71. 
This principle asserts tha t  the variation of a certain functional over the set of 
all states which meet the strain-displacement relations is zero at a particular state 
if and only if that  state is a solution of the mixed problem. Apparently guided 
by REISSNER'S improved version of HELLINGER'S theorem, Hu HAI-CHANG [8] 
and WASHIZU [91 separately arrived at a still broader variational principle which 
does not require the admissible states to meet any of the field equations or 
boundary conditions. 

This paper  aims at variational principles for linear viscoelasticity which 
generalize the foregoing results of classical elastostatics. Although variational 
principles for viscoelasticity theory were considered previously by BIOT I10], 
FREUDENTHAL • GEIRINGER [11], and ONAT [121, these investigations do not 
arrive at generalizations of the type sought here. 

The present paper is a continuation of a recent s tudy [18] which contains a 
systematic t reatment  of linear viscoelasticity theory based on the notion of a 
Stieltjes convolution. 

Section 2 contains certain preliminary definitions and notational agreements. 
In Section 3 variational principles appropriate to the linear quasi-static theory 
of viscoelastic solids are given for the case in which the stress-strain relations 
are in relaxation integral form. Section 4 is devoted to the derivation of analogous 
results for stress-strain relations in  creep integral form. In the variational prin- 
ciples established here the viscoelastic solid is allowed to be inhomogeneous and 
anisotropic and the relevant stress, strain, and displacement histories are per- 
mit ted to possess finite jump discontinuities in time. 

2. Notation. Preliminary definitions 

Throughout what follows R will denote an open region of three-dimensional 
Euclidean space with the closure/~ and the boundary B. Further,  n will denote 
the unit outward normal to B, and B~ (~ ---- 1,2) will denote complementary sub- 
sets 5 of B (B----B 1 ~B~, B I~B i - -O  ). Finally, the symbol " •  will be used to 
indicate the Cartesian product of two sets. 

Let ui, eii, aii, Fi, Giikt, and Jiikz, in this. order, designate the Cartesian 
components of the displacement vector u, the strain tensor E, the stress tensor ~, 
the body force (density) vector F, the relaxation tensor G, and the creep tensor d. 
All of the preceding field histories, including G and d, are to be regarded as 
functions of position and time defined on R x (--  o% oQ). With this notation the 

4 See Section 4 for a statement and proof of the generalized theorem. 
5 Henceforth the subscript c, will be understood to have the range of the integers 

(t, 2). 
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complete system of field equations in the linear quasi-static theory of (inhomo- 
geneous and anisotropic) viscoelastic solids take the form e 

and either 

o r  

2eii=ui, i+ui, i on RX (-- 0% oo), (2.1) 

aii, i+Fi=O, aii=aji on R • (--oo, oo), (2.2) 

aii=Giikt.dekt on R • (-- oo, oo), (2.3) 

eii=f,~kz*dakl on R • (--0% o~). (2.4) 

Equations (2.t) are the linearized strain-displacement relations, (2.2) are the stress 
equations o/ equilibrium, (2.3) represent the stress-strain relations in relaxation 
integral ]orm, while (2.4) represent the stress-strain relations in creep integral [orm. 
In writing (2.3), (2.4) we have made use of the notation for Stieltjes convolutions 
introduced previously in [18]. Thus, if ] and g are functions of position and time, 
]*dg stands for the function defined by the Stieltjes integral 

t 

[/,dg I (x, t) = f /(x, t - -r)dg(x ,  r), (2.5) 

provided this integral is meaningful. 
we adjoin the initial conditions 

U : s  

the displacement boundary conditions 

u =  u on 

and the traction boundary conditions 

S = S  on 

To the system of field equations just cited 

on R x ( ~ o % 0 ) ,  (2.6) 

B 1 • (-- 0% oo), (2.7) 

B2 x (-- 0% oo). (2.8) 

In (2.8) S is the surface traction vector with components Si=aiinj, while ~ and 

are prescribed functions. 
The mixed boundary-value problem thus consists in finding field histories 

u, r a which, for given R, B~, known G [or dr], and prescribed F, ~, S, satisfy 

(2.1), (2.2), (2.3) [or (2.4)], (2.6), (2.7), (2.8). We shall let ~ =  ~(R, B~, ~, S, F, G) 
denote the foregoing problem for the case in which the stress-strain relations 
are in relaxation integral form -- i.e. (2.3) holds. On the other hand, if the 
stress-strain law is given in the creep integral form (2.4), we shall denote this 

problem by J = J ( R ,  B~, fi, S, F, d). 
In order to avoid repeated regularity assumptions concerning the data we 

define, a 

Regular problem. We say that f#= fg(R, B~,,' fi, S, F, G) is a regular problem 
o/rdaxation typei]: 

e We use the usual indicial notation. Thus Latin subscripts have the range of 
the integers (1, 2, 3) and summation over repeated subscripts is implied; subscripts 
preceded by a comma indicate differentiation with respect to the corresponding 
Cartesian coordinate. 
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(a) R is a bounded region, whose boundary B consists o[ a finite number o[ 
non-intersecting closed regular sur/aces ~, and the closure B~ o/each o/the subsets 
B~ is a regular sur/ace; 

(b) (i) ~ is a vector-valued ]unction de/ined on B1 • (-- 0% 00) which vanishes 
on ~ • (--.00, O) and is continuous on B1 • [0, c~); 

(ii) S is a vector-valued ]unction defined on 2 2 • (-- 0% co) w.hich vanishes on 

B 2 • (-- o% 0), is piecewise continuous on/~2 • [0, e~), and S(x,  .) is continuous on 
[0, ~ ) / o r  each xE ~ ;  

(iii) F is a vector-valued lunction delined on if, • (-- oo, oo) which vanishes on 
• (-- o% O) and is continuous on K • [0, oo); 

(c) O is a/ourth-order tensor-valued ]unction (o/position and time) defined on 
if,• (--0% oo) which vanishes on R • (--0% 0), is continuously di//erentiable on 
/~ • [0, oo), and has the symmetry properties 

Gii~z=Gi~kt=Gkzii on /~• (--0% oo). (2.9) 

We say that J---- J ( R ,  B~, ~t, S, F, J) is a regular problem o[ creep type i /(a),  (b), 
(c) hold with. G replaced by d. 

The first of the symmetry relations appearing in (2.9) is a direct consequence 
of the symmetry of the stress tensor. The second of (2.9), for the special case 
of an isotropic solid, follows automatically from the condition that  the values 
of G be isotropic. For the general anisotropic solid this second symmetry relation 
constitutes an independent assumption s. 

Our main objective is the characterization of the solution to the foregoing 
boundary-value problem by means of variational principles. I t  thus becomes 
essential to state precisely what we mean by a regular solution to the problem. 
To this end we first give the following definition of an 

Admissible state. We say that the ordered array ~ = [u, E, e[ is an admissible 
state on R • (-- o% oo) i]." 

(a) u is a vector-valued ]unction de/ined on R • (-- 0% oo), while r and a are 
symmetric second-order tensor-valued ]unctions defined on R • (-- 0% co) ; 

(b) u, r o vanish on if,• (--oo, O) and are continuously di]]erentiable on 
k • [0, oo).. 

Note that  an admissible state is allowed to have finite jump discontinuities 
at the time origin and need not meet (2A), (2.2), (2.3), or (2.4). Addition of states 
and multiplication of a state by a scalar are defined by  

5r  5 ~ =  [U+ U, t+ t : ,  a + ~ ] ,  0tO~ [czU, 0rE, 0tO[. (2.t0) 

In view of (2.t0) the set of all admissible.states on R • (-- o% oo) is a linear space 9. 

7 See KELLOGG El4[ for the definition of a closed regular surface. 
8 Theoretical support for this assumption has occasionally been based on thermo- 

dynamic argument~ revolving an appeal to ONSAGER'S principle. See ROGERS & 
PIPKIN E15] for a d~'c, wsio~x of this issue. 

g See. for exa[rvpl6, TAYLOR [16] for the definition of a linear space. 
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We are now ready to introduce the notion of a 

Regular  solution. Let ~ =  if(R, B~, ~, S, F, G) be a regular problem o] 
relaxation type. Then we say that 5O= L u, e, a] is a regular solution o] ff i]: 

(a) 5O is an admissible state on R • (-- oo, oo) ; 

(b) u, E, a meet the ]idd equations (2.1), (2.2), (2.3) and satis/y the boundary 
conditions (2.7), (2.8). 

Let J = f f ( R ,  B~, fi, S, F, J) be a regular problem o I creep type. Then we say 
that ~ =  [u, E, a] is a regular solution o / J i ]  (a), (b) hold with (2.3) replaced by (2.4). 

Clearly a regular solution is allowed to possess finite jump discontinuities at 
time zero. 

Next we define the 

Variation of a functional .  Let Q {.} be a [unctional defined on a subset K o/ 
a linear space L. Let 

5 a, 5Y~L, 5a+ot57~K [or every real number o~, (2.tt) 

and/ormally define the notation 

We say that the variation o/g2{.} is zero at 5 ~ and write 

OQ {5O} = 0 over K 

whenever 0#g2{SP} exists and equals zero/or 

Unless otherwise specified, the linear 
principles proved in this paper is the set of 

Finally, we shall consistently write S 
components 

i ,  
respectively. 

(2.12) 

(2.t3) 

every choice o/ff~ consistent with (2.11). 

space L underlying the variational 
all admissible states on i~ x (-- o% oo). 

and S for the traction vectors with 

(2.t4) 

3. Variational principles for problems of re laxat ion type 
We begin with a generalization of the theorem due to Hu HAI-CHANG [81  and 

WAsmzu [9] mentioned previously. 

First  variat ional  principle. Let ~ = ~(R, B~, ~, S, F, G) be a regular problem 
o/relaxation type. Let K be the set o/ all admissible states on R • (-- oo, oo). Let 
5 a =  [u, r •] ~K and for each fixed t~ (-- oo, oo) define the/unctional At{. ) on K 
through 

A,{SO} = * d ,j �9 (x. t) dV•-- f (x, t) dye. 
R R 

- - f [ ( ~ j , i + F ~ ) . d u , ] ( x , t ) d V ~ + f [ S , . d C * , ] ( x , t ) d A , ~  (3.t) a~ 
R B z 

+ f [(S, - S,) �9 du,] (x, t) dA , .  
Bs 

~o We write dV x and dA z for the volume element and element of area, respec- 
tively, to indicate that x is the variable of integration. 

Arch. Rational Mech. Anal., Vol. i3 . t 3 
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Then 
($A,{Sf)=0 over K ( - - o o < t < o o )  (3.2) 

i / a n d  only i / S f  is a regular solution o/ f#.  

Proof. Let ~ = [ ~ ,  ~, ~ l r  from which, it follows that Sf+~67EK. Then 
by (2A2), (2.9), the divergence theorem, Theorems t.2 and t.6 of [13], and the 
symmetry of 

a#A, {Se} = f [ (e, ik, , dek , -  (r,j) �9 it~i~] (x, t ) d I ( ,+  
R 

- f [(a, j, i + F~) �9 d,~] (x, t) dV. + 
R 

- f [ ( e ,  i -  �89 (u, , j+ uj.,)) �9 db,:j] ( x , t ) d V , +  (3.3) 
R 

+ f [ ( ~ / -  ui) * d'Si] (x, t) dA.  + 
Bt 

+ f [(Si -- Si) * dui] (x, t) dA~ (-- oo< t <  oo). 
B, 

First suppose 5 f is a solution of fr Then by virtue of (2A), (2.2), (2.3), (2.7), 
(2.8), equation (3.3) becomes 

a#A,{6~}=0 ( -  oo<t< oo) (3.4) 

for every S~EK, which implies (3.2). 

Now turn to the "only if" portion of the proof. We must show that 6 a is a 

regular solution of ~ whenever .9~EK and (3.4) holds for every o ~ K .  In particular 
choose 

fi(x,  t ) = u ' ( x )  h(t), ~(x, t)=e'(x) h(t), ~(x, t)=cr'(x) h(t) (3-5) 

for every (x, t) c R •  (-- o% oo), where h is the Heaviside unit step function, i.e., 
h( t )=0  ( - - ~ < t < 0 ) ,  h ( t ) = 1  (0<:t<oo).  Therefore (3.4), by virtue of (3-3), 
(2.t4) and Theorem 1.2 in [13], becomes 

f [G, i~, * d,'kl -- a, j] (x, t) e;i (x) d V x -- f [a, r 7. + F~] (x, t) ui (x) d V, + 
R R 

-- f [e~s- �89 (x, t)a'~i(x ) d V , +  
R 

(3.6) + f [~, -- u,] (x, t) a~i (x) n,.(x) dA,~ + 
Bt 

+ f [ S i - -  S,](x,t) u ' , ( x )dA ,=O (--oo<t<oo) 
Bz 

and (3.6) must hold for every u', t ' ,  a '  continuously differentiable on /~ with 
r and a '  symmetric. But this fact, the fundamental lemma of the calculus,of 
variations, and the symmetries of a, e, G imply that Af meets (2.t), (2.2), (2.3), 
(2.8) and that 

f [ ;c l - -u i ] (x , t )  a~,(x)ni(x)dA~.~---O (-- o o < t  <oo) .  (3.7) 
Bx 
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Finally, to confirm (2.7), let / be continuously differentiable on R, suppose m 
and k are fixed integers (m, k ----t, 2, 3), and let 

~i(x)-~(aik a;~+ ~,~ ai~)/(x), xc-~. (3.8) 

Then, since (3.7) must hold for every such a',  

Er t)--uk(x,  t)l n,~ (x) + [ ~ ( x ,  t)--um(x, t)~ n k ( x ) : 0  (3.9) 

for every (x, t) ~_ B 1 • (-- oo, oo) with ae a regular point. Fix (x, t), and choose the 
coordinate frame such that  nk (x)~  0. Then (3.9) with m----k implies ~, (x, t ) =  
uk (x, t). Consequently (3.9) implies ~,~ (x, t) ---- u m (x, t). Therefore ~ (x, t) = u  (x, t) 
for every (0e, t) C B1 x (-- c~, oo) with X regular. Thus  and by the continuity of 
U and ~, (2.7) holds as well, and ~9 ~ is a solution of ~. This completes the proof. 

By virtue of the divergence theorem and Theorem t .6 of [13], At defined by 
(3.t) admits the alternative representation 

A,{~} = { f [ e ,  ik,* de, s* de,,] (x, t) dV,~-- f [a , i*  d(e,]-- u,, j)] (x, t) dVx+ 
R R 

- -  f [F~ �9 du,] (x, t) dV~ --  f IS, �9 d (u, - -  ~t,) 1 dA~ + (3 A0) 
R Bt 

- f [S i ,  du,] (x, t) dA ~. 
B, 

If, in addition to merely being admissible, ~ =  [u, e, a] meets (2.t), (2.3), and 
(2.7), then A,{o c~} given by (3.t0) reduces to ~r where 

q~, {~} ---- ~ f I G, i kt * d e, i * d e k ,! (x, t) d V~ -- f [F~, d u,] (x, t) d V~ + 
R (3.tl) 

-- f [S'i, d.ui] (x, t) dAx. 
B2 

Thus we are led to the following generalization of the principle of stationary 
potential energy in elastostatics. 

Second variational principle. Let (r ~(R, B~, ~, S, F, G) be a regular prob- 
lem o] relaxation type. Let K be the set o] all admissible states on R • (-- oo, oo) 
which meet the strain-displacement rdations (2A), the stress-strain relations (2.3), 
as well as the displacement boundary conditions (2.7). l:et 5 f = [ u , r  and 
]or each fixed tE(--o% o~) define the [unctional ~t{'} on K through (3.tl). Then 

dq~,{~}=0 over K (-- oo< t<co)  (3.12) 

i] and only i] ~9 ~ ,s a regular solution o] (r 

Proof. The "if" portion of the proof follows at once from the first variational 
principle, the definition of the variation of a functional, and the fact that  
A, {5~} = q), {~} whenever ~ 6 K .  

To establish the remainder of the theorem, assume 

0~ r  = 0  ( - -o~< t<oo)  (3.t3) 

for every ~9 ~ which meets (2A1) n. This latter condition is equivalent to the 

requirement that S~ be admissible and meet (2A), (2.3), with 

~ = 0  on S~•  oo)'. (3A4) 

n Recall our agreement that L is the set of all admissible states on 1~ • (-- eo, .o~). 
i3" 
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Clearly, (3.3) holds if we replace At(,9 ~} by # , { ~ )  and omit the first, third, and 
fourth terms, since S~ meets (2A), (2.3), (2.7). Now choose ~ ( a L t ) = u ' ( x ) h ( t )  
for every  (x, t) in/~ • (-- 0% oo), where h is the Heaviside unit step function and 
u '  is twice continuously differentiable on _R, with 

u ' = 0  on B 1. (3.15) 

Next define continuously differentiable functions ~, 8 on R x (-~ 0% oo) through 

2gi j=~i , f+~Li ,  ~i j=Gijkt*dgkl  on R •  oo). (3A6) 

Then o~=  [~, ~, 8] meets (2.tt) and hence (3.1t), (5A3), (3A5), (2.9), the diver- 
gence theorem, and Theorems 1.2 and 1.6 of [13] imply 

- -  f [aii, i + F~] (x, t) u~ (.~) d V x + f [S i - -  Si] (x, t) u; (x) dA ~ - -  0 
R ~, (3.t7) 

( - - o o < t < o o )  

for every function u' v~ith the foregoing properties. But  this fact, by virtue of 
the fundamental lemma of the calculus of variations, implies that ~9 ~ meets (2.2), 
(2.8) and the proof is complete. 

4. Variational principles for problems of creep type 
The following theorem is "a generalization of the Hellinger-Reissner principle 

in linear elastostatics. 

Third variational principle. Let J = J ( R ,  B~, ~, S, F, J) be a regular problem 
o/ creep type. Let K be the set o/al l  admissible states on R, • (-- 0% oo) which meet 
the strain-displacement relations (2.t). Let 6#--_ [u, e, a I EK, and /or each fixed 
tE (-- oo, oo) define the/unctional O,{.} on K through 

-- f [F~. duil (x, t) d V~ = f IS, �9 d(u, -- ~)]  fie, t) d A ,  (4.t) 
R Bt 

--  f [ S, * du,]  (o~, t) d A , .  
Bt 

Then 
6Or{St}=0 over K 

il and only i/  ,9 ~ is a regular solution o/ of  

�9 (=  oo< t <  oo) (4.2) 

Proof. Let ~9~= let ~, 8] meet (2At).l~..Th'en from the definition of K and 
since ~ c K ,  we have that ~ c K .  Consequently, because of the divergence theorem 
together with Theorems t.2 and 1.6 of [1-8], _ 

o ,  = f j - J,  �9 �9 ;l (x ,  t) d 
.R 

- - f[ (ai i ,  i+Fi)*d~i](x , t )dV.~+ f E S i * d ( ~ i - - u i ) ] ( x , t ) d A .  (4.3) 
R BI 

+ f E(S,--Si)'.d~i](oe, t) dA . ( - -oo,( . t<oo).  
B, 

12 See the preceding footnote. 
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The conclusion now follows from (4.3) by an argument which is strictly analogous 
to that which led from (3.3) to the final conclusion in the proof of  the first 
variational principle. 

We turn next to a generalization of the principle of stationary complementary 
energy in elastostatics. With a view toward an economical statement of this 
generalized principle we introduce the subsequent notions. 

Convexity of R with respect to B 1. We say tl;at R is convex with respect to 
B 1 i / the straight line 

ae(z) = ~ -k (~-- ~') r ( - - o o < r <  oo) (4.4) 

intersects B only at ~ and ~ whenever a', ~ E BI. 

Notice that  if B----B 2 then R is automatically convex with respect to B 1. 

Admissible stress field. We say that a is an admissible stress field on 
>< (-- oo, oo) i/  a is a symmetric second-order tensor-valued /unction defined on 

R, • (-- oo, oo), which vanishes or~ ff, X (-- 0% O) and is continuously differentiable 
on R • [0, oo). 

Finally, we stipulate that  the linear space L underlying the following theorem 
is the set of all admissible stress fields on ~' x ('-- o% oo). 

Fourth Variational principle. Let J = J ( R ,  B~, u, S, F, d) be a regular problem 
o/creep type. Let K be the set o/all admissible stress-fields on if, x (-- o~, oo) which 
meet the stress equations o/ equilibrium (2.2) and the traction boundary conditions 
(2.8). Let a~K and [or each fixed tE (--o0, oo) define the /unctional gtt{. } on K 
through 

~ { a } = � 8 9  dVje-- f[Si*dfii](ae, t) dAa~. (.r 
R B x 

Then 
a ~ { a } = O  over K ( - -oo< t<oo)  (4.6) 

i~ there ex is t /unct ions  u, �9 such that Eu, e, al is a regular solution o/ J .  

Conversely, suppose 

(a) R is convex with respect to B1; 

(b) R is simply-connected; 

(c) d and et are twice continuously di//erentiable on if, • [0, oo) ; 

(d) fi (x, .),/or each aeE B 1, is continuously differentiable on [0, oo); 
(e) (4.6) holds. 

Then there exist/unctions u, �9 such that [u, e, a/ is a regular solution o / J .  

Proof. Let ~ L ,  ~ + m ~ c K  for every real ~. Then 

Oii, i=O on R X ( - - o * , ~ ) ,  
(4.7) 

S~-ao.nj=0 on B~• oo). 

Further, since Jilkz= Jkzii, it follows that  

Oa ~ {a} = f [J,,k,* d ak ,* db, i/(ae, t) d V . -  f [Si * d fii] (x, t) d A .  
R B, (4.8) 

( -oo< t<~) .  
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Now suppose there exist functions u and E such that  [u, G, a / i s  a solution of J .  
Then, by virtue of (4.7) and the divergence theorem, equation (4.8) implies 

~; ~ { a }  = 0 (-- ~ <  t <  ~)  (4.9) 

for every choice of ~ consistent with o + ~ E K .  Thus (4.6) holds. 

We turn next to the proof of the converse assertion. To this end we state and 
prove the following elementary generalization of a theorem due to DORN & 
SCIIILD [ 4 ] .  

Lemma. Let R be si~nply-connected and convex with respect to B 1. Let ~ be a 
vector-valued/unction which is continu'ous on Bx, and let r be a symmetric second- 
order tensor-valued/unction which is twice continuously di//erentiable on R. Further 
suppose 

= f (4.t0) 
R B 1 

/or every symmetric second-order tensor-valued /unction a which is continuously 
di//erentiable arbitrarily often on R and meets 

aii,~=O on R,  
(4. t0 

a i i n j = O  on B 2. 

Then there exists a vector-valued/unction u which is continuously di//erentiable on 
K and satisfies 

2e i i=  ui, i +  Ui, i on R,  
(4.t2) 

u i = ~  i on B x. 

Proof. Although DORN & SCmI, D [4] consider only the special case in which 
B s =  0, their proof of the lemma is easily adapted to the present weaker hypo- 
thesis. 

Let ff be a symmetric second-order tensor-valued function which is contin- 
uously differentiable arbitrarily often on R and which vanishes identically outside 
a closed subregion of R. Let Yi i* denote the usual alternating symbol and define 
a through 

aii=yipqyi ,sgp, ,q ~ on R, (4A3) 

i.e. use g as a Beltrami stress function aS. This choice of o meets (4A1), has the 
requisite degree of smoothness, and vanishes on B. Therefore (4.10) implies 

f e i iy im yi ,  , gp,,q, d V= O .  (4.t4) 
R 

Now integrate (4.t4~ twice by parts and use the fact that g and all of its partial 
derivatives vanish on B to deduce that  

f (Yipq Yj,, ~ii, q,) gp, d r = 0 .  (4.t 5) 
R 

Since (4.t 5) must hold for every such function if, 

ypiqYriseii, qs=O o n  R. (4A6) 

is See, for instance, GURTIN [17]. 
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Hence �9 is a compatible strain field and from the simple-connectivity of R we 
conclude that there exists a vector-valued function u'  which is continuouslv 
differentiable on R and meets 

t t 2ei1=ui, j+ui, i on R. (4.17) 

Moreover, such a displacement field u'  is given by the line integrals 14 
x 

u~(X) = fUi i (~ ,x  ) d~  for every xER, (4.18) 

where x ~ e R and for every (~, x) ~ R • R 

Uii(~, x ) =  e, j(~) +(x, -- 2,) [eiL,(~) -- eki,,(~)]. (4.19) 
Now let 

v~=~--u'~ on B I, (4.20) 

and use (4.t0), (4At), (4.t2), together with the divergence theorem, to establish 
that 

f a, i ni v, dA = 0 ( 4 . 2 t )  
B 1 " 

for every a which is symmetric, continuous] >' differentiable arbitrarily often on R, 
and meets (4. t t). 

Our next step will be to show that v is a rigid, displacement field. To this 
end let x and x be arbitrary interior points of Bx, and choose the coordinate 
system such that 

----- (0, 0, 0), X = (0, 0, xa). (4.22) 

Let De be a disc in the x 1, xs-plane wit~ radius e and center at x 1 = x 2 = 0, and let 

a~i(X 1, x~, x s ) = ~ a  ~ia ],(xx, x~), (4.23) 

where ], is defined on the entire xt, x,-plane and has the following properties: 

(a) 1, is differentiable arbitrarily often; 

(b) ] , > 0 ;  
(c) ] , = 0  outside D,; (4.24) 

(d) f [, dA = t. 
D6 

Clearly such a a meets the first of (4.1 t). Now let C, be the solid circular cylinder 
whose axis coincides with the xa-axis and whose cross,section,is D,. By  the 
assumed convexity of R with respect to B 1 

(C,~ B) (Ba,  (4.25) 

for sufficiently small e (say e<eo).  Thus and by (4.23), (4.24), the second of 
(4 . t t )  holds for e < e  o. Further for e<ex_<eo there exist disjoint subregions 
~ ,  ~ ,  of B~ such that 

~e~, ,  ~eE~,, C,c~Bs=~,w~ ,. (4.26) 

Consequently, by virtue of (4.23), (4.24c), equation (4.21) reduces to 

f t . va%aa + f t ,  vanaaA = 0 (e < el). (4.27) 

x4 See, for example, SOKOLNIKOFV [1] (Article 10). 
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Next from (4.24d), 
f /~nadA ---- f /~dA = t ,  

~* 9~ (4.28) 
f /,n3dA ---- -- f / ,dA =- -- 1, 

provided e <  e 1. Now let e-->0 in (4.27), and use (4.24b), (4.28), and the mean- 
value theorem of integral calculus to infer that  

v 3 (x) - -  v3 (x) = 0. (4.29) 

But (4.29), because of (4.22) and since ~, ~ were chosen arbitrarily, implies 

Iv (~) - v (~ )3 -  [ ~ - ~ 1  = 0 (4.30) 

for every ~, ~ B  1. Hence v on B 1 must belong to the moment field of a bound 
vector system and thus admits the representation15 

vi(x ) =ai+wiix]  (a i, wii=--eo/i . . ,  constant) (4.3t) 

for xc  B x. Now define u on R through 

ui(x)----u;(x ) +a i+wi ix i  if xER,  (4.32) 

and conclude from (4.17), (4.20), (4.3 I) that u meets both of (4.t 2). This completes 
the proof of the lemma. 

We turn now to the remainder of the proof of the fourth variational principle. 
To this end suppose hypotheses (a) through (e) hold. Clearly, (4.8) is satisfied 
by every admissible stress field ti which meets (4.7). In particular let 

~ii(x,t)=a;i(x)h(t) forevery  (x,t)~R,• oo). (4.33) 

Next define �9 on, R • (-- oo, oo) through 

eij= Jij~*dak~ (4.34) 

and observe that hypothesis (c) and Theorems t.2 and 1.6 of [13] imply that �9 
vanishes on/~ x ( o% 0) and is twice continuously differentiable on /~  x [0, oo). 
Further, infer from (4.6), (4.8), (4.33), (4.34) that 

fa~i(x) e,j(x,t)dV~=.fa~i(x)~,(x,t)nj(x)dA ~ ( - - o o < t <  oo ) (4 .35 )  
R B x 

"for every a '  which is twice continuously differentiable on R and meets 
t a~i,j=O on R, 

(4.36 ) t 
ai in  i=O on B~. 

Equations (4.35), (4.36), together with the preceding lemma imply the existence 
of a displacement field history u which satisfies (2A), (2.7). Moreover, it is clear 
from the smoothness of e, hypothesis (d), and the proof of the lemma that  u 
vanishes on ~ • (-- 0% 0), and is continuously differentiable on R • [0, co). Thus 
we have shown that [u, r a] is a regular solution of J ,  and the proof is complete. 

The results communicated in this paper were obtained in the course of an in- 
vestigation conducted under Contract Nonr-562(25) of Brown University witl~ the 
Office of Naval Research in Washington, D.C. 

15 S~e, for example, NIELSEN [18] (Chapter 3). 
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