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Preface

This book is an outgrowth of a course which we have given almost pe-
riodically over the last eight years. It is addressed to beginning graduate
students of mathematics, engineering, and the physical sciences. Thus, we
have attempted to present it while presupposing a minimal background: the
reader is assumed to have some prior acquaintance with the concepts of “lin-
ear” and “continuous” and also to believe L2 is complete. An undergraduate
mathematics training through Lebesgue integration is an ideal background
but we dare not assume it without turning away many of our best students.
The formal prerequisite consists of a good advanced calculus course and a
motivation to study partial differential equations.

A problem is called well-posed if for each set of data there exists exactly
one solution and this dependence of the solution on the data is continuous.
To make this precise we must indicate the space from which the solution
is obtained, the space from which the data may come, and the correspond-
ing notion of continuity. Our goal in this book is to show that various
types of problems are well-posed. These include boundary value problems
for (stationary) elliptic partial differential equations and initial-boundary
value problems for (time-dependent) equations of parabolic, hyperbolic, and
pseudo-parabolic types. Also, we consider some nonlinear elliptic boundary
value problems, variational or uni-lateral problems, and some methods of
numerical approximation of solutions.

We briefly describe the contents of the various chapters. Chapter I
presents all the elementary Hilbert space theory that is needed for the book.
The first half of Chapter I is presented in a rather brief fashion and is in-
tended both as a review for some readers and as a study guide for others.
Non-standard items to note here are the spaces Cm(Ḡ), V ∗, and V ′. The
first consists of restrictions to the closure of G of functions on Rn and the
last two consist of conjugate-linear functionals.

Chapter II is an introduction to distributions and Sobolev spaces. The
latter are the Hilbert spaces in which we shall show various problems are
well-posed. We use a primitive (and non-standard) notion of distribution
which is adequate for our purposes. Our distributions are conjugate-linear
and have the pedagogical advantage of being independent of any discussion
of topological vector space theory.

Chapter III is an exposition of the theory of linear elliptic boundary
value problems in variational form. (The meaning of “variational form” is
explained in Chapter VII.) We present an abstract Green’s theorem which
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permits the separation of the abstract problem into a partial differential
equation on the region and a condition on the boundary. This approach has
the pedagogical advantage of making optional the discussion of regularity
theorems. (We construct an operator ∂ which is an extension of the normal
derivative on the boundary, whereas the normal derivative makes sense only
for appropriately regular functions.)
Chapter IV is an exposition of the generation theory of linear semigroups

of contractions and its applications to solve initial-boundary value problems
for partial differential equations. Chapters V and VI provide the immediate
extensions to cover evolution equations of second order and of implicit type.
In addition to the classical heat and wave equations with standard bound-
ary conditions, the applications in these chapters include a multitude of
non-standard problems such as equations of pseudo-parabolic, Sobolev, vis-
coelasticity, degenerate or mixed type; boundary conditions of periodic or
non-local type or with time-derivatives; and certain interface or even global
constraints on solutions. We hope this variety of applications may arouse
the interests even of experts.
Chapter VII begins with some reflections on Chapter III and develops

into an elementary alternative treatment of certain elliptic boundary value
problems by the classical Dirichlet principle. Then we briefly discuss certain
unilateral boundary value problems, optimal control problems, and numer-
ical approximation methods. This chapter can be read immediately after
Chapter III and it serves as a natural place to begin work on nonlinear
problems.
There are a variety of ways this book can be used as a text. In a year

course for a well-prepared class, one may complete the entire book and sup-
plement it with some related topics from nonlinear functional analysis. In a
semester course for a class with varied backgrounds, one may cover Chap-
ters I, II, III, and VII. Similarly, with that same class one could cover in
one semester the first four chapters. In any abbreviated treatment one could
omit I.6, II.4, II.5, III.6, the last three sections of IV, V, and VI, and VII.4.
We have included over 40 examples in the exposition and there are about
200 exercises. The exercises are placed at the ends of the chapters and each
is numbered so as to indicate the section for which it is appropriate.
Some suggestions for further study are arranged by chapter and precede

the Bibliography. If the reader develops the interest to pursue some topic in
one of these references, then this book will have served its purpose.

R. E. Showalter; Austin, Texas, January, 1977.
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Chapter I

Elements of Hilbert Space

1 Linear Algebra

We begin with some notation. A function F with domain dom(F ) = A

and range Rg(F ) a subset of B is denoted by F : A → B. That a point

x ∈ A is mapped by F to a point F (x) ∈ B is indicated by x 7→ F (x). If

S is a subset of A then the image of S by F is F (S) = {F (x) : x ∈ S}.
Thus Rg(F ) = F (A). The pre-image or inverse image of a set T ⊂ B is

F−1(T ) = {x ∈ A : F (x) ∈ T}. A function is called injective if it is one-to-
one, surjective if it is onto, and bijective if it is both injective and surjective.

Then it is called, respectively, an injection, surjection, or bijection.

K will denote the field of scalars for our vector spaces and is always one

of R (real number system) or C (complex numbers). The choice in most

situations will be clear from the context or immaterial, so we usually avoid

mention of it.

The “strong inclusion” K ⊂⊂ G between subsets of Euclidean space

R
n means K is compact, G is open, and K ⊂ G. If A and B are sets,

their Cartesian product is given by A × B = {[a, b] : a ∈ A, b ∈ B}. If
A and B are subsets of Kn (or any other vector space) their set sum is

A+B = {a+ b : a ∈ A, b ∈ B}.

1.1

A linear space over the field K is a non-empty set V of vectors with a binary

operation addition + : V ×V → V and a scalar multiplication · : K×V → V

1
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such that (V,+) is an Abelian group, i.e.,

(x+ y) + z = x+ (y + z) , x, y, z ∈ V ,

there is a zero θ ∈ V : x+ θ = x , x ∈ V ,

if x ∈ V , there is − x ∈ V : x+ (−x) = θ , and
x+ y = y + x , x, y ∈ V ,

and we have

(α+ β) · x = α · x+ β · x , α · (x+ y) = α · x+ α · y ,
α · (β · x) = (αβ) · x , 1 · x = x , x, y ∈ V , α, β ∈ K .

We shall suppress the symbol for scalar multiplication since there is no need

for it.

Examples. (a) The set Kn of n-tuples of scalars is a linear space over K .

Addition and scalar multiplication are defined coordinatewise:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)
α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn) .

(b) The set KX of functions f : X → K is a linear space, where X is a

non-empty set, and we define (f1+f2)(x) = f1(x)+f2(x), (αf)(x) = αf(x),

x ∈ X.

(c) Let G ⊂ Rn be open. The above pointwise definitions of linear operations
give a linear space structure on the set C(G,K) of continuous f : G → K.
We normally shorten this to C(G).

(d) For each n-tuple α = (α1, α2, . . . , αn) of non-negative integers, we denote

by Dα the partial derivative

∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂x

αn
n

of order |α| = α1 + α2 + · · · + αn. The sets Cm(G) = {f ∈ C(G) : Dαf ∈
C(G) for all α, |α| ≤ m}, m ≥ 0, and C∞G =

⋂
m≥1 C

m(G) are linear

spaces with the operations defined above. We let Dθ be the identity, where

θ = (0, 0, . . . , 0), so C0(G) = C(G).

(e) For f ∈ C(G), the support of f is the closure in G of the set {x ∈
G : f(x) 6= 0} and we denote it by supp(f). C0(G) is the subset of those
functions in C(G) with compact support. Similarly, we define Cm0 (G) =

Cm(G) ∩ C0(G), m ≥ 1 and C∞0 (G) = C
∞(G) ∩ C0(G).
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(f) If f : A → B and C ⊂ A, we denote f |C the restriction of f to C. We
obtain useful linear spaces of functions on the closure Ḡ as follows:

Cm(Ḡ) = {f |Ḡ : f ∈ C
m
0 (R

n)} , C∞(Ḡ) = {f |Ḡ : f ∈ C
∞
0 (R

n)} .

These spaces play a central role in our work below.

1.2

A subset M of the linear space V is a subspace of V if it is closed under the

linear operations. That is, x + y ∈ M whenever x, y ∈ M and αx ∈ M for

each α ∈ K and x ∈ M . We denote that M is a subspace of V by M ≤ V .

It follows that M is then (and only then) a linear space with addition and

scalar multiplication inherited from V .

Examples. We have three chains of subspaces given by

Cj(G) ≤ Ck(G) ≤ K
G ,

Cj(Ḡ) ≤ Ck(Ḡ) , and

{θ} ≤ Cj0(G) ≤ Ck0 (G) , 0 ≤ k ≤ j ≤ ∞ .

Moreover, for each k as above, we can identify ϕ ∈ Ck0 (G) with that Φ ∈
Ck(Ḡ) obtained by defining Φ to be equal to ϕ on G and zero on ∂G, the

boundary ofG. Likewise we can identify each Φ ∈ Ck(Ḡ) with Φ|G ∈ CK(G).
These identifications are “compatible” and we have Ck0 (G) ≤ Ck(Ḡ) ≤
Ck(G).

1.3

We let M be a subspace of V and construct a corresponding quotient space.

For each x ∈ V , define a coset x̂ = {y ∈ V : y−x ∈M} = {x+m : m ∈M}.
The set V/M = {x̂ : x ∈ V } is the quotient set . Any y ∈ x̂ is a representative
of the coset x̂ and we clearly have y ∈ x̂ if and only if x ∈ ŷ if and only if
x̂ = ŷ. We shall define addition of cosets by adding a corresponding pair of

representatives and similarly define scalar multiplication. It is necessary to

first verify that this definition is unambiguous.

Lemma If x1, x2 ∈ x̂, y1, y2 ∈ ŷ, and α ∈ K, then ̂(x1 + y1) = ̂(x2 + y2)
and ̂(αx1) = ̂(αx2).
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The proof follows easily, sinceM is closed under addition and scalar multipli-

cation, and we can define x̂+ ŷ = ̂(x+ y) and αx̂ = ̂(αx). These operations
make V/M a linear space.

Examples. (a) Let V = R2 and M = {(0, x2) : x2 ∈ R}. Then V/M is

the set of parallel translates of the x2-axis, M , and addition of two cosets is

easily obtained by adding their (unique) representatives on the x1-axis.

(b) Take V = C(G). Let x0 ∈ G and M = {ϕ ∈ C(G) : ϕ(x0) = 0}. Write
each ϕ ∈ V in the form ϕ(x) = (ϕ(x)− ϕ(x0)) +ϕ(x0). This representation
can be used to show that V/M is essentially equivalent (isomorphic) to K.

(c) Let V = C(Ḡ) and M = C0(G). We can describe V/M as a space of

“boundary values.” To do this, begin by noting that for each K ⊂⊂ G there
is a ψ ∈ C0(G) with ψ = 1 on K. (Cf. Section II.1.1.) Then write a given
ϕ ∈ C(Ḡ) in the form

ϕ = (ϕψ) + ϕ(1− ψ) ,

where the first term belongs toM and the second equals ϕ in a neighborhood

of ∂G.

1.4

Let V and W be linear spaces over K. A function T : V →W is linear if

T (αx+ βy) = αT (x) + βT (y) , α, β ∈ K , x, y ∈ V .

That is, linear functions are those which preserve the linear operations. An

isomorphism is a linear bijection. The set {x ∈ V : Tx = 0} is called the
kernel of the (not necessarily linear) function T : V →W and we denote it

by K(T ).

Lemma If T : V → W is linear, then K(T ) is a subspace of V , Rg(T ) is

a subspace of W , and K(T ) = {θ} if and only if T is an injection.

Examples. (a) Let M be a subspace of V . The identity iM : M → V is a

linear injection x 7→ x and its range is M .

(b) The quotient map qM : V → V/M , x 7→ x̂, is a linear surjection with

kernel K(qM ) =M .

(c) Let G be the open interval (a, b) in R and considerD ≡ d/dx: V → C(Ḡ),

where V is a subspace of C1(Ḡ). If V = C1(Ḡ), then D is a linear surjection

with K(D) consisting of constant functions on Ḡ. If V = {ϕ ∈ C1(Ḡ) :
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ϕ(a) = 0}, then D is an isomorphism. Finally, if V = {ϕ ∈ C1(Ḡ) : ϕ(a) =
ϕ(b) = 0}, then Rg(D) = {ϕ ∈ C(Ḡ) :

∫ b
a ϕ = 0}.

Our next result shows how each linear function can be factored into the

product of a linear injection and an appropriate quotient map.

Theorem 1.1 Let T : V → W be linear and M be a subspace of K(T ).

Then there is exactly one function T̂ : V/M →W for which T̂ ◦ qM = T ,
and T̂ is linear with Rg(T̂ ) = Rg(T ). Finally, T̂ is injective if and only if

M = K(T ).

Proof : If x1, x2 ∈ x̂, then x1−x2 ∈M ⊂ K(T ), so T (x1) = T (x2). Thus we
can define a function as desired by the formula T̂ (x̂) = T (x). The uniqueness

and linearity of T̂ follow since qM is surjective and linear. The equality of

the ranges follows, since qM is surjective, and the last statement follows from

the observation that K(T ) ⊂ M if and only if v ∈ V and T̂ (x̂) = 0 imply
x̂ = 0̂.

An immediate corollary is that each linear function T : V →W can be

factored into a product of a surjection, an isomorphism, and an injection:

T = iRg(T ) ◦ T̂ ◦ qK(T ).
A function T : V →W is called conjugate linear if

T (αx+ βy) = ᾱT (x) + β̄T (y) , α, β ∈ K , x, y ∈ V .

Results similar to those above hold for such functions.

1.5

Let V and W be linear spaces over K and consider the set L(V,W ) of linear

functions from V toW . The set W V of all functions from V toW is a linear

space under the pointwise definitions of addition and scalar multiplication

(cf. Example 1.1(b)), and L(V,W ) is a subspace.

We define V ∗ to be the linear space of all conjugate linear functionals

from V → K. V ∗ is called the algebraic dual of V . Note that there is

a bijection f 7→ f̄ of L(V,K) onto V ∗, where f̄ is the functional defined
by f̄(x) = f(x) for x ∈ V and is called the conjugate of the functional
f : V → K. Such spaces provide a useful means of constructing large linear
spaces containing a given class of functions. We illustrate this technique in

a simple situation.
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Example. Let G be open in Rn and x0 ∈ G. We shall imbed the space

C(G) in the algebraic dual of C0(G). For each f ∈ C(G), define Tf ∈ C0(G)
∗

by

Tf (ϕ) =

∫
G
fϕ̄ , ϕ ∈ C0(G) .

Since fϕ̄ ∈ C0(G), the Riemann integral is adequate here. An easy exercise
shows that the function f 7→ Tf : C(G)→ C0(G)

∗ is a linear injection, so we

may thus identify C(G) with a subspace of C0(G)
∗. This linear injection is

not surjective; we can exhibit functionals on C0(G) which are not identified

with functions in C(G). In particular, the Dirac functional δx0 defined by

δx0(ϕ) = ϕ(x0) , ϕ ∈ C0(G) ,

cannot be obtained as Tf for any f ∈ C(G). That is, Tf = δx0 implies that

f(x) = 0 for all x ∈ G, x 6= x0, and thus f = 0, a contradiction.

2 Convergence and Continuity

The absolute value function on R and modulus function on C are denoted

by | · |, and each gives a notion of length or distance in the corresponding
space and permits the discussion of convergence of sequences in that space

or continuity of functions on that space. We shall extend these concepts to

a general linear space.

2.1

A seminorm on the linear space V is a function p : V → R for which

p(αx) = |α|p(x) and p(x+ y) ≤ p(x) + p(y) for all α ∈ K and x, y ∈ V . The
pair V, p is called a seminormed space.

Lemma 2.1 If V, p is a seminormed space, then

(a) |p(x)− p(y)| ≤ p(x− y) , x, y ∈ V ,

(b) p(x) ≥ 0 , x ∈ V , and

(c) the kernel K(p) is a subspace of V .

(d) If T ∈ L(W,V ), then p ◦ T :W → R is a seminorm on W .
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(e) If pj is a seminorm on V and αj ≥ 0, 1 ≤ j ≤ n, then
∑n
j=1 αjpj is a

seminorm on V .

Proof : We have p(x) = p(x−y+y) ≤ p(x−y)+p(y) so p(x)−p(y) ≤ p(x−y).
Similarly, p(y) − p(x) ≤ p(y − x) = p(x − y), so the result follows. Setting
y = 0 in (a) and noting p(0) = 0, we obtain (b). The result (c) follows

directly from the definitions, and (d) and (e) are straightforward exercises.

If p is a seminorm with the property that p(x) > 0 for each x 6= θ, we

call it a norm.

Examples. (a) For 1 ≤ k ≤ n we define seminorms on Kn by pk(x) =∑k
j=1 |xj |, qk(x) = (

∑k
j=1 |xj |

2)1/2, and rk(x) = max{|xj | : 1 ≤ j ≤ k}. Each
of pn, qn and rn is a norm.

(b) If J ⊂ X and f ∈ KX , we define pJ(f) = sup{|f(x)| : x ∈ J}. Then
for each finite J ⊂ X , pJ is a seminorm on KX .
(c) For each K ⊂⊂ G, pK is a seminorm on C(G). Also, pḠ = pG is a

norm on C(Ḡ).

(d) For each j, 0 ≤ j ≤ k, and K ⊂⊂ G we can define a seminorm on

Ck(G) by pj,K(f) = sup{|Dαf(x)| : x ∈ K, |α| ≤ j}. Each such pj,G is a
norm on Ck(Ḡ).

2.2

Seminorms permit a discussion of convergence. We say the sequence {xn}
in V converges to x ∈ V if limn→∞ p(xn − x) = 0; that is, if {p(xn − x)} is
a sequence in R converging to 0. Formally, this means that for every ε > 0

there is an integer N ≥ 0 such that p(xn − x) < ε for all n ≥ N . We denote
this by xn → x in V, p and suppress the mention of p when it is clear what

is meant.

Let S ⊂ V . The closure of S in V, p is the set S̄ = {x ∈ V : xn → x in

V, p for some sequence {xn} in S}, and S is called closed if S = S̄. The
closure S̄ of S is the smallest closed set containing S : S ⊂ S̄, S̄ = ¯̄S, and if
S ⊂ K = K̄ then S̄ ⊂ K.

Lemma Let V, p be a seminormed space and M be a subspace of V . Then

M̄ is a subspace of V .

Proof : Let x, y ∈ M̄ . Then there are sequences xn, yn ∈ M such that

xn → x and yn → y in V, p. But p((x+y)−(xn+yn)) ≤ p(x−xn)+p(y−yn)→
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0 which shows that (xn+yn)→ x+y. Since xn+yn ∈M , all n, this implies
that x+y ∈ M̄ . Similarly, for α ∈ K we have p(αx−αxn) = |α|p(x−xn)→ 0,
so αx ∈ M̄ .

2.3

Let V, p and W, q be seminormed spaces and T : V → W (not necessarily

linear). Then T is called continuous at x ∈ V if for every ε > 0 there is a
δ > 0 for which y ∈ V and p(x− y) < δ implies q(T (x) − T (y)) < ε. T is

continuous if it is continuous at every x ∈ V .

Theorem 2.2 T is continuous at x if and only if xn → x in V, p implies

Txn → Tx in W, q.

Proof : Let T be continuous at x and ε > 0. Choose δ > 0 as in the defini-

tion above and thenN such that n ≥ N implies p(xn − x) < δ, where xn → x

in V, p is given. Then n ≥ N implies q(Txn − Tx) < ε, so Txn → Tx inW, q.

Conversely, if T is not continuous at x, then there is an ε > 0 such that for

every n ≥ 1 there is an xn ∈ V with p(xn − x) < 1/n and q(Txn − Tx) ≥ ε.
That is, xn → x in V, p but {Txn} does not converge to Tx in W, q.

We record the facts that our algebraic operations and seminorm are al-

ways continuous.

Lemma If V, p is a seminormed space, the functions (α, x) 7→ αx : K×V →
V , (x, y) 7→ x+ y : V × V → V , and p : V → R are all continuous.

Proof : The estimate p(αx− αnxn) ≤ |α− αn|p(x) + |αn|p(x− xn) implies
the continuity of scalar multiplication. Continuity of addition follows from

an estimate in the preceding Lemma, and continuity of p follows from the

Lemma of 2.1.

Suppose p and q are seminorms on the linear space V . We say p is

stronger than q (or q is weaker than p) if for any sequence {xn} in V ,
p(xn)→ 0 implies q(xn)→ 0.

Theorem 2.3 The following are equivalent:

(a) p is stronger than q,



2. CONVERGENCE AND CONTINUITY 9

(b) the identity I : V, p→ V, q is continuous, and

(c) there is a constant K ≥ 0 such that

q(x) ≤ Kp(x) , x ∈ V .

Proof : By Theorem 2.2, (a) is equivalent to having the identity I : V, p→ V, q

continuous at 0, so (b) implies (a). If (c) holds, then q(x− y) ≤ Kp(x− y),
x, y ∈ V , so (b) is true.
We claim now that (a) implies (c). If (c) is false, then for every in-

teger n ≥ 1 there is an xn ∈ V for which q(xn) > np(xn). Setting yn =

(1/q(xn))xn, n ≥ 1, we have obtained a sequence for which q(yn) = 1 and
p(yn)→ 0, thereby contradicting (a).

Theorem 2.4 Let V, p and W, q be seminormed spaces and T ∈ L(V,W ).
The following are equivalent:

(a) T is continuous at θ ∈ V ,

(b) T is continuous, and

(c) there is a constant K ≥ 0 such that

q(T (x)) ≤ Kp(x) , x ∈ V .

Proof : By Theorem 2.3, each of these is equivalent to requiring that the

seminorm p be stronger than the seminorm q ◦ T on V .

2.4

If V, p and W, q are seminormed spaces, we denote by L(V,W ) the set of
continuous linear functions from V to W . This is a subspace of L(V,W )

whose elements are frequently called the bounded operators from V to W

(because of Theorem 2.4).

Let T ∈ L(V,W ) and consider

λ ≡ sup{q(T (x)) : x ∈ V , p(x) ≤ 1} ,

µ ≡ inf{K > 0 : q(T (x)) ≤ Kp(x) for all x ∈ V } .
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If K belongs to the set defining µ, then for every x ∈ V : p(x) ≤ 1 we
have q(T (x)) ≤ K, hence λ ≤ K. This holds for all such K, so λ ≤ µ. If
x ∈ V with p(x) > 0, then y ≡ (1/p(x))x satisfies p(y) = 1, so q(T (y)) ≤ λ.

That is q(T (x)) ≤ λp(x) whenever p(x) > 0. But by Theorem 2.4(c) this

last inequality is trivially satisfied when p(x) = 0, so we have µ ≤ λ. These
remarks prove the first part of the following result; the remaining parts are

straightforward.

Theorem 2.5 Let V, p and W, q be seminormed spaces. For each T ∈
L(V,W ) we define a real number by |T |p,q ≡ sup{q(T (x)) : x ∈ V , p(x) ≤ 1}.
Then we have |T |p,q = sup{q(T (x)) : x ∈ V , p(x) = 1} = inf{K > 0 :

q(T (x)) ≤ Kp(x) for all x ∈ V } and | · |p,q is a seminorm on L(V,W ). Fur-
thermore, q(T (x)) ≤ |T |p,q · p(x), x ∈ V , and | · |p,q is a norm whenever q is
a norm.

Definitions. The dual of the seminormed space V, p is the linear space

V ′ = {f ∈ V ∗ : f is continuous} with the norm

‖f‖V ′ = sup{|f(x)| : x ∈ V , p(x) ≤ 1} .

If V, p and W, q are seminormed spaces, then T ∈ L(V,W ) is called a con-
traction if |T |p,q ≤ 1, and T is called an isometry if |T |p,q = 1.

3 Completeness

3.1

A sequence {xn} in a seminormed space V, p is called Cauchy if limm,n→∞ p(xm
− xn) = 0, that is, if for every ε > 0 there is an integer N such that

p(xm − xn) < ε for all m,n ≥ N . Every convergent sequence is Cauchy.
We call V, p complete if every Cauchy sequence is convergent. A complete

normed linear space is a Banach space.

Examples. Each of the seminormed spaces of Examples 2.1(a-d) is com-

plete.

(e) Let G = (0, 1) ⊂ R1 and consider C(Ḡ) with the norm p(x) =∫ 1
0 |x(t)| dt. Let 0 < c < 1 and for each n with 0 < c− 1/n define xn ∈ C(Ḡ)
by

xn(t) =



1 , c ≤ t ≤ 1
n(t− c) + 1 , c− 1/n < t < c

0 , 0 ≤ t ≤ c− 1/n
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For m ≥ n we have p(xm−xn) ≤ 1/n, so {xm} is Cauchy. If x ∈ C(Ḡ), then

p(xn − x) ≥
∫ c−1/n
0

|x(t)| dt +
∫ 1
c
|1− x(t)| d(t) .

This shows that if {xn} converges to x then x(t) = 0 for 0 ≤ t < c and

x(t) = 1 for c ≤ t ≤ 1, a contradiction. Hence C(Ḡ), p is not complete.

3.2

We consider the problem of extending a given function to a larger domain.

Lemma Let T : D → W be given, where D is a subset of the seminormed

space V, p andW, q is a normed linear space. There is at most one continuous

T̄ : D̄ →W for which T̄ |D = T .

Proof : Suppose T1 and T2 are continuous functions from D̄ to W which

agree with T on D. Let x ∈ D̄. Then there are xn ∈ D with xn → x in

V, p. Continuity of T1 and T2 shows T1xn → T1x and T2xn → T2x. But

T1xn = T2xn for all n, so T1x = T2x by the uniqueness of limits in the

normed space W, q.

Theorem 3.1 Let T ∈ L(D,W ), where D is a subspace of the seminormed
space V, p and W, q is a Banach space. Then there exists a unique T̄ ∈
L(D̄,W ) such that T̄ |D = T , and |T̄ |p,q = |T |p,q.

Proof : Uniqueness follows from the preceding lemma. Let x ∈ D̄. If

xn ∈ D and xn → x in V, p, then {xn} is Cauchy and the estimate

q(T (xm)− T (xn)) ≤ Kp(xm − xn)

shows {T (xn)} is Cauchy in W, q, hence, convergent to some y ∈ W . If

x′n ∈ D and x
′
n → x in V, p, then Tx′n → y, so we can define T̄ : D̄ →W by

T (x) = y. The linearity of T on D and the continuity of addition and scalar

multiplication imply that T̄ is linear. Finally, the continuity of seminorms

and the estimates

q(T (xn)) ≤ |T |p,q p(xn)

show T̄ is continuous on |T̄ |p,q = |T |p,q.
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3.3

A completion of the seminormed space V, p is a complete seminormed space

W, q and a linear injection T : V → W for which Rg(T ) is dense in W and T

preserves seminorms: q(T (x)) = p(x) for all x ∈ V . By identifying V, p with
Rg(T ), q, we may visualize V as being dense and contained in a correspond-

ing space that is complete. The completion of a normed space is a Banach

space and linear injection as above. If two Banach spaces are completions

of a given normed space, then we can use Theorem 3.1 to construct a lin-

ear norm-preserving bijection between them, so the completion of a normed

space is essentially unique.

We first construct a completion of a given seminormed space V, p. Let

W be the set of all Cauchy sequences in V, p. From the estimate |p(xn) −
p(xm)| ≤ p(xn − xm) it follows that p̄({xn}) = limn→∞ p(xn) defines a
function p̄ : W → R and it easily follows that p̄ is a seminorm on W . For
each x ∈ V , let Tx = {x, x, x, . . .}, the indicated constant sequence. Then
T : V, p → W, p̄ is a linear seminorm-preserving injection. If {xn} ∈ W ,

then for any ε > 0 there is an integer N such that p(xn − xN ) < ε/2 for

n ≥ N , and we have p̄({xn} − T (xN )) ≤ ε/2 < ε. Thus, Rg(T ) is dense in

W . Finally, we verify that W, p̄ is complete. Let {x̄n} be a Cauchy sequence
in W, p̄ and for each n ≥ 1 pick xn ∈ V with p̄(x̄n − T (xn)) < 1/n. Define
x̄0 = {x1, x2, x2, . . .}. From the estimate

p(xm − xn) = p̄(Txm − Txn) ≤ 1/m+ p̄(x̄m − x̄n) + 1/n

it follows that x̄0 ∈W , and from

p̄(x̄n − x̄0) ≤ p̄(x̄n − Txn) + p̄(Txn − x̄0) < 1/n + lim
m→∞

p(xn − xm)

we deduce that x̄n → x̄0 in W, p̄. Thus, we have proved the following.

Theorem 3.2 Every seminormed space has a completion.

3.4

In order to obtain from a normed space a corresponding normed completion,

we shall identify those elements ofW which have the same limit by factoring

W by the kernel of p̄. Before describing this quotient space, we consider

quotients in a seminormed space.



3. COMPLETENESS 13

Theorem 3.3 Let V, p be a seminormed space, M a subspace of V and

define

p̂(x̂) = inf{p(y) : y ∈ x̂} , x̂ ∈ V/M .

(a) V/M, p̂ is a seminormed space and the quotient map q : V → V/M has

(p, p̂)-seminorm = 1.

(b) If D is dense in V , then D̂ = {x̂ : x ∈ D} is dense in V/M .

(c) p̂ is a norm if and only if M is closed.

(d) If V, p is complete, then V/M, p̂ is complete.

Proof : We leave (a) and (b) as exercises. Part (c) follows from the obser-

vation that p̂(x̂) = 0 if and only if x ∈ M̄ .

To prove (d), we recall that a Cauchy sequence converges if it has a

convergent subsequence so we need only consider a sequence {x̂n} in V/M
for which p̂(x̂n+1 − x̂n) < 1/2n, n ≥ 1. For each n ≥ 1 we pick yn ∈ x̂n with
p(yn+1 − yn) < 1/2n. For m ≥ n we obtain

p(ym − yn) ≤
m−1−n∑
k=0

p(yn+1+k − yn+k) <
∞∑
k=0

2−(n+k) = 21−n .

Thus {yn} is Cauchy in V, p and part (a) shows x̂n → x̂ in V/M , where x is

the limit of {yn} in V, p.

Given V, p and the completion W, p̄ constructed for Theorem 3.2, we

consider the quotient space W/K and its corresponding seminorm p̂, where

K is the kernel of p̄. The continuity of p̄ :W → R implies that K is closed,
so p̂ is a norm on W/K. W, p̄ is complete, so W/K, p̂ is a Banach space.

The quotient map q :W →W/K satisfies p̂(q(x)) = p̂(x̂) = p̄(y) for all

y ∈ q(x), so q preserves the seminorms. Since Rg(T ) is dense in W it follows
that the linear map q ◦ T : V →W/K has a dense range in W/K. We have

p̂((q ◦T )x) = p̂(T̂ x) = p(x) for x ∈ V , hence K(q ◦T ) ≤ K(p). If p is a norm
this shows that q ◦ T is injective and proves the following.

Theorem 3.4 Every normed space has a completion.
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3.5

We briefly consider the vector space L(V,W ).

Theorem 3.5 If V, p is a seminormed space and W, q is a Banach space,

then L(V,W ) is a Banach space. In particular, the dual V ′ of a seminormed
space is complete.

Proof : Let {Tn} be a Cauchy sequence in L(V,W ). For each x ∈ V , the
estimate

q(Tmx− Tnx) ≤ |Tm − Tn|p(x)

shows that {Tnx} is Cauchy, hence convergent to a unique T (x) ∈W . This
defines T : V →W and the continuity of addition and scalar multiplication

in W will imply that T ∈ L(V,W ). We have

q(Tn(x)) ≤ |Tn|p(x) , x ∈ V ,

and {|Tn|} is Cauchy, hence, bounded in R, so the continuity of q shows that
T ∈ L(V,W ) with |T | ≤ K ≡ sup{|Tn| : n ≥ 1}.
To show Tn → T in L(V,W ), let ε > 0 and choose N so large that

m,n ≥ N implies |Tm − Tn| < ε. Hence, for m,n ≥ N , we have

q(Tm(x)− Tn(x)) < εp(x) , x ∈ V .

Letting m→∞ shows that for n ≥ N we have

q(T (x)− Tn(x)) ≤ εp(x) , x ∈ V ,

so |T − Tn| ≤ ε.

4 Hilbert Space

4.1

A scalar product on the vector space V is a function V ×V → K whose value
at x, y is denoted by (x, y) and which satisfies (a) x 7→ (x, y) : V → K is

linear for every y ∈ V , (b) (x, y) = (y, x), x, v ∈ V , and (c) (x, x) > 0 for
each x 6= 0. From (a) and (b) it follows that for each x ∈ V , the function
y 7→ (x, y) is conjugate-linear, i.e., (x, αy) = ᾱ(x, y). The pair V, (·, ·) is
called a scalar product space.
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Theorem 4.1 If V, (·, ·) is a scalar product space, then

(a) |(x, y)|2 ≤ (x, x) · (y, y) , x, y ∈ V ,

(b) ‖x‖ ≡ (x, x)1/2 defines a norm ‖ · ‖ on V for which

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) , x, y ∈ V , and

(c) the scalar product is continuous from V × V to K.

Proof : Part (a) follows from the computation

0 ≤ (αx+ βy, αx+ βy) = β(β(y, y)− |α|2)

for the scalars α = −(x, y) and β = (x, x). To prove (b), we use (a) to verify

‖x+ y‖2 ≤ ‖x‖2 + 2|(x, y)| + ‖y‖2 ≤ (‖x‖+ ‖y‖)2 .

The remaining norm axioms are easy and the indicated identity is easily

verified. Part (c) follows from the estimate

|(x, y)− (xn, yn)| ≤ ‖x‖ ‖y − yn‖+ ‖yn‖ ‖x− xn‖

applied to a pair of sequences, xn → x and yn → y in V, ‖ · ‖.

A Hilbert space is a scalar product space for which the corresponding

normed space is complete.

Examples. (a) Let V = KN with vectors x = (x1, x2, . . . , xN ) and define

(x, y) =
∑N
j=1 xj ȳj. Then V, (·, ·) is a Hilbert space (with the norm ‖x‖ =

(
∑N
j=1 |xj |

2)1/2) which we refer to as Euclidean space.

(b) We define C0(G) a scalar product by

(ϕ,ψ) =

∫
G
ϕψ̄

where G is open in Rn and the Riemann integral is used. This scalar product

space is not complete.

(c) On the space L2(G) of (equivalence classes of) Lebesgue square-

summable K-valued functions we define the scalar product as in (b) but

with the Lebesgue integral. This gives a Hilbert space in which C0(G) is a

dense subspace.
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Suppose V, (·, ·) is a scalar product space and let B, ‖ · ‖ denote the
completion of V, ‖ · ‖. For each y ∈ V , the function x 7→ (x, y) is linear,
hence has a unique extension to B, thereby extending the definition of (x, y)

to B × V . It is easy to verify that for each x ∈ B, the function y 7→ (x, y) is
in V ′ and we can similarly extend it to define (x, y) on B ×B. By checking
that (the extended) function (·, ·) is a scalar product on B, we have proved
the following result.

Theorem 4.2 Every scalar product space has a (unique) completion which

is a Hilbert space and whose scalar product is the extension by continuity of

the given scalar product.

Example. L2(G) is the completion of C0(G) with the scalar product given

above.

4.2

The scalar product gives us a notion of angles between vectors. (In partic-

ular, recall the formula (x, y) = ‖x‖ ‖y‖ cos(θ) in Example (a) above.) We
call the vectors x, y orthogonal if (x, y) = 0. For a given subset M of the

scalar product space V , we define the orthogonal complement of M to be

the set

M⊥ = {x ∈ V : (x, y) = 0 for all y ∈M} .

Lemma M⊥ is a closed subspace of V and M ∩M⊥ = {0}.

Proof : For each y ∈ M , the set {x ∈ V : (x, y) = 0} is a closed subspace
and so then is the intersection of all these for y ∈M . The only vector
orthogonal to itself is the zero vector, so the second statement follows.

A set K in the vector space V is convex if for x, y ∈ K and 0 ≤ α ≤ 1,
we have αx+(1−α)y ∈ K. That is, if a pair of vectors is in K, then so also
is the line segment joining them.

Theorem 4.3 A non-empty closed convex subset K of the Hilbert space H

has an element of minimal norm.

Proof : Setting d ≡ inf{‖x‖ : x ∈ K}, we can find a sequence xn ∈ K

for which ‖xn‖ → d. Since K is convex we have (1/2)(xn + xm) ∈ K for
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m,n ≥ 1, hence ‖xn + xm‖2 ≥ 4d2. From Theorem 4.1(b) we obtain the
estimate ‖xn − xm‖2 ≤ 2(‖xn‖2 + ‖xm‖2) − 4d2. The right side of this
inequality converges to 0, so {xn} is Cauchy, hence, convergent to some
x ∈ H. K is closed, so x ∈ K, and the continuity of the norm shows that
‖x‖ = limn ‖xn‖ = d.

We note that the element with minimal norm is unique, for if y ∈ K with
‖y‖ = d, then (1/2)(x + y) ∈ K and Theorem 4.1(b) give us, respectively,
4d2 ≤ ‖x+ y‖2 = 4d2 − ‖x− y‖2. That is, ‖x− y‖ = 0.

Theorem 4.4 Let M be a closed subspace of the Hilbert space H. Then for

every x ∈ H we have x = m+ n, where m ∈M and n ∈M⊥ are uniquely

determined by x.

Proof : The uniqueness follows easily, since if x = m1 + n1 with m1 ∈ M ,
n1 ∈ M⊥, then m1 − m = n − n1 ∈ M ∩ M⊥ = {θ}. To establish the
existence of such a pair, define K = {x + y : y ∈ M} and use Theorem 4.3
to find n ∈ K with ‖n‖ = inf{‖x + y‖ : y ∈ M}. Then set m = x − n. It
is clear that m ∈ M and we need only to verify that n ∈ M⊥. Let y ∈ M .
For each α ∈ K, we have n − αy ∈ K, hence ‖n − αy‖2 ≥ ‖n‖2. Setting
α = β(n, y), β > 0, gives us |(n, y)|2(β‖y‖2 − 2) ≥ 0, and this can hold for
all β > 0 only if (n, y) = 0.

4.3

From Theorem 4.4 it follows that for each closed subspace M of a Hilbert

space H we can define a function PM : H →M by PM : x = m + n 7→ m,

where m ∈M and n ∈M⊥ as above. The linearity of PM is immediate and

the computation

‖PMx‖
2 ≤ ‖PMx‖

2 + ‖n‖2 = ‖PMx+ n‖
2 = ‖x‖2

shows PM ∈ L(H,H) with ‖PM‖ ≤ 1. Also, PMx = x exactly when x ∈M ,
so PM ◦ PM = PM . The operator PM is called the projection on M .

If P ∈ L(B,B) satisfies P ◦ P = P , then P is called a projection on the

Banach space B. The result of Theorem 4.4 is a guarantee of a rich supply

of projections in a Hilbert space.
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4.4

We recall that the (continuous) dual of a seminormed space is a Banach

space. We shall show there is a natural correspondence between a Hilbert

space H and its dual H ′. Consider for each fixed x ∈ H the function fx
defined by the scalar product: fx(y) = (x, y), y ∈ H. It is easy to check

that fx ∈ H ′ and ‖fx‖H′ = ‖x‖. Furthermore, the map x 7→ fx : H → H ′ is

linear:

fx+z = fx + fz , x, z ∈ H ,

fαx = αfx , α ∈ K , x ∈ H .

Finally, the function x 7→ fx : H → H ′ is a norm preserving and linear

injection. The above also holds in any scalar product space, but for Hilbert

spaces this function is also surjective. This follows from the next result.

Theorem 4.5 Let H be a Hilbert space and f ∈ H ′. Then there is an

element x ∈ H (and only one) for which

f(y) = (x, y) , y ∈ H .

Proof : We need only verify the existence of x ∈ H. If f = θ we take x = θ,
so assume f 6= θ in H ′. Then the kernel of f , K = {x ∈ H : f(x) = 0} is a
closed subspace of H with K⊥ 6= {θ}. Let n ∈ K⊥ be chosen with ‖n‖ = 1.
For each z ∈ K⊥ it follows that f(n)z − f(z)n ∈ K ∩K⊥ = {θ}, so z is a
scalar multiple of n. (That is, K⊥ is one-dimensional.) Thus, each y ∈ H is
of the form y = PK(y) + λn where (y, n) = λ(n, n) = λ. But we also have

f(y) = λ̄f(n), since PK(y) ∈ K, and thus f(y) = (f(n)n, y) for all y ∈ H.

The function x 7→ fx from H to H ′ will occur frequently in our later

discussions and it is called the Riesz map and is denoted by RH . Note that

it depends on the scalar product as well as the space. In particular, RH is

an isometry of H onto H ′ defined by

RH(x)(y) = (x, y)H , x, y ∈ H .
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5 Dual Operators; Identifications

5.1

Suppose V and W are linear spaces and T ∈ L(V,W ). Then we define the
dual operator T ′ ∈ L(W ∗, V ∗) by

T ′(f) = f ◦ T , f ∈W ∗ .

Theorem 5.1 If V is a linear space, W, q is a seminorm space, and T ∈
L(V,W ) has dense range, then T ′ is injective on W ′. If V, p and W, q are

seminorm spaces and T ∈ L(V,W ), then the restriction of the dual T ′ to W ′

belongs to L(W ′, V ′) and it satisfies

‖T ′‖L(W ′,V ′) ≤ |T |p,q .

Proof : The first part follows from Section 3.2. The second is obtained from

the estimate

|T ′f(x)| ≤ ‖f‖W ′ |T |p,q p(x) , f ∈W ′ , x ∈ V .

We give two basic examples. Let V be a subspace of the seminorm space

W, q and let i : V →W be the identity. Then i′(f) = f ◦ i is the restriction
of f to the subspace V ; i′ is injective on W ′ if (and only if) V is dense in

W . In such cases we may actually identify i′(W ′) with W ′, and we denote

this identification by W ′ ≤ V ∗.
Consider the quotient map q : W → W/V where V and W, q are given

as above. It is clear that if g ∈ (W/V )∗ and f = q′(g), i.e., f = g ◦ q, then
f ∈W ∗ and V ≤ K(f). Conversely, if f ∈W ∗ and V ≤ K(f), then Theorem
1.1 shows there is a g ∈ (W/V )∗ for which q′(g) = f . These remarks show

that Rg(q′) = {f ∈W ∗ : V ≤ K(f)}. Finally, we note by Theorem 3.3 that
|q|q,q̂ = 1, so it follows that g ∈ (W,V )

′ if and only if q′(g) ∈W ′.

5.2

Let V and W be Hilbert spaces and T ∈ L(V,W ). We define the adjoint of
T as follows: if u ∈ W , then the functional v 7→ (u, Tv)W belongs to V ′, so
Theorem 4.5 shows that there is a unique T ∗u ∈ V such that

(T ∗u, v)V = (u, Tv)W , u ∈W , v ∈ V .
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Theorem 5.2 If V and W are Hilbert spaces and T ∈ L(V,W ), then T ∗ ∈
L(W,V ), Rg(T )⊥ = K(T ∗) and Rg(T ∗)⊥ = K(T ). If T is an isomorphism

with T−1 ∈ L(W,V ), then T ∗ is an isomorphism and (T ∗)−1 = (T−1)∗.

We leave the proof as an exercise and proceed to show that dual opera-

tors are essentially equivalent to the corresponding adjoint. Let V andW be

Hilbert spaces and denote byRV andRW the corresponding Riesz maps (Sec-

tion 4.4) onto their respective dual spaces. Let T ∈ L(V,W ) and consider its
dual T ′ ∈ L(W ′, V ′) and its adjoint T ∗ ∈ L(W,V ). For u ∈W and v ∈ V we
have RV ◦T ∗(u)(v) = (T ∗u, v)V = (u, Tv)W = RW (u)(Tv) = (T ′ ◦RWu)(v).
This shows that RV ◦T ∗ = T ′ ◦RW , so the Riesz maps permit us to study ei-
ther the dual or the adjoint and deduce information on both. As an example

of this we have the following.

Corollary 5.3 If V and W are Hilbert spaces, and T ∈ L(V,W ), then
Rg(T ) is dense in W if and only if T ′ is injective, and T is injective if and

only if Rg(T ′) is dense in V ′. If T is an isomorphism with T−1 ∈ L(W,V ),
then T ′ ∈ L(W ′, V ′) is an isomorphism with continuous inverse.

5.3

It is extremely useful to make certain identifications between various lin-

ear spaces and we shall discuss a number of examples which will appear

frequently in the following.

First, consider the linear space C0(G) and the Hilbert space L
2(G). Ele-

ments of C0(G) are functions while elements of L
2(G) are equivalence classes

of functions. Since each f ∈ C0(G) is square-summable on G, it belongs to
exactly one such equivalence class, say i(f) ∈ L2(G). This defines a lin-

ear injection i : C0(G) → L2(G) whose range is dense in L2(G). The dual

i′ : L2(G)′ → C0(G)
∗ is then a linear injection which is just restriction to

C0(G).

The Riesz map R of L2(G) (with the usual scalar product) onto L2(G)′

is defined as in Section 4.4. Finally, we have a linear injection T : C0(G)→
C0(G)

∗ given in Section 1.5 by

(Tf)(ϕ) =

∫
G
f(x)ϕ̄(x) dx , f, ϕ ∈ C0(G) .
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Both R and T are possible identifications of (equivalence classes of) functions

with conjugate-linear functionals. Moreover we have the important identity

T = i′ ◦R ◦ i .

This shows that all four injections may be used simultaneously to identify

the various pairs as subspaces. That is, we identify

C0(G) ≤ L
2(G) = L2(G)′ ≤ C0(G)

∗ ,

and thereby reduce each of i, R, i′ and T to the identity function from a

subspace to the whole space. Moreover, once we identify C0(G) ≤ L2(G),

L2(G)′ ≤ C0(G)
∗, and C0(G) ≤ C0(G)

∗, by means of i, i′, and T , respec-

tively, then it follows that the identification of L2(G) with L2(G)′ through

the Riesz map R is possible (i.e., compatible with the three preceding) only

if the R corresponds to the standard scalar product on L2(G). For example,

suppose R is defined through the (equivalent) scalar-product

(Rf)(g) =

∫
G
a(x)f(x)g(x) dx , f, g ∈ L2(G) ,

where a(·) ∈ L∞(G) and a(x) ≥ c > 0, x ∈ G. Then, with the three

identifications above, R corresponds to multiplication by the function a(·).
Other examples will be given later.

5.4

We shall find the concept of a sesquilinear form is as important to us as that

of a linear operator. The theory of sesquilinear forms is analogous to that

of linear operators and we discuss it briefly.

Let V be a linear space over the field K. A sesquilinear form on V is a K-

valued function a(·, ·) on the product V × V such that x 7→ a(x, y) is linear

for every y ∈ V and y 7→ a(x, y) is conjugate linear for every x ∈ V . Thus,
each sesquilinear form a(·, ·) on V corresponds to a unique A ∈ L(V, V ∗)

given by

a(x, y) = Ax(y) , x, y ∈ V . (5.1)

Conversely, if A ∈ L(V, V ∗) is given, then Equation (5.1) defines a sesquilin-
ear form on V .
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Theorem 5.4 Let V, p be a normed linear space and a(·, ·) a sesquilinear
form on V . The following are equivalent:

(a) a(·, ·) is continuous at (θ, θ),

(b) a(·, ·) is continuous on V × V ,

(c) there is a constant K ≥ 0 such that

|a(x, y)| ≤ Kp(x)p(y) , x, y ∈ V , (5.2)

(d) A ∈ L(V, V ′).

Proof : It is clear that (c) and (d) are equivalent, (c) implies (b), and (b)

implies (a). We shall show that (a) implies (c). The continuity of a(·, ·) at
(θ, θ) implies that there is a δ > 0 such that p(x) ≤ δ and p(y) ≤ δ imply

|a(x, y)| ≤ 1. Thus, if x 6= 0 and y 6= 0 we obtain Equation (5.2) with
K = 1/δ2.

When we consider real spaces (i.e., K = R) there is no distinction between

linear and conjugate-linear functions. Then a sesquilinear form is linear in

both variables and we call it bilinear .

6 Uniform Boundedness; Weak Compactness

A sequence {xn} in the Hilbert space H is called weakly convergent to x ∈ H
if limn→∞(xn, v)H = (x, v)H for every v ∈ H. The weak limit x is clearly
unique. Similarly, {xn} is weakly bounded if |(xn, v)H | is bounded for every
v ∈ H.
Our first result is a simple form of the principle of uniform boundedness.

Theorem 6.1 A sequence {xn} is weakly bounded if and only if it is bounded.

Proof : Let {xn} be weakly bounded. We first show that on some sphere,
s(x, r) = {y ∈ H : ‖y−x‖ < r}, {xn} is uniformly bounded: there is a K ≥ 0
with |(xn, y)H | ≤ K for all y ∈ s(x, r). Suppose not. Then there is an integer
n1 and y1 ∈ s(0, 1): |(xn1 , y1)H | > 1. Since y 7→ (xn1 , y)H is continuous,

there is an r1 < 1 such that |(xn1 , y)H | > 1 for y ∈ s(y1, r1). Similarly,

there is an integer n2 > n1 and s(y2, r2) ⊂ s(y1, r1) such that r2 < 1/2
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and |(xn2 , y)H | > 2 for y ∈ s(y2, r2). We inductively define s(yj, rj) ⊂
s(yj−1, rj−1) with rj < 1/j and |(xnj , y)H | > j for y ∈ s(yj, rj). Since

‖ym − yn‖ < 1/n if m > n and H is complete, {yn} converges to some
y ∈ H. But then y ∈ s(yj, rj), hence |(xnj , y)H | > j for all j ≥ 1, a
contradiction.

Thus {xn} is uniformly bounded on some sphere s(y, r) : |(xn, y+rz)H | ≤
K for all z with ‖z‖ ≤ 1. If ‖z‖ ≤ 1, then

|(xn, z)H | = (1/r)|xn, y + rz)H − (xn, y)H | ≤ 2K/r ,

so ‖xn‖ ≤ 2K/r for all n.

We next show that bounded sequences have weakly convergent subse-

quences.

Lemma If {xn} is bounded in H and D is a dense subset of H, then
limn→∞(xn, v)H = (x, v)H for all v ∈ D (if and) only if {xn} converges
weakly to x.

Proof : Let ε > 0 and v ∈ H. There is a z ∈ D with ‖v − z‖ < ε and we

obtain

|(xn − x, v)H | ≤ |(xn, v − z)H |+ |(z, xn − x)H |+ |(x, v − z)H |

< ε‖xn‖+ |(z, xn − x)H |+ ε‖x‖ .

Hence, for all n sufficiently large (depending on z), we have |(xn−x, v)H | <
2ε sup{‖xm‖ : m ≥ 1}. Since ε > 0 is arbitrary, the result follows.

Theorem 6.2 Let the Hilbert space H have a countable dense subset D =

{yn}. If {xn} is a bounded sequence in H, then it has a weakly convergent
subsequence.

Proof : Since {(xn, y1)H} is bounded in K, there is a subsequence {x1,n}
of {xn} such that {(x1,n, y1)H} converges. Similarly, for each j ≥ 2 there
is a subsequence {xj,n} of {xj−1,n} such that {(xj,n, yk)H} converges in K
for 1 ≤ k ≤ j. It follows that {xn,n} is a subsequence of {xn} for which
{(xn,n, yk)H} converges for every k ≥ 1.
From the preceding remarks, it suffices to show that if {(xn, y)H} con-

verges in K for every y ∈ D, then {xk} has a weak limit. So, we define
f(y) = limn→∞(xn, y)H , y ∈ 〈D〉, where 〈D〉 is the subspace of all linear
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combinations of elements of D. Clearly f is linear; f is continuous, since

{xn} is bounded, and has by Theorem 3.1 a unique extension f ∈ H ′. But
then there is by Theorem 4.5 an x ∈ H such that f(y) = (x, y)H , y ∈ H.
The Lemma above shows that x is the weak limit of {xn}.
Any seminormed space which has a countable and dense subset is called

separable. Theorem 6.2 states that any bounded set in a separable Hilbert

space is relatively sequentially weakly compact . This result holds in any

reflexive Banach space, but all the function spaces which we shall consider

are separable Hilbert spaces, so Theorem 6.2 will suffice for our needs.

7 Expansion in Eigenfunctions

7.1

We consider the Fourier series of a vector in the scalar product space H with

respect to a given set of orthogonal vectors. The sequence {vj} of vectors in
H is called orthogonal if (vi, vj)H = 0 for each pair i, j with i 6= j. Let {vj}
be such a sequence of non-zero vectors and let u ∈ H. For each j we define
the Fourier coefficient of u with respect to vj by cj = (u, vj)H/(vj , vj)H . For

each n ≥ 1 it follows that
∑n
j=1 cjvj is the projection of u on the subspace

Mn spanned by {v1, v2, . . . , vn}. This follows from Theorem 4.4 by noting
that u−

∑n
j=1 cjvj is orthogonal to each vi, 1 ≤ j ≤ n, hence belongs toM

⊥
n .

We call the sequence of vectors orthonormal if they are orthogonal and if

(vj , vj)H = 1 for each j ≥ 1.

Theorem 7.1 Let {vj} be an orthonormal sequence in the scalar product
space H and let u ∈ H. The Fourier coefficients of u are given by cj =

(u, vj)H and satisfy
∞∑
j=1

|cj |
2 ≤ ‖u‖2 . (7.1)

Also we have u =
∑∞
j=1 cjvj if and only if equality holds in (7.1).

Proof : Let un ≡
∑n
j=1 cjvj , n ≥ 1. Then u− un ⊥ un so we obtain

‖u‖2 = ‖u− un‖
2 + ‖un‖

2 , n ≥ 1 . (7.2)

But ‖un‖2 =
∑n
j=1 |cj |

2 follows since the set {vi, . . . , vn} is orthonormal, so
we obtain

∑n
j=1 |cj |

2 ≤ ‖u‖2 for all n, hence (7.1) holds. It follows from (7.2)
that limn→∞ ‖u− un‖ − 0 if and only if equality holds in (7.1).
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The inequality (7.1) is Bessel’s inequality and the corresponding equality

is called Parseval’s equation. The series
∑∞
j=1 cjvj above is the Fourier series

of u with respect to the orthonormal sequence {vj}.

Theorem 7.2 Let {vj} be an orthonormal sequence in the scalar product
space H. Then every element of H equals the sum of its Fourier series if

and only if {vj} is a basis for H, that is, its linear span is dense in H.

Proof : Suppose {vj} is a basis and let u ∈ H be given. For any ε > 0, there
is an n ≥ 1 for which the linear spanM of the set {v1, v2, . . . , vn} contains an
element which approximates u within ε. That is, inf{‖u−w‖ : w ∈M} < ε.

If un is given as in the proof of Theorem 7.1, then we have u − un ∈ M⊥.

Hence, for any w ∈M we have

‖u− un‖
2 = (u− un, u− w)H ≤ ‖u− un‖ ‖u− w‖ ,

since un − w ∈M . Taking the infimum over all w ∈M then gives

‖u− un‖ ≤ inf{‖u −w‖ : w ∈M} < ε . (7.3)

Thus, limn→∞ un = u. The converse is clear.

7.2

Let T ∈ L(H). A non-zero vector v ∈ H is called an eigenvector of T if

T (v) = λv for some λ ∈ K. The number λ is the eigenvalue of T corre-
sponding to v. We shall show that certain operators possess a rich supply

of eigenvectors. These eigenvectors form an orthonormal sequence to which

we can apply the preceding Fourier series expansion techniques.

An operator T ∈ L(H) is called self-adjoint if (Tu, v)H = (u, Tv)H for
all u, v ∈ H. A self-adjoint T is called non-negative if (Tu, u)H ≥ 0 for all
u ∈ H.

Lemma 7.3 If T ∈ L(H) is non-negative self-adjoint, then ‖Tu‖ ≤

‖T‖1/2(Tu, u)
1/2
H , u ∈ H.

Proof : The sesquilinear form [u, v] ≡ (Tu, v)H satisfies the first two scalar-
product axioms and this is sufficient to obtain

|[u, v]|2 ≤ [u, u][v, v] , u, v ∈ H . (7.4)
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(If either factor on the right side is strictly positive, this follows from the

proof of Theorem 4.1. Otherwise, 0 ≤ [u+ tv, u+ tv] = 2t[u, v] for all t ∈ R,
hence, both sides of (7.4) are zero.) The desired result follows by setting

v = T (u) in (7.4).

The operators we shall consider are the compact operators. If V,W are

seminormed spaces, then T ∈ L(V,W ) is called compact if for any bounded
sequence {un} in V its image {Tun} has a subsequence which converges in
W . The essential fact we need is the following.

Lemma 7.4 If T ∈ L(H) is self-adjoint and compact, then there exists a
vector v with ‖v‖ = 1 and T (v) = µv, where |µ| = ‖T‖L(H) > 0.

Proof : If λ is defined to be ‖T‖L(H), it follows from Theorem 2.5 that
there is a sequence un in H with ‖un‖ = 1 and limn→∞ ‖Tun‖ = λ. Then

((λ2 − T 2)un, un)H = λ2 − ‖Tun‖2 converges to zero. The operator λ2 − T 2

is non-negative self-adjoint so Lemma 7.3 implies {(λ2−T 2)un} converges to
zero. Since T is compact we may replace {un} by an appropriate subsequence
for which {Tun} converges to some vector w ∈ H. Since T is continuous

there follows limn→∞(λ
2un) = limn→∞ T

2un = Tw, so w = limn→∞ Tun =

λ−2T 2(w). Note that ‖w‖ = λ and T 2(w) = λ2w. Thus, either (λ+T )w 6= 0
and we can choose v = (λ+ T )w/‖(λ+ T )w‖, or (λ+ T )w = 0, and we can
then choose v = w/‖w‖. Either way, the desired result follows.

Theorem 7.5 Let H be a scalar product space and let T ∈ L(H) be self-
adjoint and compact. Then there is an orthonormal sequence {vj} of eigen-
vectors of T for which the corresponding sequence of eigenvalues {λj} con-
verges to zero and the eigenvectors are a basis for Rg(T ).

Proof : By Lemma 7.4 it follows that there is a vector v1 with ‖v1‖ = 1 and
T (v1) = λ1v1 with |λ1| = ‖T‖L(H). Set H1 = {v1}

⊥ and note T{H1} ⊂ H1.

Thus, the restriction T |H1 is self-adjoint and compact so Lemma 7.4 implies

the existence of an eigenvector v2 of T of unit length in H1 with eigenvalue

λ2 satisfying |λ2| = ‖T‖L(H1) ≤ |λ1|. Set H2 = {v1, v2}
⊥ and continue this

procedure to obtain an orthonormal sequence {vj} in H and sequence {λj}
in R such that T (vj) = λjvj and |λj+1| ≤ |λj | for j ≥ 1.
Suppose the sequence {λj} is eventually zero; let n be the first integer

for which λn = 0. Then Hn−1 ⊂ K(T ), since T (vj) = 0 for j ≥ n. Also we

see vj ∈ Rg(T ) for j < n, so Rg(T )⊥ ⊂ {v1, v2, . . . , vn−1}⊥ = Hn−1 and from
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Theorem 5.2 follows K(T ) = Rg(T )⊥ ⊂ Hn−1. Therefore K(T ) = Hn−1 and
Rg(T ) equals the linear span of {v1, v2, . . . , vn−1}.
Consider hereafter the case where each λj is different from zero. We

claim that limj→∞(λj) = 0. Otherwise, since |λj | is decreasing we would
have all |λj | ≥ ε for some ε > 0. But then

‖T (vi)− T (vj)‖
2 = ‖λivi − λjvj‖

2 = ‖λivi‖
2 + ‖λjvj‖

2 ≥ 2ε2

for all i 6= j, so {T (vj)} has no convergent subsequence, a contradiction. We
shall show {vj} is a basis for Rg(T ). Let w ∈ Rg(T ) and

∑
bjvj the Fourier

series of w. Then there is a u ∈ H with T (u) = w and we let
∑
cjvj be the

Fourier series of u. The coefficients are related by

bj = (w, vj)H = (Tu, vj)H = (u, Tvj)H = λjcj ,

so there follows T (cjvj) = bjvj , hence,

w −
n∑
j=1

bjvj = T


u− n∑

j=1

cjvj


 , n ≥ 1 . (7.5)

Since T is bounded by |λn+1| on Hn, and since ‖u −
∑n
j=1 cjvj‖ ≤ ‖u‖ by

(7.2), we obtain from (7.5) the estimate

∥∥∥∥∥∥w −
n∑
j=1

bjuj

∥∥∥∥∥∥ ≤ |λn+1| · ‖u‖ , n ≥ 1 . (7.6)

Since limj→∞ λj = 0, we have w =
∑∞
j=1 bjvj as desired.

Exercises

1.1. Explain what “compatible” means in the Examples of Section 1.2.

1.2. Prove the Lemmas of Sections 1.3 and 1.4.

1.3. In Example (1.3.b), show V/M is isomorphic to K.

1.4. Let V = C(Ḡ) and M = {ϕ ∈ C(Ḡ) : ϕ|∂G = 0}. Show V/M is

isomorphic to {ϕ|∂G : ϕ ∈ C(Ḡ)}, the space of “boundary values” of
functions in V .
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1.5. In Example (1.3.c), show ϕ̂1 = ϕ̂2 if and only if ϕ1 equals ϕ2 on a

neighborhood of ∂G. Find a space of functions isomorphic to V/M .

1.6. In Example (1.4.c), find K(D) and Rg(D) when V = {ϕ ∈ C1(Ḡ) :

ϕ(a) = ϕ(b)}.

1.7. Verify the last sentence in the Example of Section 1.5.

1.8. Let Mα ≤ V for each α ∈ A; show ∩{Mα : α ∈ A} ≤ V .

2.1. Prove parts (d) and (e) of Lemma 2.1.

2.2. If V1, p1 and V2, p2 are seminormed spaces, show p(x) ≡ p1(x1)+ p2(x2)
is a seminorm on the product V1 × V2.

2.3. Let V, p be a seminormed space. Show limits are unique if and only if

p is a norm.

2.4. Verify all Examples in Section 2.1.

2.5. Show ∩α∈AS̄α = ∩α∈ASα. Verify S̄ = smallest closed set containing S.

2.6. Show T : V, p→W, q is continuous if and only if S closed inW, q implies

T (S) closed in V, p. If T ∈ L(V,W ), then T continuous if and only if
K(T ) is closed.

2.7. The composition of continuous functions is continuous; T ∈ L(V,W ),
S ∈ L(U, V )⇒ T ◦ S ∈ L(U,W ) and |T ◦ S| ≤ |T | |S|.

2.8. Finish proof of Theorem 2.5.

2.9. Show V ′ is isomorphic to L(V,K); they are equal only if K = R.

3.1. Show that a closed subspace of a seminormed space is complete.

3.2. Show that a complete subspace of a normed space is closed.

3.3. Show that a Cauchy sequence is convergent if and only if it has a con-

vergent subsequence.
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3.4. Let V, p be a seminormed space and W, q a Banach space. Let the

sequence Tn ∈ L(V,W ) be given uniformly bounded : |Tn|p,q ≤ K for all
n ≥ 1. Suppose that D is a dense subset of V and {Tn(x)} converges in
W for each x ∈ D. Then show {Tn(x)} converges in W for each x ∈ V
and T (x) = limTn(x) defines T ∈ L(V,W ). Show that completeness
of W is necessary above.

3.5. Let V, p and W, q be as given above. Show L(V,W ) is isomorphic to
L(V/Ker(p),W ).

3.6. Prove the remark in Section 3.3 on uniqueness of a completion.

4.1. Show that the norms p2 and r2 of Section 2.1 are not obtained from

scalar products.

4.2. Let M be a subspace of the scalar product space V (·, ·). Then the
following are equivalent: M is dense in V , M⊥ = {θ}, and ‖f‖V ′ =
sup{|(f, v)V | : v ∈M} for every f ∈ V ′.

4.3. Show lim xn = x in V , (·, ·) if and only if lim ‖xn‖ = ‖x‖ and lim f(xn) =
f(x) for all f ∈ V ′.

4.4. If V is a scalar product space, show V ′ is a Hilbert space. Show that

the Riesz map of V into V ′ is surjective only if V is complete.

5.1. Prove Theorem 5.2.

5.2. Prove Corollary 5.3.

5.3. Verify T = i′ ◦R ◦ i in Section 5.3.

5.4. In the situation of Theorem 5.2, prove the following are equivalent:

Rg(T ) is closed, Rg(T ∗) is closed, Rg(T ) = K(T ∗)⊥, and Rg(T ∗) =

K(T )⊥.

7.1. Let G = (0, 1) and H = L2(G). Show that the sequence vn(x) =

2 sin(nπx), n ≥ 1 is orthonormal in H.

7.2. In Theorem 7.1, show that {un} is a Cauchy sequence.

7.3. Show that the eigenvalues of a non-negative self-adjoint operator are all

non-negative.
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7.4. In the situation of Theorem 7.5, show K(T ) is the orthogonal comple-

ment of the linear span of {v1, v2, v3, . . .}.



Chapter II

Distributions and Sobolev
Spaces

1 Distributions

1.1

We shall begin with some elementary results concerning the approximation

of functions by very smooth functions. For each ε > 0, let ϕε ∈ C∞0 (R
n) be

given with the properties

ϕε ≥ 0 , supp(ϕε) ⊂ {x ∈ R
n : |x| ≤ ε} ,

∫
ϕε = 1 .

Such functions are called mollifiers and can be constructed, for example, by

taking an appropriate multiple of

ψε(x) =

{
exp(|x|2 − ε2)−1 , |x| < ε ,
0 , |x| ≥ ε .

Let f ∈ L1(G), where G is open in Rn, and suppose that the support of f
satisfies supp(f) ⊂⊂ G. Then the distance from supp(f) to ∂G is a positive
number δ. We extend f as zero on the complement of G and denote the

extension in L1(Rn) also by f . Define for each ε > 0 the mollified function

fε(x) =

∫
Rn
f(x− y)ϕε(y) dy , x ∈ Rn . (1.1)

Lemma 1.1 For each ε > 0, supp(fε) ⊂ supp(f) + {y : |y| ≤ ε} and
fε ∈ C∞(Rn).

31
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Proof : The second result follows from Leibnitz’ rule and the representation

fε(x) =

∫
f(s)ϕε(x− s) ds .

The first follows from the observation that fε(x) 6= 0 only if x ∈ supp(f)+
{y : |y| ≤ ε}. Since supp(f) is closed and {y : |y| ≤ ε} is compact, it follows
that the indicated set sum is closed and, hence, contains supp(fε).

Lemma 1.2 If f ∈ C0(G), then fε → f uniformly on G. If f ∈ Lp(G),

1 ≤ p <∞, then ‖fε‖Lp(G) ≤ ‖f‖Lp(G) and fε → f in Lp(G).

Proof : The first result follows from the estimate

|fε(x)− f(x)| ≤
∫
|f(x− y)− f(x)|ϕε(y) dy

≤ sup{|f(x− y)− f(x)| : x ∈ supp(f) , |y| ≤ ε}

and the uniform continuity of f on its support. For the case p = 1 we obtain

‖fε‖L1(G) ≤
∫ ∫
|f(x− y)|ϕε(y) dy dx =

∫
ϕε ·

∫
|f |

by Fubini’s theorem, since
∫
|f(x − y)| dx =

∫
|f | for each y ∈ Rn and this

gives the desired estimate. If p = 2 we have for each ψ ∈ C0(G)∣∣∣ ∫ fε(x)ψ(x) dx
∣∣∣ ≤ ∫ ∫ |f(x− y)ψ(x)| dx ϕε(y) dy
≤
∫
‖f‖L2(G)‖ψ‖L2(G)ϕε(y) dy = ‖f‖L2(G)‖ψ‖L2(G)

by computations similar to the above, and the result follows since C0(G)

is dense in L2(G). (We shall not use the result for p 6= 1 or 2, but the
corresponding result is proved as above but using the Hölder inequality in

place of Cauchy-Schwarz.)

Finally we verify the claim of convergence in Lp(G). If η > 0 we have a

g ∈ C0(G) with ‖f − g‖Lp ≤ η/3. The above shows ‖fε − gε‖Lp ≤ η/3 and

we obtain

‖fε − f‖Lp ≤ ‖fε − gε‖Lp + ‖gε − g‖Lp + ‖g − f‖Lp

≤ 2η/3 + ‖gε − g‖Lp .

For ε sufficiently small, the support of gε− g is bounded (uniformly) and
gε → g uniformly, so the last term converges to zero as ε→ 0.
The preceding results imply the following.
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Theorem 1.3 C∞0 (G) is dense in L
p(G).

Theorem 1.4 For every K ⊂⊂ G there is a ϕ ∈ C∞0 (G) such that 0 ≤
ϕ(x) ≤ 1, x ∈ G, and ϕ(x) = 1 for all x in some neighborhood of K.

Proof : Let δ be the distance from K to ∂G and 0 < ε < ε + ε′ < δ. Let

f(x) = 1 if dist(x,K) ≤ ε′ and f(x) = 0 otherwise. Then fε has its support
within {x : dist(x,K) ≤ ε+ ε′} and it equals 1 on {x : dist(x,K) ≤ ε′ − ε},
so the result follows if ε < ε′.

1.2

A distribution on G is defined to be a conjugate-linear functional on C∞0 (G).

That is, C∞0 (G)
∗ is the linear space of distributions onG, and we also denote

it by D∗(G).

Example. The space L1loc(G) = ∩{L
1(K) : K ⊂⊂ G} of locally integrable

functions on G can be identified with a subspace of distributions on G as

in the Example of I.1.5. That is, f ∈ L1loc(G) is assigned the distribution
Tf ∈ C

∞
0 (G)

∗ defined by

Tf (ϕ) =

∫
G
fϕ̄ , ϕ ∈ C∞0 (G) , (1.2)

where the Lebesgue integral (over the support of ϕ) is used. Theorem 1.3

shows that T : L1loc(G)→ C∞0 (G)
∗ is an injection. In particular, the (equiv-

alence classes of) functions in either of L1(G) or L2(G) will be identified

with a subspace of D∗(G).

1.3

We shall define the derivative of a distribution in such a way that it agrees

with the usual notion of derivative on those distributions which arise from

continuously differentiable functions. That is, we want to define ∂α : D∗(G)→
D∗(G) so that

∂α(Tf ) = TDαf , |α| ≤ m , f ∈ Cm(G) .

But a computation with integration-by-parts gives

TDαf (ϕ) = (−1)
|α|Tf (D

αϕ) , ϕ ∈ C∞0 (G) ,
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and this identity suggests the following.

Definition. The αth partial derivative of the distribution T is the distribu-

tion ∂αT defined by

∂αT (ϕ) = (−1)|α|T (Dαϕ) , ϕ ∈ C∞0 (G) . (1.3)

Since Dα ∈ L(C∞0 (G), C
∞
0 (G)), it follows that ∂

αT is linear. Every distri-

bution has derivatives of all orders and so also then does every function, e.g.,

in L1loc(G), when it is identified as a distribution. Furthermore, by the very

definition of the derivative ∂α it is clear that ∂α and Dα are compatible with

the identification of C∞(G) in D∗(G).

1.4

We give some examples of distributions on R. Since we do not distinguish

the function f ∈ L1loc(R) from the functional Tf , we have the identity

f(ϕ) =

∫ ∞
−∞

f(x)ϕ(x) dx , ϕ ∈ C∞0 (R) .

(a) If f ∈ C1(R), then

∂f(ϕ) = −f(Dϕ) = −
∫
f(Dϕ̄ ) =

∫
(Df)ϕ̄ = Df(ϕ) , (1.4)

where the third equality follows by an integration-by-parts and all others

are definitions. Thus, ∂f = Df , which is no surprise since the definition of

derivative of distributions was rigged to make this so.

(b) Let the ramp and Heaviside functions be given respectively by

r(x) =

{
x , x > 0
0 , x ≤ 0 ,

H(x) =

{
1 , x > 0
0 , x < 0 .

Then we have

∂r(ϕ) = −
∫ ∞
0

xDϕ̄(x) dx =

∫ ∞
−∞

H(x)ϕ̄(x) dx = H(ϕ) , ϕ ∈ C∞0 (G) ,

so we have ∂r = H, although Dr(0) does not exist.

(c) The derivative of the non-continuous H is given by

∂H(ϕ) = −
∫ ∞
0

Dϕ̄ = ϕ̄(0) = δ(ϕ) , ϕ ∈ C∞0 (G) ;
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that is, ∂H = δ, the Dirac functional. Also, it follows directly from the

definition of derivative that

∂mδ(ϕ) = (−1)m(Dmϕ)(0) , m ≥ 1 .

(d) Letting A(x) = |x| and I(x) = x, x ∈ R, we observe that A = 2r − I
and then from above obtain by linearity

∂A = 2H − 1 , ∂2A = 2δ . (1.5)

Of course, these could be computed directly from definitions.

(e) For our final example, let f : R → K satisfy f |R− ∈ C∞(−∞, 0],
f |
R+ ∈ C∞[0,∞), and denote the jump in the various derivatives at 0 by

σm(f) = D
mf(0+)−Dmf(0−) , m ≥ 0 .

Then we obtain

∂f(ϕ) = −
∫ ∞
0

f(Dϕ)−
∫ 0
−∞

f(Dϕ) (1.6)

=

∫ ∞
0
(Df)ϕ̄+ f(0+)ϕ(0) +

∫ 0
−∞
(Df)ϕ̄− f(0−)ϕ(0)

= Df(ϕ) + σ0(f)δ(ϕ) , ϕ ∈ C∞0 (G) .

That is, ∂f = Df + σ0(f)δ, and the derivatives of higher order can be

computed from this formula, e.g.,

∂2f = D2f + σ1(f)δ + σ0(f)∂δ ,

∂3f = D3f + σ2(f)δ + σ1(f)∂δ + σ0(f)∂
2δ .

For example, we have

∂(H · sin) = H · cos ,

∂(H · cos) = −H · sin+δ ,

so H · sin is a solution (generalized) of the ordinary differential equation

(∂2 + 1)y = δ .
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1.5

Before discussing further the interplay between ∂ and D we remark that to

claim a distribution T is “constant” on R, means that there is a number

c ∈ K such that T = Tc, i.e., T arises from the locally integrable function

whose value everywhere is c:

T (ϕ) = c

∫
R

ϕ̄ , ϕ ∈ C∞0 (R) .

Hence a distribution is constant if and only if it depends only on the mean

value of each ϕ. This observation is the key to the proof of our next result.

Theorem 1.5 (a) If S is a distribution on R, then there exists another

distribution T such that ∂T = S.

(b) If T1 and T2 are distributions on R with ∂T1 = ∂T2, then T1 − T2 is
constant.

Proof : First note that ∂T = S if and only if

T (ψ′) = −S(ψ) , ψ ∈ C∞0 (R) .

This suggests we consider H = {ψ′ : ψ ∈ C∞0 (R)}. H is a subspace of

C∞0 (R). Furthermore, if ζ ∈ C∞0 (R), it follows that ζ ∈ H if and only if∫
ζ = 0. In that case we have ζ = ψ′, where

ψ(x) =

∫ x
−∞

ζ , x ∈ R .

Thus H = {ζ ∈ C∞0 (R) :
∫
ζ = 0} and this equality shows H is the kernel of

the functional ϕ 7→
∫
ϕ on C∞0 (R). (This implies H is a hyperplane, but we

shall prove this directly.)

Choose ϕ0 ∈ C∞0 (R) with mean value unity:∫
R

ϕ0 = 1 .

We shall show C∞0 (R) = H⊕K ·ϕ0, that is, each ϕ can be written in exactly
one way as the sum of a ζ ∈ H and a constant multiple of ϕ0. To check

the uniqueness of such a sum, let ζ1 + c1ϕ0 = ζ2 + c2ϕ0 with the ζ1, ζ2 ∈ H.
Integrating both sides gives c1 = c2 and, hence, ζ1 = ζ2. To verify the
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existence of such a representation, for each ϕ ∈ C∞0 (G) choose c =
∫
ϕ and

define ζ = ϕ− cϕ0. Then ζ ∈ H follows easily and we are done.
To finish the proof of (a), it suffices by our remark above to define T on

H, for then we can extend it to all of C∞0 (R) by linearity after choosing, e.g.,

Tϕ0 = 0. But for ζ ∈ H we can define

T (ζ) = −S(ψ) , ψ(x) =

∫ x
−∞

ζ ,

since ψ ∈ C∞0 (R) when ζ ∈ H.
Finally, (b) follows by linearity and the observation that ∂T = 0 if and

only if T vanishes on H. But then we have

T (ϕ) = T (cϕ0 + ζ) = T (ϕ0)c̄ = T (ϕ0)

∫
ϕ̄

and this says T is the constant T (ϕ0) ∈ K.

Theorem 1.6 If f : R → R is absolutely continuous, then g = Df defines

g(x) for almost every x ∈ R, g ∈ L1loc(R), and ∂f = g in D
∗(R). Conversely,

if T is a distribution on R with ∂T ∈ L1loc(R), then T (= Tf ) = f for some

absolutely continuous f , and ∂T = Df .

Proof : With f and g as indicated, we have f(x) =
∫ x
0 g + f(0). Then an

integration by parts shows that∫
f(Dϕ̄) = −

∫
gϕ̄ , ϕ ∈ C∞0 (R) ,

so ∂f = g. (This is a trivial extension of (1.4).) Conversely, let g = ∂T ∈
L1loc(R) and define h(x) =

∫ x
0 g, x ∈ R. Then h is absolutely continuous and

from the above we have ∂h = g. But ∂(T − h) = 0, so Theorem 1.5 implies
that T = h+ c for some constant c ∈ K, and we have the desired result with
f(x) = h(x) + c, x ∈ R.

1.6

Finally, we give some examples of distributions on Rn and their derivatives.

(a) If f ∈ Cm(Rn) and |α| ≤ m, we have

∂αf(ϕ) = (−1)|α|
∫
Rn
fDαϕ̄ =

∫
Rn
Dαf · ϕ̄ = (Dαf)(ϕ) , ϕ ∈ C∞0 (R

n) .
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(The first and last equalities follow from definitions, and the middle one is a

computation.) Thus ∂αf = Dαf essentially because of our definition of ∂α.

(b) Let

r(x) =

{
x1x2 . . . xn , if all xj ≥ 0 ,
0 , otherwise.

Then

∂1r(ϕ) = −r(D1ϕ) = −
∫ ∞
0

. . .

∫ ∞
0
(x1 . . . xn)D1ϕdx1 . . . dxn

=

∫ ∞
0

. . .

∫ ∞
0

x2 . . . xn ϕ(x) dx1 . . . dxn .

Similarly,

∂2∂1r(ϕ) =

∫ ∞
0

. . .

∫ ∞
0

x3 . . . xn ϕ(x) dx ,

and

∂(1,1,...,1)r(ϕ) =

∫
Rn
H(x)ϕ(x) dx = H(ϕ) ,

where H is the Heaviside function (= functional)

H(x) =

{
1 , if all xj ≥ 0 ,
0 , otherwise.

(c) The derivatives of the Heaviside functional will appear as distribu-

tions given by integrals over subspaces of Rn. In particular, we have

∂1H(ϕ) = −
∫ ∞
0

. . .

∫ ∞
0

D1ϕ(x) dx =

∫ ∞
0

. . .

∫ ∞
0

ϕ̄(0, x2, . . . , xn) dx2 . . . dxn ,

a distribution whose value is determined by the restriction of ϕ to {0}×Rn−1,

∂2∂1H(ϕ) =

∫ ∞
0

. . .

∫ ∞
0

ϕ̄(0, 0, x3, . . . , xn) dx3 . . . dxn ,

a distribution whose value is determined by the restriction of ϕ to {0} ×
{0} × Rn−2, and, similarly,

∂(1,1,...,1)H(ϕ) = ϕ(0) = δ(ϕ) ,

where δ is the Dirac functional which evaluates at the origin.

(d) Let S be an (n− 1)-dimensional C1 manifold (cf. Section 2.3) in Rn

and suppose f ∈ C∞(Rn ∼ S) with f having at each point of S a limit from
each side of S. For each j, 1 ≤ j ≤ n, we denote by σj(f) the jump in f at
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the surface S in the direction of increasing xj . (Note that σj(f) is then a

function on S.) Then we have

∂1f(ϕ) = −f(D1ϕ) = −
∫
Rn
f(x)D1ϕ(x) dx

=

∫
Rn
(D1f)(ϕ)(x) dx +

∫
. . .

∫
σ1(f)ϕ(s) dx2 . . . dxn

where s = s(x2, . . . , xn) is the point on S which (locally) projects onto

(0, x2, . . . , xn). Recall that a surface integral over S is given by∫
S
F ds =

∫
A
F · sec(θ1) dA

when S projects (injectively) onto a region A in {0} × Rn−1 and θ1 is the
angle between the x1-axis and the unit normal ν to S. Thus we can write

the above as

∂1f(ϕ) = D1f(ϕ) +

∫
S
σ1(f) cos(θ1)ϕ̄ dS .

However, in this representation it is clear that the integral is independent of

the direction in which S is crossed, since both σ1(f) and cos(θ1) change sign

when the direction is reversed. We need only to check that σ1(f) is evalu-

ated in the same direction as the normal ν = (cos(θ1), cos(θ2), . . . , cos(θn)).

Finally, our assumption on f shows that σ1(f) = σ2(f) = · · · = σn(f), and

we denote this common value by σ(f) in the formulas

∂jf(ϕ) = (Djf)(ϕ) +

∫
S
σ(f) cos(θj)ϕ̄ dS .

These generalize the formula (1.6).

(e) SupposeG is an open, bounded and connected set in Rn whose bound-

ary ∂G is a C1 manifold of dimension n − 1. At each point s ∈ ∂G there
is a unit normal vector ν = (ν1, ν2, . . . , νn) whose components are direction

cosines, i.e., νj = cos(θj), where θj is the angle between ν and the xj axis.

Suppose f ∈ C∞(Ḡ) is given. Extend f to Rn by setting f(x) = 0 for x /∈ Ḡ.
In C∞0 (R

n)∗ we have by Green’s second identity (cf. Exercise 1.6)

( n∑
j=1

∂2j f

)
(ϕ) =

∫
G
f

( n∑
j=1

D2j ϕ̄

)
=

∫
G

n∑
j=1

(D2j f)ϕ̄

+

∫
∂G

(
f
∂ϕ̄

∂ν
− ϕ̄

∂f

∂ν

)
dS , ϕ ∈ C∞0 (R

n) ,
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so the indicated distribution differs from the pointwise derivative by the

functional

ϕ 7→
∫
∂G

(
f
∂ϕ̄

∂ν
− ϕ̄

∂f

∂ν

)
dS ,

where ∂f∂ν = ∇f ·ν is the indicated (directional) normal derivative and ∇f =
(∂1f, ∂2f, . . . , ∂nf) denotes the gradient of f . Hereafter we shall also let

∆n =
n∑
j=1

∂2j

denote the Laplace differential operator in D∗(Rn).

2 Sobolev Spaces

2.1

Let G be an open set in Rn and m ≥ 0 an integer. Recall that Cm(Ḡ) is
the linear space of restrictions to Ḡ of functions in Cm0 (R

n). On Cm(Ḡ) we

define a scalar product by

(f, g)Hm(G) =
∑{∫

G
Dαf ·Dαg : |α| ≤ m

}

and denote the corresponding norm by ‖f‖Hm(G).
Define Hm(G) to be the completion of the linear space Cm(Ḡ) with the

norm ‖ · ‖Hm(G). H
m(G) is a Hilbert space which is important for much of

our following work on boundary value problems. We note that the H0(G)

norm and L2(G) norm coincide on C(Ḡ), and that we have the inclusions

C0(G) ⊂ C(Ḡ) ⊂ L
2(G) .

Since we have identified L2(G) as the completion of C0(G) it follows that

we must likewise identify H0(G) with L2(G). Thus f ∈ H0(G) if and only if
there is a sequence {fn} in C(Ḡ) (or C0(G)) which is Cauchy in the L2(G)
norm and fn → f in that norm.

Let m ≥ 1 and f ∈ Hm(G). Then there is a sequence {fn} in Cm(Ḡ)
such that fn → f in Hm(G), hence {Dαfn} is Cauchy in L2(G) for each
multi-index α of order ≤ m. For each such α, there is a unique gα ∈ L2(G)
such that Dαfn → gα in L

2(G). As indicated above, f is the limit of fn,
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so, f = gθ, θ = (0, 0, . . . , 0) ∈ R
n. Furthermore, if |α| ≤ m we have from an

integration-by-parts

(Dαfn, ϕ)L2(G) = (−1)
|α|(fn,D

αϕ)L2(G) , ϕ ∈ C∞0 (G) .

Taking the limit as n→∞, we obtain

(gα, ϕ)L2(G) = (−1)
|α|(f,Dαϕ)L2(G) , ϕ ∈ C∞0 (G) ,

so gα = ∂αf . That is, each gα ∈ L2(G) is uniquely determined as the αth

partial derivative of f in the sense of distribution on G. These remarks prove

the following characterization.

Theorem 2.1 Let G be open in Rn and m ≥ 0. Then f ∈ Hm(G) if and
only if there is a sequence {fn} in Cm(Ḡ) such that, for each α with |α| ≤ m,
the sequence {Dαfn} is L2(G)-Cauchy and fn → f in L2(G). In that case

we have Dαfn → ∂αf in L2(G).

Corollary Hm(G) ⊂ Hk(G) ⊂ L2(G) when m ≥ k ≥ 0, and if f ∈ Hm(G)
then ∂αf ∈ L2(G) for all α with |α| ≤ m.

We shall later find that f ∈ Hm(G) if ∂αf ∈ L2(G) for all α with |α| ≤ m
(cf. Section 5.1).

2.2

We define Hm0 (G) to be the closure in H
m(G) of C∞0 (G). Generally, H

m
0 (G)

is a proper subspace of Hm(G). Note that for any f ∈ Hm(G) we have

(∂αf, ϕ)L2(G) = (−1)
|α|(f,Dαϕ)L2(G) , |α| ≤ m , ϕ ∈ C∞0 (G) .

We can extend this result by continuity to obtain the generalized integration-

by-parts formula

(∂αf, g)L2(G) = (−1)
|α|(f, ∂αg)L2(G) , f ∈ Hm(G) , g ∈ Hm0 (G) , |α| ≤ m .

This formula suggests that Hm0 (G) consists of functions in H
m(G) which

vanish on ∂G together with their derivatives through order m− 1. We shall
make this precise in the following (cf. Theorem 3.4).

Since C∞0 (G) is dense in H
m
0 (G), each element of H

m
0 (G)

′ determines

(by restriction to C∞0 (G)) a distribution on G and this correspondence is an

injection. Thus we can identify Hm0 (G)
′ with a space of distributions on G,

and those distributions are characterized as follows.
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Theorem 2.2 Hm0 (G)
′ is (identified with) the space of distributions on G

which are the linear span of the set

{∂αf : |α| ≤ m , f ∈ L2(G)} .

Proof : If f ∈ L2(G) and |α| ≤ m, then

|∂αf(ϕ)| ≤ ‖f‖L2(G)‖ϕ‖Hm0 (G) , ϕ ∈ C∞0 (G) ,

so ∂αf has a (unique) continuous extension to Hm0 (G). Conversely, if T ∈
Hm0 (G)

′, there is an h ∈ Hm0 (G) such that

T (ϕ) = (h,ϕ)Hm(G) , ϕ ∈ C∞0 (G) .

But this implies T =
∑
|α|≤m(−1)

|α|∂α(∂αh) and, hence, the desired result,

since each ∂αh ∈ L2(G).

We shall have occasion to use the two following results, each of which

suggests further that Hm0 (G) is distinguished from Hm(G) by boundary

values.

Theorem 2.3 Hm0 (R
n) = Hm(Rn). (Note that the boundary of Rn is empty.)

Proof : Let τ ∈ C∞0 (R
n) with τ(x) = 1 when |x| ≤ 1, τ(x) = 0 when

|x| ≥ 2, and 0 ≤ τ(x) ≤ 1 for all x ∈ Rn. For each integer k ≥ 1, define
τk(x) = τ(x/k), x ∈ R

n. Then for any u ∈ Hm(Rn) we have τk ·u ∈ H
m(Rn)

and (exercise) τk · u → u in Hm(Rn) as k → ∞. Thus we may assume
u has compact support. Letting G denote a sphere in Rn which contains

the support of u, we have from Lemma 1.2 of Section 1.1 that the mollified

functions uε → u in L2(G) and that (Dαu)ε = Dα(uε) → ∂αu in L2(G) for

each α with |α| ≤ m. That is, uε ∈ C∞0 (R
n) and uε → u in Hm(Rn).

Theorem 2.4 Suppose G is an open set in Rn with sup{|x1| : (x1, x2, . . . , xn)
∈ G} = K <∞. Then

‖ϕ‖L2(G) ≤ 2K‖∂1ϕ‖L2(G) , ϕ ∈ H10 (G) .
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Proof : We may assume ϕ ∈ C∞0 (G), since this set is dense in H
1
0 (G). Then

integrating the identity

D1(x1 · |ϕ(x)|
2) = |ϕ(x)|2 + x1 ·D1(|ϕ(x)|

2)

over G by the divergence theorem gives∫
G
|ϕ(x)|2 = −

∫
G
x1(D1ϕ(x) · ϕ̄(x) + ϕ(x) ·D1ϕ̄(x)) dx .

The right side is bounded by 2K‖D1ϕ‖L2(G)‖ϕ‖L2(G), and this gives the

result.

2.3

We describe a technique by which certain properties of Hm(G) can be

deduced from the corresponding property for Hm0 (G) or H
m(Rn+), where

R
n
+ = {(x

′, xn) ∈ Rn−1 × R : xn > 0} has a considerably simpler bound-
ary. This technique is appropriate when, e.g., G is open and bounded in Rn

and lies (locally) on one side of its boundary ∂G which we assume is a Cm-

manifold of dimension n− 1. Letting Q = {y ∈ Rn : |yj| ≤ 1, 1 ≤ j ≤ n},
Q0 = {y ∈ Q : yn = 0}, and Q+ = {y ∈ Q : yn > 0}, we can formulate this
last condition as follows:

There is a collection {Gj : 1 ≤ j ≤ N} of open bounded sets in Rn for
which ∂G ⊂ ∪{Gj : 1 ≤ j ≤ N} and a corresponding collection of functions
ϕj ∈ Cm(Q,Gj) with positive Jacobian J(ϕj), 1 ≤ j ≤ N , and ϕj is a

bijection of Q, Q+ and Q0 onto Gj , Gj ∩G, and Gj ∩ ∂G, respectively. For
each j, the pair (ϕj , Gj) is a coordinate patch for the boundary.

Given the collection {(ϕj , Gj) : 1 ≤ j ≤ N} of coordinate patches as
above, we construct a corresponding collection of open sets Fj in R

n for

which each F̄j ⊂ Gj and ∪{Fj : 1 ≤ j ≤ N} ⊃ ∂G. Define G0 = G and

F0 = G ∼ ∪{ F̄j : 1 ≤ j ≤ N}, so F̄0 ⊂ G0. Note also that Ḡ ⊂ G ∪
⋃
{Fj :

1 ≤ j ≤ N} and G ⊂ ∪{ F̄j : 0 ≤ j ≤ N}. For each j, 0 ≤ j ≤ N , let

αj ∈ C∞0 (R
n) be chosen so that 0 ≤ αj(x) ≤ 1 for all x ∈ Rn, supp(αj) ⊂ Gj ,

and αj(x) = 1 for x ∈ F̄j . Let α ∈ C∞0 (R
n) be chosen with 0 ≤ α(x) ≤ 1

for all x ∈ Rn, supp(α) ⊂ G ∪
⋃
{Fj : 1 ≤ j ≤ N}, and α(x) = 1 for x ∈ Ḡ.

Finally, for each j, 0 ≤ j ≤ N , we define βj(x) = αj(x)α(x)/
∑N
k=0 αk(x) for

x ∈ ∪{ F̄j : 0 ≤ j ≤ N} and βj(x) = 0 for x ∈ Rn ∼ ∪{ F̄j : 1 ≤ j ≤ N}.
Then we have βj ∈ C∞0 (R

n), βj has support in Gj , βj(x) ≥ 0, x ∈ Rn and
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∑
{βj(x) : 0 ≤ j ≤ N} = 1 for each x ∈ Ḡ. That is, {βj : 0 ≤ j ≤ N} is
a partition-of-unity subordinate to the open cover {Gj : 0 ≤ j ≤ N} of Ḡ
and {βj : 1 ≤ j ≤ N} is a partition-of-unity subordinate to the open cover
{Gj : 1 ≤ j ≤ N} of ∂G.
Suppose we are given a u ∈ Hm(G). Then we have u =

∑N
j=0{βju} on

G and we can show that each pointwise product βju is in H
m(G∩Gj) with

support in Gj . This defines a function H
m(G)→ Hm0 (G)×

∏
{Hm(G∩Gj) :

1 ≤ j ≤ N}, where u 7→ (β0u, β1u, . . . , βNu). This function is clearly linear,
and from

∑
βj = 1 it follows that it is an injection. Also, since each βju

belongs to Hm(G ∩ Gj) with support in Gj for each 1 ≤ j ≤ N , it follows

that the composite function (βju) ◦ ϕj belongs to Hm(Q+) with support in
Q. Thus, we have defined a linear injection

Λ : Hm(G) −→ Hm0 (G) × [H
m(Q+)]N ,

u 7−→ (β0u, (β1u) ◦ ϕ1, . . . , (βNu) ◦ ϕN ) .

Moreover, we can show that the product norm on Λu is equivalent to the

norm of u in Hm(G), so Λ is a continuous linear injection of Hm(G) onto a

closed subspace of the indicated product, and its inverse in continuous.

In a similar manner we can localize the discussion of functions on the

boundary. In particular, Cm(∂G), the space of m times continuously dif-

ferentiable functions on ∂G, is the set of all functions f : ∂G → R such

that (βjf) ◦ ϕj ∈ Cm(Q0) for each j, 1 ≤ j ≤ N . The manifold ∂G has an

intrinsic measure denoted by “ds” for which integrals are given by

∫
∂G
f ds =

N∑
j=1

∫
∂G∩Gj

(βjf) ds =
N∑
j=1

∫
Q0

(βjf) ◦ ϕj(y
′)J(ϕj) dy

′ ,

where J(ϕj) is the indicated Jacobian and dy
′ denotes the usual (Lebesgue)

measure on Q0 ⊂ Rn−1. Thus, we obtain a norm on C(∂G) = C0(∂G) given
by ‖f‖L2(∂G) = (

∫
∂G |f |

2 ds)1/2, and the completion is the Hilbert space

L2(∂G) with the obvious scalar-product. We have a linear injection

λ : L2(∂G) −→ [L2(Q0)]
N

f 7−→ ((β1f) ◦ ϕ1, . . . , (βNf) ◦ ϕN )

onto a closed subspace of the product, and both λ and its inverse are con-

tinuous.
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3 Trace

We shall describe the sense in which functions in Hm(G) have “boundary

values” on ∂G when m ≥ 1. Note that this is impossible in L2(G) since ∂G
is a set of measure zero in Rn. First, we consider the situation where G is

the half-space Rn+ = {(x1, x2, . . . , xn) : xn > 0}, for then ∂G = {(x
′, 0) : x′ ∈

R
n−1} is the simplest possible (without being trivial). Also, the general case
can be localized as in Section 2.3 to this case, and we shall use this in our

final discussion of this section.

3.1

We shall define the (first) trace operator γ0 when G = R
n
+ = {x = (x

′, xn) :

x′ ∈ Rn−1, xn > 0}, where we let x′ denote the (n−1)-tuple (x1, x2, . . . , xn−1).
For any ϕ ∈ C1(Ḡ) and x′ ∈ Rn−1 we have

|ϕ(x′, 0)|2 = −
∫ ∞
0

Dn(|ϕ(x
′, xn)|

2) dxn .

Integrating this identity over Rn−1 gives

‖ϕ(·, 0)‖2L2(Rn−1) ≤
∫
R
n
+

[(Dnϕ · ϕ̄+ ϕ ·Dnϕ̄n )] dx

≤ 2‖Dnϕ‖L2(Rn+)
‖ϕ‖L2(Rn+)

.

The inequality 2ab ≤ a2 + b2 then gives us the estimate

‖ϕ(·, 0)‖2L2(Rn−1) ≤ ‖ϕ‖
2
L2(Rn+)

+ ‖Dnϕ‖
2
L2(Rn+)

.

Since C1(Rn+) is dense in H
1(Rn+), we have proved the essential part of the

following result.

Theorem 3.1 The trace function γ0 : C
1(Ḡ)→ C0(∂G) defined by

γ0(ϕ)(x
′) = ϕ(x′, 0) , ϕ ∈ C1(Ḡ) , x′ ∈ ∂G ,

(where G = Rn+) has a unique extension to a continuous linear operator

γ0 ∈ L(H1(G), L2(∂G)) whose range is dense in L2(∂G), and it satisfies

γ0(β · u) = γ0(β) · γ0(u) , β ∈ C1(Ḡ) , u ∈ H1(G) .
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Proof : The first part follows from the preceding inequality and Theorem

I.3.1. If ψ ∈ C∞0 (R
n−1) and τ is the truncation function defined in the proof

of Theorem 2.3, then

ϕ(x) = ψ(x′)τ(xn) , x = (x′, xn) ∈ R
n
+

defines ϕ ∈ C1(Ḡ) and γ0(ϕ) = ψ. Thus the range of γ0 contains C∞0 (R
n−1).

The last identity follows by the continuity of γ0 and the observation that it

holds for u ∈ C1(Ḡ).

Theorem 3.2 Let u ∈ H1(Rn+). Then u ∈ H
1
0 (R

n
+) if and only if γ0(u) = 0.

Proof : If {un} is a sequence in C∞0 (R
n
+) converging to u in H

1(Rn+), then

γ0(u) = lim γ0(un) = 0 by Theorem 3.1.

Let u ∈ H1(Rn+) with γ0u = 0. If {τj : j ≥ 1} denotes the sequence of
truncating functions defined in the proof of Theorem 2.3, then τju → u in

H1(Rn+) and we have γ0(τju) = γ0(τj)γ0(u) = 0, so we may assume that u

has compact support in Rn.

Let θj ∈ C1(R+) be chosen such that θj(s) = 0 if 0 < s ≤ 1/j, θj(s) = 1
if s ≥ 2/j, and 0 ≤ θ′j(s) ≤ 2j if (1/j) ≤ s ≤ (2/j). Then the extension of
x 7→ θj(xn)u(x

′, xn) to all of R
n as 0 on Rn− is a function in H

1(Rn) with

support in {x : xn ≥ 1/j}, and (the proof of) Theorem 2.3 shows we may
approximate such a function from C∞0 (R

n
+). Hence, we need only to show

that θju→ u in H1(Rn+).

It is an easy consequence of the Lebesgue dominated convergence theorem

that θju → u in L2(Rn+) and for each k, 1 ≤ k ≤ n − 1, that ∂k(θju) =
θj(∂ku)→ ∂ku in L

2(Rn+) as j →∞. Similarly, θj(∂nu)→ ∂nu and we have

∂n(θju) = θj(∂nu) + θ
′
ju, so we need only to show that θ

′
ju → 0 in L

2(Rn+)

as j →∞.
Since γ0(u) = 0 we have u(x

′, s) =
∫ s
0 ∂nu(x

′, t) dt for x′ ∈ Rn−1 and
s ≥ 0. From this follows the estimate

|u(x′, s)|2 ≤ s
∫ s
0
|∂nu(x

′, t)|2 dt .

Thus, we obtain for each x′ ∈ Rn−1∫ ∞
0
|θ′j(s)u(x

′, s)|2 ds ≤
∫ 2/j
0
(2j)2s

∫ s
0
|∂nu(x

′, t)|2 dt ds

≤ 8j
∫ 2/j
0

∫ s
0
|∂nu(x

′, t)|2 dt ds .
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Interchanging the order of integration gives

∫ ∞
0
|θ′j(s)u(x

′, s)|2 ds ≤ 8j
∫ 2/j
0

∫ 2/j
t
|∂nu(x

′, t)|2 ds dt

≤ 16
∫ 2/j
0
|∂nu(x

′, t)|2 dt .

Integration of this inequality over Rn−1 gives us

‖θ′ju‖
2
L2(Rn+)

≤ 16
∫
Rn−1×[0,2/j]

|∂nu|
2 dx

and this last term converges to zero as j →∞ since ∂nu is square-summable.

3.2

We can extend the preceding results to the case where G is a sufficiently

smooth region in Rn. Suppose G is given as in Section 2.3 and denote by

{Gj : 0 ≤ j ≤ N}, {ϕj : 1 ≤ j ≤ N}, and {βj : 0 ≤ j ≤ N} the open cover,
corresponding local maps, and the partition-of-unity, respectively. Recalling

the linear injections Λ and λ constructed in Section 2.3, we are led to consider

function γ0 : H
1(G)→ L2(∂G) defined by

γ0(u) =
N∑
j=1

(
γ0((βju) ◦ ϕj)

)
◦ ϕ−1j

=
N∑
j=1

γ0(βj) · (γ0(u ◦ ϕj)ϕ
−1
j )

where the equality follows from Theorem 3.1. This formula is precisely what

is necessary in order that the following diagram commutes.

H1(G)
Λ
−→ H10 (G) ×H

1(Q+) × · · · × H1(Q+)yγ0

y yγ0

L2(∂G)
λ
−→ L2(Q0) × · · · × L2(Q0)

Also, if u ∈ C1(Ḡ) we see that γ0(u) is the restriction of u to ∂G. These
remarks and Theorems 3.1 and 3.2 provide a proof of the following result.
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Theorem 3.3 Let G be a bounded open set in Rn which lies on one side of

its boundary, ∂G, which we assume is a C1-manifold. Then there exists a

unique continuous and linear function γ0 : H
1(G) → L2(∂G) such that for

each u ∈ C1(Ḡ), γ0(u) is the restriction of u to ∂G. The kernel of γ0 is

H10 (G) and its range is dense in L
2(∂G).

This result is a special case of the trace theorem which we briefly discuss.

For a function u ∈ Cm(Ḡ) we define the various traces of normal derivatives
given by

γj(u) =
∂ju

∂νj

∣∣∣∣∣
∂G

, 0 ≤ j ≤ m− 1 .

Here ν denotes the unit outward normal on the boundary of G. When

G = Rn+ (or G is localized as above), these are given by ∂u/∂ν = −∂nu|xn=0.
Each γj can be extended by continuity to all of H

m(G) and we obtain the

following.

Theorem 3.4 Let G be an open bounded set in Rn which lies on one side

of its boundary, ∂G, which we assume is a Cm-manifold. Then there is a

unique continuous linear function γ from Hm(G) into
∏m−1
j=0 H

m−1−j(∂G)

such that

γ(u) = (γ0u, γ1u, . . . , γm−1(u)) , u ∈ Cm(Ḡ) .

The kernel of γ is Hm0 (G) and its range is dense in the indicated product.

The Sobolev spaces over ∂G which appear in Theorem 3.4 can be defined

locally. The range of the trace operator can be characterized by Sobolev

spaces of fractional order and then one obtains a space of boundary values

which is isomorphic to the quotient space Hm(G)/Hm0 (G). Such characteri-

zations are particularly useful when considering non-homogeneous boundary

value problems and certain applications, but the preceding results will be

sufficient for our needs.

4 Sobolev’s Lemma and Imbedding

We obtained the spaces Hm(G) by completing a class of functions with

continuous derivatives. Our objective here is to show that each element of

Hm(G) is (represented by) a function with continuous derivatives up to a

certain order which depends on m.
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Let G be bounded and open in Rn. We say G satisfies a cone condition if

there is a ρ > 0 and γ > 0 such that each point y ∈ Ḡ is the vertex of a cone
K(y) of radius ρ and volume γρn with K(y) ⊂ Ḡ. Thus, γ is a measure of

the angle of the cone. To be precise, a ball of radius ρ has volume ωnρ
n/n,

where ωn is the volume of the unit ball in R
n, and the angle of the cone

K(y) is the ratio of these volumes given by γn/ωn.

We shall derive an estimate on the value of a smooth function at a point

y ∈ Ḡ in terms of the norm of Hm(G) for some m ≥ 0. Let g ∈ C∞0 (R)

satisfy g ≥ 0, g(t) = 1 for |t| ≤ 1/2, and g(t) = 0 for |t| ≥ 1. Define
τ(t) = g(t/ρ) and note that there are constants Ak > 0 such that

∣∣∣ dk
dtk

τ(t)
∣∣∣ ≤ Ak

ρk
, ρ > 0 . (4.1)

Let u ∈ Cm(Ḡ) and assume 2m > n. If y ∈ Ḡ and K(y) is the indicated
cone, we integrate along these points x ∈ K(y) on a given ray from the

vertex y and obtain ∫ ρ
0
Dr(τ(r)u(x)) dr = −u(y) ,

where r = |x− y| for each such x. Thus, we obtain an integral over K(y) in
spherical coordinates given by∫

Ω

∫ ρ
0
Dr(τ(r)u(x)) dr dω = −u(y)

∫
Ω
dω = −u(y)γn/ωn

where ω is spherical angle and Ω = γn/ωn is the total angle of the cone

K(y). We integrate by parts m− 1 times and thereby obtain

u(y) =
(−1)mωn
γn(m− 1)!

∫
Ω

∫ ρ
0
Dmr (τu)r

m−1 dr dω .

Changing this to Euclidean coordinates with volume element dx = rn−1 dr dω

gives

|u(y)| =
ωn

γn(m− 1)!

∫
K(y)

Dmr (τu)r
m−n dx .

The Cauchy-Schwartz inequality gives the estimate

|u(y)|2 ≤
(

ωn
γn(m− 1)!

)2 ∫
K(y)
|Dmr (τu)|

2 dx

∫
K(y)

r2(m−n) dx ,
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and we use spherical coordinates to evaluate the last term as follows:

∫
K(y)

r2(m−n) dx =

∫
Ω

∫ ρ
0
r2m−n−1 dr dω =

γnρ2m−n

ωn(2m− n)
.

Thus we have

|u(y)|2 ≤ C(m,n)ρ
2m−n

∫
K(y)
|Dmr (τu)|

2 dx (4.2)

where C(m,n) is a constant depending only on m and n. From the estimate

(4.1) and the formulas for derivatives of a product we obtain

|Dmr (τu)| =
∣∣∣ m∑
k=0

(
n

k

)
Dm−kr τ ·Dkru

∣∣∣
≤

m∑
k=0

(
n

k

)
Am−k
ρm−k

|Dkru| ,

hence,

|Dmr (τu)|
2 ≤ C ′

m∑
k=0

1

ρ2(m−k)
|Dkru|

2 .

This gives with (4.2) the estimate

|u(y)|2 ≤ C(m,n)C ′
m∑
k=0

ρ2k−n
∫
K(y)
|Dkru|

2 dx . (4.3)

By the chain rule we have

|Dkru|
2 ≤ C ′′

∑
|α|≤k

|Dαu(x)|2 ,

so by extending the integral in (4.3) to all of G we obtain

sup
y∈G
|u(y)| ≤ C‖u‖m . (4.4)

This proves the following.

Theorem 4.1 Let G be a bounded open set in Rn and assume G satisfies

the cone condition. Then for every u ∈ Cm(Ḡ) with m > n/2 the estimate

(4.4) holds.
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The inequality (4.4) gives us an imbedding theorem. We let Cu(G) denote

the linear space of all uniformly continuous functions on G. Then

‖u‖∞,0 ≡ sup{|u(x)| : x ∈ G}

is a norm on Cu(G) for which it is a Banach space, i.e., complete. Similarly,

‖u‖∞,k ≡ sup{|D
αu(x)| : x ∈ G , |α| ≤ k}

is a norm on the linear space Cku(G) = {u ∈ Cu(G) : D
α ∈ Cu(G) for

|α| ≤ k} and the resulting normed linear space is complete.

Theorem 4.2 Let G be a bounded open set in Rn and assume G satisfies

the cone condition. Then Hm(G) ⊂ Cku(G) where m and k are integers with
m > k + n/2. That is, each u ∈ Hm(G) is equal a.e. to a unique function
in Cku(G) and this identification is continuous.

Proof : By applying (4.4) to Dαu for |α| ≤ k we obtain

‖u‖∞,k ≤ C‖u‖m , u ∈ Cm(Ḡ) . (4.5)

Thus, the identity is continuous from the dense subset Cm(Ḡ) of Hm(G)

into the Banach space Cku(G). The desired result follows from Theorem I.3.1

and the identification of Hm(G) in L2(G) (cf. Theorem 2.1).

5 Density and Compactness

The complementary results on Sobolev spaces that we obtain below will be

used in later sections. We first show that if ∂αf ∈ L2(G) for all α with

|α| ≤ m, and if ∂G is sufficiently smooth, then f ∈ Hm(G). The second

result is that the injection Hm+1(G)→ Hm(G) is a compact mapping.

5.1

We first consider the set Hm(G) of all f ∈ L2(G) for which ∂αf ∈ L2(G) for
all α with |α| ≤ m. It follows easily that Hm(G) is a Hilbert space with the
scalar product and norm as defined on Hm(G) and that Hm(G) ≤ Hm(G).
Our plan is to show equality holds when G has a smooth boundary. The

case of empty ∂G is easy.



52 CHAPTER II. DISTRIBUTIONS AND SOBOLEV SPACES

Lemma 5.1 C∞0 (R
n) is dense in Hm(Rn).

The proof of this is similar to that of Theorem 2.3 and we leave it as

an exercise. Next we obtain our desired result for the case of ∂G being a

hyperplane.

Lemma 5.2 Hm(Rn+) = H
m(Rn+).

Proof : We need to show each u ∈ Hm(Rn+) can be approximated from
Cm(Rn+). Let ε > 0 and define uε(x) = u(x′, xn + ε) for x = (x′, xn),

x′ ∈ Rn−1, xn > −ε. We have uε → u in Hm(Rn+) as ε→ 0, so it suffices to
show uε ∈ Hm(Rn+). Let θ ∈ C

∞(R) be monotone with θ(x) = 0 for x ≤ −ε
and θ(x) = 1 for x > 0. Then the function θuε given by θ(xn)uε(x) for

xn > −ε and by 0 for xn ≤ −ε, belongs to Hm(Rn) and clearly θuε = uε on
R
n
+. Now use Lemma 5.1 to obtain a sequence {ϕn} from C∞0 (R

n) converging

to θuε in Hm(Rn). The restrictions {ϕn|Rn+} belong to C
∞(Rn+) and converge

to θuε in Hm(Rn+).

Lemma 5.3 There exists an operator P ∈ L(Hm(Rn+),H
m(Rn)) such that

(Pu)(x) = u(x) for a.e. x ∈ Rn+.

Proof : By Lemma 5.2 it suffices to define such a P on Cm(Rn+). Let the
numbers λ1, λ2, . . . , λm be the solution of the system



λ1 + λ2 + · · ·+ λm = 1

−(λ1 + λ2/2 + · · ·+ λm/m) = 1
· · · · · ·

(−1)m−1(λ1 + λ2/2m−1 + · · ·+ λm/mm−1) = 1 .

(5.1)

For each u ∈ Cm(Rn+) we define

Pu(x) =



u(x) , xn ≥ 0

λ1u(x
′,−xn) + λ2u

(
x′,−

xn
2

)
+ · · · + λmu

(
x′,−

xn
m

)
, xn < 0 .

The equations (5.1) are precisely the conditions that ∂jn(Pu) is continuous
at xn = 0 for j = 0, 1, . . . ,m − 1. From this follows Pu ∈ Hm(Rn); P is
clearly linear and continuous.
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Theorem 5.4 Let G be a bounded open set in Rn which lies on one side of

its boundary, ∂G, which is a Cm-manifold. Then there exists an operator

PG ∈ L(Hm(G),Hm(Rn)) such that (PGu)|G = u for every u ∈ Hm(G).

Proof : Let {(ϕk, Gk) : 1 ≤ k ≤ N} be coordinate patches on ∂G and
let {βk : 0 ≤ k ≤ N} be the partition-of-unity constructed in Section 2.3.
Thus for each u ∈ Hm(G) we have u =

∑N
j=0(βju). The first term β0u

has a trivial extension to an element of Hm(Rn). Let 1 ≤ k ≤ N and

consider βku. The coordinate map ϕk : Q → Gk induces an isomorphism

ϕ∗k : H
m(Gk ∩ G) → H

m(Q+) by ϕ
∗
k(v) = v ◦ ϕk. The support of ϕ

∗
k(βku)

is inside Q so we can extend it as zero in Rn+ ∼ Q to obtain an element of

Hm(Rn+). By Lemma 5.3 this can be extended to an element P(ϕ
∗
k(βku))

of Hm(Rn) with support in Q. (Check the proof of Lemma 5.3 for this last
claim.) The desired extension of βku is given by P(ϕ

∗
k(βku)) ◦ϕ

−1
k extended

as zero off of Gk. Thus we have the desired operator given by

PGu = β0u+
N∑
k=1

(P(βku) ◦ ϕk) ◦ ϕ
−1
i

where each term is extended as zero as indicated above.

Theorem 5.5 Let G be given as in Theorem 5.4. Then Hm(G) = Hm(G).

Proof : Let u ∈ Hm(G). Then PGu ∈ Hm(Rn) and Lemma 5.1 gives a
sequence {ϕn} in C∞0 (R

n) which converges to PGu. Thus, {ϕn|G} converges
to u in Hm(G).

5.2

We recall from Section I.7 that a linear function T from one Hilbert space to

another is called compact if it is continuous and if the image of any bounded

set contains a convergent sequence. The following results will be used in

Section III.6 and Theorem III.7.7.

Lemma 5.6 Let Q be a cube in Rn with edges of length d > 0. If u ∈ C1(Q̄),
then

‖u‖2L2(Q) ≤ d
−n
(∫
Q
u

)2
+ (nd2/2)

n∑
j=1

‖Dju‖
2
L2(Q) . (5.2)
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Proof : For x, y ∈ Q we have

u(x)− u(y) =
n∑
j=1

∫ yj
xj

Dju(y1, . . . , yj−1, s, xj+1, . . . , xn) ds .

Square this identity and use Theorem I.4.1(a) to obtain

u2(x)+u2(y)−2u(x)u(y) ≤ nd
n∑
j=1

∫ bj
aj

(Dju)
2(y1, . . . , yj−1, s, xj+1, . . . , xn) ds

where Q = {x : aj ≤ xj ≤ bj} and bk − ak = d for each k = 1, 2, . . . , n.

Integrate the preceding inequality with respect to x1, . . . , xn, y1, . . . , yn, and

we have

2dn‖u‖2L2(Q) ≤ 2
(∫
Q
u

)2
+ ndn+2

n∑
j=1

‖Dju‖
2
L2(Q) .

The desired estimate (5.2) follows.

Theorem 5.7 Let G be bounded in Rn. If the sequence {uk} in H
1
0 (G) is

bounded, then there is a subsequence which converges in L2(G). That is, the

injection H10 (G)→ L2(G) is compact.

Proof : We may assume each uk ∈ C
∞
0 (G); set M = sup{‖uk‖H1

0
}. Enclose

G in a cube Q; we may assume the edges of Q are of unit length. Extend

each uk as zero on Q ∼ G, so each uk ∈ C
∞
0 (Q) with ‖uk‖H1

0 (Q)
≤M .

Let ε > 0. Choose integer N so large that 2nM2/N2 < ε. Decompose Q

into equal cubesQj, j = 1, 2, . . . ,N
n, with edges of length 1/N . Since {uk} is

bounded in L2(Q), it follows from Theorem I.6.2 that there is a subsequence

(denoted hereafter by {uk}) which is weakly convergent in L
2(Q). Thus,

there is an integer K such that

∣∣∣ ∫
Qj

(uk − u`)
∣∣∣2 < ε/2N2n , j = 1, 2, . . . ,Nn ; k, ` ≥ K .

If we apply (5.2) on each Qj with u = uk−u` and sum over all j’s, we obtain
for k, ` ≥ K

‖uk − u`‖
2
L2(Q) ≤ N

n

(Nn∑
j=1

ε/2N2n
)
+ (n/2N2)(2M2) < ε .
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Thus, {uk} is a Cauchy sequence in L
2(Q).

Corollary Let G be bounded in Rn and let m ≥ 1. Then the injection
Hm0 (G)→ Hm−10 (G) is compact.

Theorem 5.8 Let G be given as in Theorem 5.4 and let m ≥ 1. Then the
injection Hm(G)→ Hm−1(G) is compact.

Proof : Let {uk} be bounded in H
m(G). Then the sequence of extensions

{PG(uk)} is bounded in H
1(Rn). Let θ ∈ C∞0 (R

n) with θ ≡ 1 on G and let
Ω be an open bounded set in Rn containing the support of θ. The sequence

{θ ·PG(uk)} is bounded in H
m
0 (Ω), hence, has a subsequence (denoted by {θ ·

PG(uk′)}) which is convergent in H
m−1
0 (Ω). The corresponding subsequence

of restrictions to G is just {uk′} and is convergent in H
m−1(G).

Exercises

1.1. Evaluate (∂ − λ)(H(x)eλx) and (∂2 + λ2)(λ−1H(x) sin(λx)) for λ 6= 0.

1.2. Find all distributions of the form F (t) = H(t)f(t) where f ∈ C2(R)

such that

(∂2 + 4)F = c1δ + c2∂δ .

1.3. Let K be the square in R2 with corners at (1,1), (2,0), (3,1), (2,2), and

let TK be the function equal to 1 on K and 0 elsewhere. Evaluate

(∂21 − ∂
2
2)TK .

1.4. Obtain the results of Section 1.6(e) from those of Section 1.6(d).

1.5. Evaluate ∆n(1/|x|n−2).

1.6. (a) Let G be given as in Section 1.6(e). Show that for each function

f ∈ C1(Ḡ) the identity

∫
G
∂jf(x) dx =

∫
∂G
f(s)νj(s) ds , 1 ≤ j ≤ n ,

follows from the fundamental theorem of calculus.
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(b) Show that Green’s first identity∫
G
(∇u · ∇v + (∆nu)v) dx =

∫
∂G

∂u

∂v
v ds

follows from above for u ∈ C2(Ḡ) and v ∈ C1(Ḡ). Hint: Take

fj = (∂ju)v and add.

(c) Obtain Green’s second identity from above.

2.1. In the Hilbert space H1(G) show the orthogonal complement of H10 (G)

is the subspace of those ϕ ∈ H1(G) for which ∆nϕ = ϕ. Find a basis

for H10 (G)
⊥ in each of the three cases G = (0, 1), G = (0,∞), G = R.

2.2. If G = (0, 1), show H1(G) ⊂ C(Ḡ).

2.3. Show that H10 (G) is a Hilbert space with the scalar product

(f, g) =

∫
G
∇f(x) · ∇g(x) dx .

If F ∈ L2(G), show T (v) = (F, v)L2(G) defines T ∈ H
1
0 (G)

′. Use the

second part of the proof of Theorem 2.2 to show that there is a unique

u ∈ H10 (G) with ∆nu = F .

2.4. If G1 ⊂ G2, show Hm0 (G1) is naturally identified with a closed subspace
of Hm0 (G2).

2.5. If u ∈ Hm(G), then β ∈ C∞(Ḡ) implies βu ∈ Hm(G), and β ∈ C∞0 (G)
implies βu ∈ Hm0 (G).

2.6. In the situation of Section 2.3, show that ‖u‖Hm(G) is equivalent to

(
∑N
j=0 ‖βju‖

2
Hm(G∩Gj)

)1/2 and that ‖u‖L2(∂G) is equivalent to

(
∑N
j=1 ‖βju‖

2
L2(∂G∩Gj)

)1/2.

3.1. In the proof of Theorem 3.2, explain why γ0(u) = 0 implies u(x
′, s) =∫ s

0 ∂nu(x
′, t) dt for a.e. x′ ∈ Rn−1.

3.2. Provide all remaining details in the proof of Theorem 3.3.

3.3. Extend the first and second Green’s identities to pairs of functions from

appropriate Sobolev spaces. (Cf. Section 1.6(e) and Exercise 1.6).
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4.1. Show that G satisfies the cone condition if ∂G is a C1-manifold of

dimension n− 1.

4.2. Show that G satisfies the cone condition if it is convex.

4.3. Show Hm(G) ⊂ Ck(G) for any open set in Rn so long as m > k + n/2.

If x0 ∈ G, show that δ(ϕ) = ϕ(x0) defines δ ∈ Hm(G)′ for m > n/2.

4.4. Let Γ be a subset of ∂G in the situation of Theorem 3.3. Show that

ϕ →
∫
Γ g(s)ϕ(s) ds defines an element of H

1(G)′ for each g ∈ L2(Γ).
Repeat the above for an (n − 1)-dimensional C1-manifold in Ḡ, not
necessarily in ∂G.

5.1. Verify that Hm(G) is a Hilbert space.

5.2. Prove Lemma 5.1.



niets



Chapter III

Boundary Value Problems

1 Introduction

We shall recall two classical boundary value problems and show that an

appropriate generalized or abstract formulation of each of these is a well-

posed problem. This provides a weak global solution to each problem and

motivates much of our latter discussion.

1.1

Suppose we are given a subset G of Rn and a function F : G → K. We

consider two boundary value problems for the partial differential equation

−∆nu(x) + u(x) = F (x) , x ∈ G . (1.1)

The Dirichlet problem is to find a solution of (1.1) for which u = 0 on ∂G.

The Neumann problem is to find a solution of (1.1) for which (∂u/∂ν) = 0

on ∂G. In order to formulate these problems in a meaningful way, we recall

the first formula of Green∫
G
((∆nu)v +∇u · ∇v) =

∫
∂G

∂u

∂ν
v =

∫
∂G
γ1u · γ0v (1.2)

which holds if ∂G is sufficiently smooth and if u ∈ H2(G), v ∈ H1(G). Thus,
if u is a solution of the Dirichlet problem and if u ∈ H2(G), then we have
u ∈ H10 (G) (since γ0u = 0) and (from (1.1) and (1.2))

(u, v)H1(G) = (F, v)L2(G) , v ∈ H10 (G) . (1.3)

59



60 CHAPTER III. BOUNDARY VALUE PROBLEMS

Note that the identity (1.3) holds in general only for those v ∈ H1(G) for
which γ0v = 0. If we drop the requirement that v vanish on ∂G, then

there would be a contribution from (1.2) in the form of a boundary integral.

Similarly, if u is a solution of the Neumann problem and u ∈ H2(G), then
(since γ1u = 0) we obtain from (1.1) and (1.2) the identity (1.3) for all

v ∈ H1(G). That is, u ∈ H2(G) and (1.3) holds for all v ∈ H1(G).
Conversely, suppose u ∈ H2(G) ∩ H10 (G) and (1.3) holds for all v ∈

H10 (G). Then (1.3) holds for all v ∈ C
∞
0 (G), so (1.1) is satisfied in the sense

of distributions on G, and γ0u = 0 is a boundary condition. Thus, u is a

solution of a Dirichlet problem. Similarly, if u ∈ H2(G) and (1.3) holds for
all v ∈ H1(G), then C∞0 (G) ⊂ H1(G) shows (1.1) is satisfied as before, and

substituting (1.1) into (1.3) gives us∫
∂G
γ1u · γ0v = 0 , v ∈ H1(G) .

Since the range of γ0 is dense in L
2(∂G), this implies that γ1u = 0, so u is

a solution of a Neumann problem.

1.2

The preceding remarks suggest a weak formulation of the Dirichlet problem

as follows:

Given F ∈ L2(G), find u ∈ H10 (G) such that (1.3) holds for all
u ∈ H10 (G).

In particular, the condition that u ∈ H2(G) is not necessary for this formu-
lation to make sense. A similar formulation of the Neumann problem would

be the following:

Given F ∈ L2(G), find u ∈ H1(G) such that (1.3) holds for all
v ∈ H1(G).

This formulation does not require that u ∈ H2(G), so we do not necessarily
have γ1u ∈ L2(∂G). However, we can either extend the operator γ1 so (1.2)
holds on a larger class of functions, or we may prove a regularity result to the

effect that a solution of the Neumann problem is necessarily in H2(G). We

shall achieve both of these in the following, but for the present we consider

the following abstract problem:
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Given a Hilbert space V and f ∈ V ′, find u ∈ V such that for all
v ∈ V

(u, v)V = f(v) .

By taking V = H10 (G) or V = H1(G) and defining f to be the functional

f(v) = (F, v)L2(G) of V
′, we recover the weak formulations of the Dirichlet

or Neumann problems, respectively. But Theorem I.4.5 shows that this

problem is well-posed.

Theorem 1.1 For each f ∈ V ′, there exists exactly one u ∈ V such that

(u, v)V = f(v) for all v ∈ V , and we have ‖u‖V = ‖f‖V ′ .

Corollary If u1 and u2 are the solutions corresponding to f1 and f2, then

‖u1 − u2‖V = ‖f1 − f2‖V ′ .

Finally, we note that if V = H10 (G) or H
1(G), and if F ∈ L2(G) then

‖f‖V ′ ≤ ‖F‖L2(G) where we identify L
2(G) ⊂ V ′ as indicated.

2 Forms, Operators and Green’s Formula

2.1

We begin with a generalization of the weak Dirichlet problem and of the

weak Neumann problem of Section 1:

Given a Hilbert space V , a continuous sesquilinear form a(·, ·) on
V , and f ∈ V ′, find u ∈ V such that

a(u, v) = f(v) , v ∈ V . (2.1)

The sesquilinear form a(·, ·) determines a pair of operators α, β ∈ L(V )
by the identities

a(u, v) = (α(u), v)V = (u, β(v))V , u, v ∈ V . (2.2)

Theorem I.4.5 is used to construct α and β from a(·, ·), and a(·, ·) is clearly
determined by either of α or β through (2.2). Theorem I.4.5 also defines the

bijection J ∈ L(V ′, V ) for which

f(v) = (J(f), v)V , f ∈ V ′ , v ∈ V .
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In fact, J is just the inverse of RV . It is clear that u is a solution of the

“weak” problem associated with (2.1) if and only if α(u) = J(f). Since J is

a bijection, the solvability of this functional equation in V depends on the

invertibility of the operator α. A useful sufficient condition for α to be a

bijection is given in the following.

Definition. The sesquilinear form a(·, ·) on the Hilbert space V is V -
coercive if there is a c > 0 such that

|a(v, v)| ≥ c‖v‖2V , v ∈ V . (2.3)

We show that the weak problem associated with a V -coercive form is

well-posed.

Theorem 2.1 Let a(·, ·) be a V -coercive continuous sesquilinear form. Then,
for every f ∈ V ′, there is a unique u ∈ V for which (2.1) is satisfied. Fur-
thermore, ‖u‖V ≤ (1/c)‖f‖V ′.

Proof : The estimate (2.3) implies that both α and β are injective, and we

also obtain

‖α(v)‖V ≥ c‖v‖V , v ∈ V .

This estimate implies that the range of α is closed. But β is the adjoint of α in

V , so the range of α, Rg(α), satisfies the orthogonality condition Rg(α)⊥ =

K(β) = {0}. Hence, Rg(α) is dense in V , and this shows Rg(α) = V . Since
J is norm-preserving the stated results follow easily.

2.2

We proceed now to construct some operators which characterize solutions of

problem (2.1) as solutions of boundary value problems for certain choices of

a(·, ·) and V . First, define A ∈ L(V, V ′) by

a(u, v) = Au(v) , u, v ∈ V . (2.4)

There is a one-to-one correspondence between continuous sesquilinear forms

on V and linear operators from V to V ′, and it is given by the identity (2.4).

In particular, u is a solution of the weak problem (2.1) if and only if u ∈ V
and Au = f , so the problem is determined by A when f ∈ V ′ is regarded
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as data. We would like to know that the identity Au = f implies that u

satisfies a partial differential equation. It will not be possible in all of our

examples to identify V ′ with a space of distributions on a domain G in Rn.

(For example, we are thinking of V = H1(G) in a Neumann problem as in

(1.1). The difficulty is that the space C∞0 (G) is not dense in V .)

There are two “natural” ways around this difficulty. First, we assume

there is a Hilbert space H such that V is dense and continuously imbedded

in H (hence, we may identify H ′ ⊂ V ′) and such that H is identified with

H ′ through the Riesz map. Thus we have the inclusions

V ↪→ H = H ′ ↪→ V ′

and the identity

f(v) = (f, v)H , f ∈ H , v ∈ V . (2.5)

We call H the pivot space when we identify H = H ′ as above. (For example,

in the Neumann problem of Section 1, we choose H = L2(G), and for this

choice of H, the Riesz map is the identification of functions with functionals

which is compatible with the identification of L2(G) as a space of distribu-

tions on G; cf., Section I.5.3.) We define D = {u ∈ V : Au ∈ H}. In the
examples, Au = f , u ∈ D, will imply that a partial differential equation is
satisfied, since C∞0 (G) will be dense in H. Note that u ∈ D if and only if
u ∈ V and there is a K > 0 such that

|a(u, v)| ≤ K‖v‖H , v ∈ V .

(This follows from Theorem I.4.5.) Finally, we obtain the following result.

Theorem 2.2 If a(·, ·) is V -coercive, then D is dense in V , hence, dense
in H.

Proof : Let w ∈ V with (u,w)V = 0 for all u ∈ D. Then the operator β
from (2.2) being surjective implies w = β(v) for some v ∈ V . Hence, we

obtain 0 = (u, β(v))V = Au(v) = (Au, v)H by (2.5), since u ∈ D. But A
maps D onto H, so v = 0, hence, w = 0.

A second means of obtaining a partial differential equation from the

continuous sesquilinear form a(·, ·) on V is to consider a closed subspace V0
of V , let i : V0 ↪→ V denote the identity and ρ = i′ : V ′ → V ′0 the restriction
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to V0 of functionals on V , and define A = ρA : V → V ′0 . The operator

A ∈ L(V, V ′0) defined by

a(u, v) = Au(v) , u ∈ V , v ∈ V0

is called the formal operator determined by a(·, ·), V and V0. In examples,
V0 will be the closure in V of C

∞
0 (G), so V

′
0 is a space of distributions on G.

Thus, Au = f ∈ V ′0 will imply that a partial differential equation is satisfied.

2.3

We shall compare the operators A and A. Assume V0 is a closed subspace
of V , H is a Hilbert space identified with its dual, the injection V ↪→ H

is continuous, and V0 is dense in H. Let D be given as above and define

D0 = {u ∈ V : Au ∈ H}, where we identify H ⊂ V ′0 . Note that u ∈ D0 if
and only if u ∈ V and there is a K > 0 such that

|a(u, v)| ≤ K‖v‖H , v ∈ V0 ,

so D ⊂ D0. It is on D0 that we compare A and A. So, let u ∈ D0 be fixed
in the following and consider the functional

ϕ(v) = Au(v)− (Au, v)H , v ∈ V . (2.6)

Then we have ϕ ∈ V ′ and ϕ|V0 = 0. But these are precisely the conditions

that characterize those ϕ ∈ V ′ which are in the range of q′ : (V/V0)′ → V ′,

the dual of the quotient map q : V → V/V0. That is, there is a unique

F ∈ (V/V0)′ such that q′(F ) = F ◦ q = ϕ. Thus, (2.6) determines an

F ∈ (V/V0)′ such that F (q(v)) = ϕ(v), v ∈ V . In order to characterize

(V/V0), let V0 be the kernel of a linear surjection γ : V → B and denote

by γ̂ the quotient map which is a bijection of V/V0 onto B. Define a norm

on B by ‖γ̂(x̂)‖B = ‖x̂‖V/V0
so γ̂ is bicontinuous. Then the dual operator

γ̂′ : B′ → (V/V0)′ is a bijection. Given the functional F above, there is a
unique ∂ ∈ B′ such that F = γ̂′(∂). That is, F = ∂ ◦ γ̂. We summarize the
preceding discussion in the following result.

Theorem 2.3 Let V and H be Hilbert spaces with V dense and continuously

imbedded in H. Let H be identified with its dual H ′ so (2.5) holds. Suppose γ

is a linear surjection of V onto a Hilbert space B such that the quotient map

γ̂ : V/V0 → B is norm-preserving, where V0, the kernel of γ, is dense in H.
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Thus, we have V0 ↪→ H ↪→ V ′0. Let A ∈ L(V, V
′) and define A ∈ L(V, V ′0)

by A = ρA, where ρ : V ′ → V ′0 is restriction to V0, the dual of the injection

V0 ↪→ V . Let D0 = {u ∈ V : Au ∈ H}. Then, for every u ∈ D0, there is a
unique ∂(u) ∈ B′ such that

Au(v)− (Au, v)H = ∂(u)(γ(v)) , v ∈ V . (2.7)

The mapping ∂ : D0 → B′ is linear.

When V ′0 is a space of distributions, it is the formal operator A that

determines a partial differential equation. When γ is a trace function and

V0 consists of those elements of V which vanish on a boundary, the quotient

V/V0 represents boundary values of elements of V . Thus B is a realization of

these abstract boundary values as a function space and (2.7) is an abstract

Green’s formula. We shall call ∂ the abstract Green’s operator .

Example. Let V = H1(G) and γ : H1(G) → L2(∂G) be the trace map

constructed in Theorem II.3.1. Then H10 (G) = V0 is the kernel of γ and

we denote by B the range of γ. Since γ̂ is norm-preserving, the injection

B ↪→ L2(∂G) is continuous and, by duality, L2(∂G) ⊂ B′, where we identify
L2(∂G) with its dual space. In particular, B consists of functions on ∂G and

L2(∂G) is a subspace of B′. Continuing this example, we choose H = L2(G)

and a(u, v) = (u, v)H1(G), so Au = −∆nu + u and D0 = {u ∈ H1(G) :

∆nu ∈ L2(G)}. By comparing (2.7) with (1.2) we find that when ∂G is
smooth ∂ : D0 → B′ is an extension of ∂/∂ν = γ1 : H

2(G)→ L2(∂G).

3 Abstract Boundary Value Problems

3.1

We begin by considering an abstract “weak” problem (2.1) motivated by

certain carefully chosen formulations of the Dirichlet and Neumann problems

for the Laplace differential operator. The sesquilinear form a(·, ·) led to two
operators: A, which is equivalent to a(·, ·), and the formal operator A, which
is determined by the action of A restricted to a subspace V0 of V . It is A that
will be a partial differential operator in our applications, and its domain will

be determined by the space V and the difference of A and A as characterized
by the Green’s operator ∂ in Theorem 2.3. If V is prescribed by boundary

conditions, then these same boundary conditions will be forced on a solution
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u of (2.1). Such boundary conditions are called stable or forced boundary

conditions. A second set of constraints may arise from Theorem 2.3 and

these are called unstable or variational boundary conditions. The complete

set of both stable and unstable boundary conditions will be part of the

characterization of the domain of the operator A.

We shall elaborate on these remarks by using Theorem 2.3 to characterize

solutions of (2.1) in a setting with more structure than assumed before. This

additional structure consists essentially of splitting the form a(·, ·) into the
sum of a spatial part which determines the partial differential equation in

the region and a second part which contributes only boundary terms. The

functional f is split similarly into a spatial part and a boundary part.

3.2

We assume that we have a Hilbert space V and a linear surjection γ : V → B

with kernel V0 and that B is a Hilbert space isomorphic to V/V0. Let V be

continuously imbedded in a Hilbert space H which is the pivot space iden-

tified with its dual, and let V0 be dense in H. Thus we have the continuous

injections V0 ↪→ H ↪→ V ′0 and V ↪→ H ↪→ V ′ and the identity (2.5). Let

a1 : V × V → K and a2 : B × B → K be continuous sesquilinear forms and
define

a(u, v) = a1(u, v) + a2(γu, γv) , u, v ∈ V .

Similarly, let F ∈ H, g ∈ B′, and define

f(v) = (F, v)H + g(γv) , v ∈ V .

The problem (2.1) is the following: find u ∈ V such that

a1(u, v) + a2(γu, γv) = (F, v)H + g(γv) , v ∈ V . (3.1)

We shall use Theorem 2.3 to show that (3.1) is equivalent to an abstract

boundary value problem.

Theorem 3.1 Assume we are given the Hilbert spaces, sesquilinear forms

and functionals as above. Let A2 : B → B′ be given by

A2ϕ(ψ) = a1(ϕ,ψ) , ϕ, ψ ∈ B ,

and A : V → V ′0 by

Au(v) = a1(u, v) , u ∈ V , v ∈ V0 .
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Let D0 = {u ∈ V : Au ∈ H} and ∂1 ∈ L(D0, B′) be given by (Theorem 2.3)

a1(u, v)− (Au, v)H = ∂1u(γv) , u ∈ D0 , v ∈ V . (3.2)

Then, u is a solution of (3.1) if and only if

u ∈ V , Au = F , ∂1u+A2(γu) = g . (3.3)

Proof : Since a2(γu, γv) = 0 for all v ∈ V0, it follows that the formal oper-
ator A and space D0 (determined above by a1(·, ·)) are equal, respectively,
to the operator and domain determined by a(·, ·) in Section 2.3. Suppose u
is a solution of (3.1). Then u ∈ V , and the identity (3.1) for v ∈ V0 and V0
being dense in H imply that Au = F ∈ H. This shows u ∈ D0 and using
(3.2) in (3.1) gives

∂1u(γv) + a2(γu, γv) = g(γv) , v ∈ V .

Since γ is a surjection, this implies the remaining equation in (3.3). Similarly,

(3.3) implies (3.1).

Corollary 3.2 Let D be the space of those u ∈ V such that for some F ∈ H

a(u, v) = (F, v)H , v ∈ V .

Then u ∈ D if and only if u is a solution of (3.3) with g = 0.

Proof : Since V0 is dense in H, the functional f ∈ V ′ defined above is in H
if and only if g = 0.

4 Examples

We shall illustrate some applications of our preceding results in a variety of

examples of boundary value problems. Our intention is to indicate the types

of problems which can be described by Theorem 3.1.
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4.1

Let there be given a set of (coefficient) functions

aij ∈ L
∞(G) , 1 ≤ i , j ≤ n ; aj ∈ L

∞(G) , 0 ≤ j ≤ n ,

where G is open and connected in Rn, and define

a(u, v) =

∫
G

{ n∑
i,j=1

aij(x)∂iu(x)∂jv(x) +
n∑
j=0

aj(x)∂ju(x)v(x)

}
dx ,

u, v ∈ H1(G) , (4.1)

where ∂0u = u. Let F ∈ L2(G) ≡ H be given and define f(v) = (F, v)H .

Let Γ be a closed subset of ∂G and define

V = {v ∈ H1(G) : γ0(v)(s) = 0 , a.e. s ∈ Γ} .

V is a closed subspace of H1(G), hence a Hilbert space. We let V0 = H
1
0 (G)

so the formal operator A : V → V ′0 ⊂ D
∗(G) is given by

Au = −
n∑
i,j=1

∂j(aij∂iu) +
n∑
j=0

aj∂ju .

Let γ be the restriction to V of the trace map H1(G) → L2(∂G), where

we assume ∂G is appropriately smooth, and let B be the range of γ, hence

B ↪→ L2(∂G ∼ Γ) ↪→ B′. If all the aij ∈ C1(Ḡ), then we have from the

classical Green’s theorem

a(u, v)− (Au, v)H =
∫
∂G∼Γ

∂u

∂νA
· γ0(v) ds , u ∈ H2(G) , v ∈ V

where
∂u

∂νA
=

n∑
i=1

∂iu(s)
n∑
j=1

aij(s)νj(s)

denotes the (weighted) normal derivative on ∂G ∼ Γ. Thus, the operator ∂
is an extension of ∂/∂νA from H2(G) to the domain D0 = {u ∈ V : Au ∈
L2(G)}. Theorem 3.1 now asserts that u is a solution of the problem (2.1)
if and only if u ∈ H1(G), γ0u = 0 on Γ, ∂u = 0 on ∂G ∼ Γ, and Au = F .
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That is, u is a generalized solution of the mixed Dirichlet-Neumann boundary

value problem
Au(x) = F (x) , x ∈ G ,

u(s) = 0 , s ∈ Γ ,

∂u(s)

∂νA
= 0 , s ∈ ∂G ∼ Γ .




(4.2)

If Γ = ∂G, this is called the Dirichlet problem or the boundary value problem

of first type. If Γ = ∅, it is called the Neumann problem or boundary value
problem of second type.

4.2

We shall simplify the partial differential equation but introduce boundary

integrals. Define H = L2(G), V0 = H
1
0 (G), and

a1(u, v) =

∫
G
∇u · ∇v̄ u, v ∈ V (4.3)

where V is a subspace of H1(G) to be chosen below. The corresponding

distribution-valued operator is given by A = −∆n and ∂1 is an extension of
the standard normal derivative given by

∂u

∂ν
= ∇u · ν .

Suppose we are given F ∈ L2(G), g ∈ L2(∂G), and α ∈ L∞(∂G). We define

a2(ϕ,ψ) =

∫
∂G
α(s)ϕ(s)ψ̄(s) ds , ϕ, ψ ∈ L2(∂G)

f(v) = (F, v)H + (g, γ0v)L2(∂G) , v ∈ V ,

and then use Theorem 3.1 to characterize a solution u of (2.1) for different

choices of V .

If V = H1(G), then u is a generalized solution of the boundary value

problem
−∆nu(x) = F (x) , x ∈ G ,

∂u(s)

∂ν
+ α(s)u(s) = g(x) , s ∈ ∂G .


 (4.4)

The boundary condition is said to be of third type at those points s ∈ ∂G
where α(s) 6= 0.
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For an example of non-local boundary conditions, choose V = {v ∈
H1(G) : γ0(v) is constant}. Let g(s) = g0 and α(s) = α0 be constants, and

define a2(·, ·) and f as above. Then u is a solution of the boundary value
problem of fourth type

−∆nu(x) = F (x) , x ∈ G ,

u(s) = u0 (constant) , s ∈ ∂G ,(∫
∂G

∂u(s)

∂ν
ds
/∫
∂G

ds

)
+ α0 · u0 = g0 .




(4.5)

Note that B = K in this example and u0 is not prescribed as data. Also,

periodic boundary conditions are obtained when G is an interval.

4.3

We consider a problem with a prescribed derivative on the boundary in a

direction which is not necessarily normal. For simplicity we assume n = 2,

let c ∈ R, and define

a(u, v) =

∫
G
{∂1u(∂1v̄ + c∂2v̄ ) + ∂2u(∂2v̄ − c∂1v̄ )} (4.6)

for u, v ∈ V = H1(G). Taking V0 = H10 (G) gives A = −∆2 and the classical
Green’s theorem shows that for u ∈ H2(G) and v ∈ H1(G) we have

a(u, v) − (Au, v)L2(G) =

∫
∂G

(
∂u

∂ν
+ c

∂u

∂τ

)
v̄ ds

where
∂u

∂τ
= ∇u · τ

is the derivative in the direction of the tangent vector τ = (ν2,−ν1) on ∂G.
Thus ∂ is an extension of the oblique derivative in the direction ν+cτ on the

boundary. If f is chosen as in (4.2), then Theorem 3.1 shows that problem

(2.1) is equivalent to a weak form of the boundary value problem

−∆2u(x) = F (x) , x ∈ G ,

∂u

∂ν
+ c

∂u

∂τ
= g(s) , s ∈ ∂G .
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4.4

Let G1 and G2 be disjoint open connected sets with smooth boundaries ∂G1
and ∂G2 which intersect in a C

1 manifold Σ of dimension n − 1. If ν1 and
ν2 denote the unit outward normals on ∂G1 and ∂G2, then ν1(s) = −ν2(s)
for s ∈ Σ. Let G be the interior of the closure of G1 ∪G2, so that

∂G = ∂G1 ∪ ∂G2 ∼ (Σ ∼ ∂Σ) .

For k = 1, 2, let γk0 be the trace mapH
1(Gk)→ L2(∂Gk). Define V = H

1(G)

and note that γ10u1(s) = γ20u2(s) for a.e. s ∈ Σ when u ∈ H
1(G) and uk is

the restriction of u to Gk, k = 1, 2. Thus we have a natural trace map

γ : H1(G) −→ L2(∂G) × L2(Σ)

u 7−→ (γ0u, γ
1
0u1|Σ) ,

where γ0u(s) = γ
k
0uk(s) for s ∈ ∂Gk ∼ Σ, k = 1, 2, and its kernel is given by

V0 = H
1
0 (G1)×H

1
0 (G2).

Let a1 ∈ C1(Ḡ1), a2 ∈ C1(Ḡ2) and define

a(u, v) =

∫
G1

a1∇u · ∇v̄ +
∫
G2

a2∇u · ∇v̄ , u, v ∈ V .

The operator A takes values in D∗(G1 ∪G2) and is given by

Au(x) =




−
n∑
j=1

∂j(a1(x)∂ju(x)) , x ∈ G1 ,

−
n∑
j=1

∂j(a2(x)∂ju(x)) , x ∈ G2 .

The classical Green’s formula applied to G1 and G2 gives

a(u, v) − (Au, v)L2(G) =

∫
∂G1

a1
∂u1
∂ν1

v̄1 +

∫
∂G2

a2
∂u2
∂ν2

v̄2

for u ∈ H2(G) and v ∈ H1(G). It follows that the restriction of the operator
∂ to the space H2(G) is given by ∂u = (∂0u, ∂1u) ∈ L2(∂G)× L2(Σ), where

∂0u(s) = ak(s)
∂uk(s)

∂νk
, a.e. s ∈ ∂Gk ∼ Σ , k = 1, 2 ,

∂1u(s) = a1(s)
∂u1(s)

∂ν1
+ a2(s)

∂u2(s)

∂ν2
, s ∈ Σ .
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Let f be given as in Section 4.2. Then a solution of u of (2.1) is characterized

by Theorem 3.1 as a weak solution of the boundary value problem


u1 ∈ H
1(G1) , −

n∑
j=1

∂ja1(x)∂ju1(x) = F (x) , x ∈ G1 ,

u2 ∈ H
1(G2) , −

n∑
j=1

∂ja2(x)∂ju2(x) = F (x) , x ∈ G2 ,

a1(s)
∂u1(s)

∂ν1
= g(s) , s ∈ ∂G1 ∼ Σ ,

a2(s)
∂u2(s)

∂ν2
= g(s) , s ∈ ∂G2 ∼ Σ ,

u1(s) = u2(s) ,

a1(s)
∂u1(s)

∂ν1
+ a2(s)

∂u2(s)

∂ν2
= 0 , s ∈ Σ .

Since ν1 = −ν2 on Σ, this last condition implies that the normal derivative
has a prescribed jump on Σ which is determined by the ratio of a1(s) to

a2(s). The pair of equations on the interface Σ are known as transition

conditions.

4.5

Let the sets G1, G2 and G be given as in Section 4.4. Suppose Σ0 is an

open subset of the interface Σ which is also contained in the hyperplane

{x = (x′, xn) : xn = 0} and define V = {v ∈ H10 (G) : γ
1
0u1|Σ0 ∈ H

1(Σ0)}.
With the scalar product

(u, v)V ≡ (u, v)H1
0 (G)
+ (γ10u, γ

1
0v)H1(Σ0) , u, v ∈ V ,

V is a Hilbert space. Let γ(u) = γ10(u)|Σ be the corresponding trace operator
V → L2(Σ), so K(γ) = H10 (G1)×H

1
0 (G2) contains C

∞
0 (G1 ∪G2) as a dense

subspace. Let α ∈ L∞(Σ0) and define the sesquilinear form

a(u, v) =

∫
G
∇u · ∇v̄ +

∫
Σ0

α∇′(γu) · ∇′(γv) , u, v ∈ V . (4.7)

Where ∇′ denotes the gradient in the first n−1 coordinates. Then A = −∆n
in D∗(G1 ∪G2) and the classical Green’s formula shows that ∂u is given by

∂u(v) =

∫
Σ

(
∂u1
∂ν1

v̄ +
∂u2
∂ν2

v̄

)
+

∫
Σ0

α∇′(γ(u))∇′v̄
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for u ∈ H2(G) and v ∈ B. Since the range of γ is dense in L2(Σ ∼ Σ0), it
follows that if ∂u = 0 then

∂u1(s)

∂ν1
+
∂u2(s)

∂ν2
= 0 , s ∈ Σ ∼ Σ0 .

But ν1 = −ν2 on Σ, so the normal derivative of u is continuous across
Σ ∼ Σ0. Since the range of γ contains C∞0 (Σ0), it follows that if ∂u = 0
then we obtain the identity

∫
Σ0

α∇′(γu)∇′(γv) +
∫
Σ0

∂u1
∂ν1
(γv) +

∂u2
∂ν2
(γv) = 0 , v ∈ V ,

and this shows that γu|Σ0 satisfies the abstract boundary value

−∆n−1(γu)(s) =
∂u2(s)

∂ν1
−
∂u1(s)

∂ν1
, s ∈ Σ0 ,

(γu)(s) = 0 , s ∈ ∂Σ0 ∩ ∂G ,

∂(γu)(s)

∂ν0
= 0 , s ∈ ∂Σ0 ∼ ∂G ,

where ν0 is the unit normal on ∂Σ0, the (n − 2)-dimensional boundary of
Σ0.

Let F ∈ L2(G) and f(v) = (F, v)L2(G) for v ∈ V . Then from Corollary
3.2 it follows that (3.3) is a generalized boundary value problem given by

−∆nu(x) = F (x) , x ∈ G1 ∪G2 ,

u(s) = 0 , s ∈ ∂G ,

u1(s) = u2(s) ,
∂u1(s)

∂ν1
=
∂u2(s)

∂ν1
, s ∈ Σ ∼ Σ0 ,

−∆n−1u(s) =
∂u2(s)

∂ν1
−
∂u1(s)

∂ν1
, s ∈ Σ0 ,

∂u(s)

∂ν0
= 0 , s ∈ ∂Σ0 ∼ ∂G0 .




(4.8)

Nonhomogeneous terms could be added as in previous examples and similar

problems could be solved on interfaces which are not necessarily flat.
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5 Coercivity; Elliptic Forms

5.1

Let G be an open set in Rn and suppose we are given a collection of functions

aij , 1 ≤ i, j ≤ n; aj, 0 ≤ j ≤ n, in L∞(G). Define the sesquilinear form

a(u, v) =

∫
G

{ n∑
i,j=1

aij(x)∂iu(x)∂j v̄(x) +
n∑
j=0

aj(x)∂ju(x) · v(x)
}
dx (5.1)

on H1(G). We saw in Section 4.1 that such forms lead to partial differential

equations of second order on G.

Definition. The sesquilinear form (5.1) is called strongly elliptic if there is

a constant c0 > 0 such that

Re
n∑
i,j=1

aij(x)ξiξ̄j ≥ c0

n∑
j=1

|ξj |
2 , ξ = (ξ1, . . . , ξn) ∈ K

n , x ∈ G . (5.2)

We shall show that a strongly elliptic form can be made coercive over (any

subspace of) H1(G) by adding a sufficiently large multiple of the identity to

it.

Theorem 5.1 Let (5.1) be strongly elliptic. Then there is a λ0 ∈ R such
that for every λ > λ0, the form

a(u, v) + λ

∫
G
u(x)v̄(x) dx

is H1(G)-coercive.

Proof : Let K1 = max{‖aj‖L∞(G) : 1 ≤ j ≤ n} and K0 = ess inf{Re a0(x) :
x ∈ G}. Then, for 1 ≤ j ≤ n and each ε > 0 we have

|(aj∂ju, u)L2(G)| ≤ K1‖∂ju‖L2(G) · ‖u‖L2(G)

≤ (K1/2)
(
ε‖∂ju‖

2
L2(G) + (1/ε)‖u‖

2
L2(G)

)
.

We also have Re(a0u, u)L2(G) ≥ K0‖u‖2L2(G), so using these with (5.2) in

(5.1) gives

Re a(u, u) ≥ (c0 − εK1/2)‖∇u‖2L2(G)

+(K0 − nK1/2ε)‖u‖2L2(G) , u ∈ H1(G) .
(5.3)
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We choose ε > 0 so that K1ε = c0. This gives us the desired result with

λ0 = (nK
2
1/2c0)−K0.

Corollary 5.2 For every λ > λ0, the boundary value problem (4.2) is well-

posed, where

Au = −
n∑
i,j=1

∂j(aij∂iu) +
n∑
j=1

aj∂ju+ (a0 + λ)u .

Thus, for every F ∈ L2(G), there is a unique u ∈ D such that (4.2) holds,
and we have the estimate

‖(λ− λ0)u‖L2(G) ≤ ‖F‖L2(G) . (5.4)

Proof : The space D was defined in Section 2.2 and Corollary 3.2, so we

need only to verify (5.4). For u ∈ D and λ > λ0 we have from (5.3)

(λ− λ0)‖u‖
2
L2(G) ≤ a(u, u) + λ(u, u)L2(G) = (Au, u)L2(G)

≤ ‖Au‖L2(G) · ‖u‖L2(G)

and the estimate (5.4) now follows.

5.2

We indicate how coercivity may be obtained from the addition of boundary

integrals to strongly elliptic forms.

Theorem 5.3 Let G be open in Rn and suppose 0 ≤ xn ≤ K for all x =

(x′, xn) ∈ G. Let ∂G be a C1-manifold with G on one side of ∂G. Let

ν(s) = (ν1(s), . . . , νn(s)) be the unit outward normal on ∂G and define

Σ = {s ∈ ∂G : νn(s) > 0} .

Then for all u ∈ H1(G) we have

∫
G
|u|2 ≤ 2K

∫
Σ
|γ0u(s)|

2 ds+ 4K2
∫
G
|∂nu|

2 .
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Proof : For u ∈ C1(Ḡ), the Gauss Theorem gives∫
∂G
νn(s)sn|u(s)|

2 ds =

∫
G
Dn(xn|u(x)|

2) dx

=

∫
G
|u|2 +

∫
G
xnDn(|u(x)|

2) dx .

Thus, we obtain from the inequality

2|a| |b| ≤
|a|2

2K
+ 2K|b|2 , a, b ∈ C ,

the estimate∫
G
|u|2 ≤

∫
∂G
νnsn|u(s)|

2 ds+ (1/2)

∫
G
|u|2 + 2K2

∫
G
|Dnu|

2 .

Since νn(s)sn ≤ 0 for s ∈ ∂G ∼ Σ, the desired result follows.

Corollary 5.4 If (5.1) is strongly elliptic, aj ≡ 0 for 1 ≤ j ≤ n, Re a0(x) ≥
0, x ∈ G, and if Σ ⊂ Γ, then the mixed Dirichlet-Neumann problem (4.2) is
well-posed.

Corollary 5.5 If α ∈ L∞(∂G) satisfies

Reα(x) ≥ 0 , x ∈ ∂G , Reα(x) ≥ c > 0 , x ∈ Σ ,

then the third boundary value problem (4.4) is well-posed. The fourth bound-

ary value problem (4.5) is well-posed if Re(α0) > 0.

Similar results can be obtained for the example of Section 4.3. Note that

the form (4.6) satisfies

Re a(u, u) =

∫
G

{
|∂1u|

2 + |∂2u|
2
}
, u ∈ H1(G) ,

so coercivity can be obtained over appropriate subspaces of H1(G) (as in

Corollary 5.4) or by adding a positive multiple of the identity on G or bound-

ary integrals (as in Corollary 5.5). Modification of (4.6) by restricting V ,

e.g., to consist of functions which vanish on a sufficiently large part of ∂G,

or by adding forms, e.g., that are coercive over L2(G) or L2(∂G), will result

in a well-posed problem.

Finally, we note that the first term in the form (4.7) is coercive over

H10 (G) and, hence, over L
2(Σ). Thus, if Reα(x) ≥ c > 0, x ∈ Σ0, then (4.7)

is V -coercive and the problem (4.8) is well-posed.
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5.3

In order to verify that the sesquilinear forms above were coercive over certain

subspaces of H1(G), we found it convenient to verify that they satisfied the

following stronger condition.

Definition. The sesquilinear form a(·, ·) on the Hilbert space V is V -elliptic
if there is a c > 0 such that

Re a(v, v) ≥ c‖v‖2V , v ∈ V . (5.5)

Such forms will occur frequently in our following discussions.

6 Regularity

We begin this section with a consideration of the Dirichlet and Neumann

problems for a simple elliptic equation. The original problems were to find

solutions in H2(G) but we found that it was appropriate to seek weak so-

lutions in H1(G). Our objective here is to show that those weak solutions

are in H2(G) when the domain G and data in the equation are sufficiently

smooth. In particular, this shows that the solution of the Neumann problem

satisfies the boundary condition in L2(∂G) and not just in the sense of the

abstract Green’s operator constructed in Theorem 2.3, i.e., in B′. (See the

Example in Section 2.3.)

6.1

We begin with the Neumann problem; other cases will follow similarly.

Theorem 6.1 Let G be bounded and open in Rn and suppose its boundary

is a C2-manifold of dimension n− 1. Let aij ∈ C1(G), 1 ≤ i, j ≤ n, and

aj ∈ C1(G), 0 ≤ j ≤ n, all have bounded derivatives and assume that the

sesquilinear form defined by

a(ϕ,ψ) ≡
∫
G

{ n∑
i,j=1

aij∂iϕ∂jψ +
n∑
j=0

aj∂jϕψ̄

}
dx , ϕ, ψ ∈ H1(G) (6.1)

is strongly elliptic. Let F ∈ L2(G) and suppose u ∈ H1(G) satisfies

a(u, v) =

∫
G
F v̄ dx , v ∈ H1(G) . (6.2)

Then u ∈ H2(G).
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Proof : Let {(ϕk, Gk) : 1 ≤ k ≤ N} be coordinate patches on ∂G and
{βk : 0 ≤ k ≤ N} the partition-of-unity construction in Section II.2.3. Let
Bk denote the support of βk, 0 ≤ k ≤ N . Since u =

∑
(βku) in G and each

Bk is compact in R
n, it is sufficient to show the following:

(a) u|Bk∩G ∈ H
2(Bk ∩G), 1 ≤ k ≤ N , and

(b) β0u ∈ H2(B0).

The first case (a) will be proved below, and the second case (b) will follow

from a straightforward modification of the first.

6.2

We fix k, 1 ≤ k ≤ N , and note that the coordinate map ϕk : Q → Gk
induces an isomorphism ϕ∗k : H

m(Gk ∩ G) → Hm(Q+) for m = 0, 1, 2 by

ϕ∗k(v) = v ◦ ϕk. Thus we define a continuous sesquilinear form on H
1(Q+)

by

ak (ϕ∗k(w), ϕ
∗
k(v)) ≡

∫
Gk∩G

{ n∑
i,j=1

aij∂jw∂jv +
n∑
j=0

aj∂jwv̄

}
dx . (6.3)

By making the appropriate change-of-variable in (6.3) and setting wk =

ϕ∗k(w), vk = ϕ
∗
k(v), we obtain

ak(wk, vk) =

∫
Q+

{ n∑
i,j=1

akij∂i(wk)∂j(vk) +
n∑
j=0

akj∂j(wk)vk

}
dy . (6.4)

The resulting form (6.4) is strongly-elliptic on Q+ (exercise).
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Let u be the solution of (6.2) and let v ∈ H1(G ∩Gk) vanish in a neigh-
borhood of ∂Gk. (That is, the support of v is contained in Gk.) Then the

extension of v to all of G as zero on G ∼ Gk belongs to H
1(G) and we obtain

from (6.4) and (6.2)

ak(ϕ∗k(u), ϕ
∗
k(v)) = a(u, v) =

∫
Q+

Fkϕ
∗
k(v) dy ,

where Fk ≡ ϕ∗k(F ) · J(ϕk) ∈ L
2(Q+). Letting V denote the space of those

v ∈ H1(Q+) which vanish in a neighborhood of ∂Q, and uk ≡ ϕ∗k(u), we

have shown that uk ∈ H
1(Q+) satisfies

ak(uk, vk) =

∫
Q+

Fkvk dy , vk ∈ V (6.5)

where ak(·, ·) is strongly elliptic with continuously differentiable coefficients
with bounded derivatives and Fk ∈ L

2(Q+). We shall show that the restric-

tion of uk to the compact subset K ≡ ϕ
−1
k (Bk) of Q belongs to H

2(Q+∩K).
The first case (a) above will then follow.

6.3

Hereafter we drop the subscript “k” in (6.5). Thus, we have u ∈ H1(Q+),
F ∈ L2(Q+) and

a(u, v) =

∫
Q+

Fv , v ∈ V . (6.6)

Since K ⊂⊂ Q, there is by Lemma II.1.1 a ϕ ∈ C∞0 (Q) such that 0 ≤ ϕ(x) ≤
1 for x ∈ Q and ϕ(x) = 1 for x ∈ K. We shall first consider ϕ · u.
Let w be a function defined on the half-space Rn+. For each h ∈ R we

define a translate of w by

(τhw)(x1, x2, . . . , xn) = w(x1 + h, x2, . . . , xn)

and a difference of w by

∇hw = (τhw − w)/h

if h 6= 0.

Lemma 6.2 If w, v ∈ L2(Q+) and the distance δ of the support of w to ∂Q
is positive, then

(τhw, v)L2(Q+) = (w, τ−hv)L2(Q+)

for all h ∈ R with |h| < δ.
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Proof : This follows by the obvious change of variable and the observation

that each of the above integrands is non-zero only on a compact subset of

Q+.

Corollary ‖τhw‖L2(Q+) = ‖w‖L2(Q+).

Lemma 6.3 If w ∈ V, then

‖∇hw‖L2(Q+) ≤ ‖∂1w‖L2(Q+) , 0 < |h| < δ .

Proof : It follows from the preceding Corollary that it is sufficient to con-

sider the case where w ∈ C1(Ḡ) ∩ V. Assuming this, and denoting the
support of w by supp(w), we have

∇hw(x) = h
−1
∫ x1+h

x1

∂1w(t, x2, . . . , xn) dt , w ∈ supp(w) .

The Cauchy-Schwartz inequality gives

|∇hw(x)| ≤ h
−1/2
(∫ x1+h

x1

|∂1w(t, x2, . . . , xn)|
2 dt

)1/2
, x ∈ supp(w) ,

and this leads to

‖∇hw‖
2
L2(Q+)

≤ h−1
∫
supp(w)

∫ x1+h

x1

|∂1w(t, x2, . . . , xn)|
2 dt dx

= h−1
∫
Q+

∫ h
0
|∂1w(t+ x1, x2, . . . , xn)|

2 dt dx

= h−1
∫ h
0

∫
Q+

|∂1w(t+ x1, . . . , xn)|
2 dx dt

= h−1
∫ h
0

∫
Q+

|∂1w(x1, . . . , xn)|
2 dx dt

= ‖∂1w‖L2(Q+) .

Corollary limh→0(∇hw) = ∂1w in L
2(Q+).

Proof : {∇h : 0 < |h| < δ} is a family of uniformly bounded operators on
L2(Q+), so it suffices to show the result holds on a dense subset.
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We shall consider the forms

ah(w, v) ≡
∫
Q+

{ n∑
i,j=1

(∇haij)∂iw∂jv +
n∑
j=0

(∇haj)∂jwv̄
}

for w, v ∈ V and |h| < δ, δ being given as in Lemma 6.2. Since the coefficients

in (6.5) have bounded derivatives, the mean-value theorem shows

|ah(w, v)| ≤ C‖w‖H1(Q+) · ‖v‖H1(Q+) (6.7)

where the constant is independent of w, v and h. Finally, we note that for

w, v and h as above

a(∇hw, v) + a(w,∇−hv) = −a−h(τ−hw, v) . (6.8)

This follows from a computation starting with the first term above and

Lemma 6.2.

After this lengthy preparation we continue with the proof of Theorem

6.1. From (6.6) we have the identity

a(∇h(ϕu), v) = {a(∇h(ϕu), v) + a(ϕu,∇−hv)} (6.9)

+ {a(u, ϕ∇−hv)− a(ϕu,∇−hv)} − (F,ϕ∇−hv)L2(Q+)

for v ∈ V and 0 < |h| < δ, δ being the distance from K to ∂Q. The first

term can be bounded appropriately by using (6.7) and (6.8). The third is

similarly bounded and so we consider the second term in (6.9). An easy

computation gives

a(u, ϕ∇−hv)− a(ϕu,∇−hv)

=

∫
Q+

{ n∑
i,j=1

aij(∂iu∂jϕ∇−hv − ∂iϕu∇−h(∂jv))−
n∑
j=1

aj∂jϕu(∇−hv)
}
.

Thus, we obtain the estimate

|a(∇h(ϕu), v)| ≤ C‖v‖H1(Q+) , v ∈ V , 0 < |h| < δ , (6.10)

in which the constant C is independent of h and v. Since a(·, ·) is strongly-
elliptic we may assume it is coercive (Exercise 6.2), so setting v = ∇h(ϕu)
in (6.10) gives

c‖∇h(ϕu)‖
2
H1(Q+)

≤ C‖∇h(ϕu)‖H1(Q+) , 0 < |h| < δ , (6.11)
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hence, {∇h(ϕu) : |h| < δ} is bounded in the Hilbert space H1(Q+). By
Theorem I.6.2 there is a sequence hn → 0 for which ∇hn(ϕu) converges
weakly to some w ∈ H1(Q+). But ∇hn(ϕu) converges weakly in L

1(Q+) to

∂1(ϕu), so the uniqueness of weak limits implies that ∂1(ϕu) = w ∈ H1(Q+).
It follows that ∂21(ϕu) ∈ L

2(Q+), and the same argument shows that each

of the tangential derivatives ∂21u, ∂
2
2u, . . . , ∂

2
n−1u belongs to L

2(K). (Recall

ϕ = 1 onK.) This information together with the partial differential equation

resulting from (6.6) implies that ann · ∂2n(u) ∈ L
2(K). The strong ellipticity

implies ann has a positive lower bound on K, so ∂
2
nu ∈ L2(K). Since n

and all of its derivatives through second order are in L2(K), it follows from

Theorem II.5.5 that u ∈ H2(K).
The preceding proves the case (a) above. The case (b) follows by using

the differencing technique directly on β0u. In particular, we can compute

differences on β0u in any direction. The details are an easy modification of

those of this section and we leave them as an exercise.

6.4

We discuss some extensions of Theorem 6.1. First, we note that the result

and proof of Theorem 6.1 also hold if we replace H1(G) by H10 (G). This

results from the observation that the subspaceH10 (G) is invariant under mul-

tiplication by smooth functions and translations and differences in tangential

directions along the boundary of G. Thus we obtain a regularity result for

the Dirichlet problem.

Theorem 6.4 Let u ∈ H10 (G) satisfy

a(u, v) =

∫
G
F v̄ , v ∈ H10 (G)

where the set G ⊂ Rn and sesquilinear form a(·, ·) are given as in Theorem
6.1, and F ∈ L2(G). Then u ∈ H2(G).

When the data in the problem is smoother yet, one expects the same to

be true of the solution. The following describes the situation which is typical

of second-order elliptic boundary value problems.

Definition. Let V be a closed subspace of H1(G) with H10 (G) ≤ V , and let
a(·, ·) be a continuous sesquilinear form on V . Then a(·, ·) is called k-regular
on V if for every F ∈ Hs(G) with 0 ≤ s ≤ k and every solution u ∈ V of

a(u, v) = (F, v)L2(G) , v ∈ V
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we have u ∈ H2+s(G).

Theorems 6.1 and 6.4 give sufficient conditions for the form a(·, ·) given
by (6.1) to be 0-regular over H1(G) and H10 (G), respectively. Moreover, we

have the following.

Theorem 6.5 The form a(·, ·) given by (6.1) is k-regular over H1(G) and
H10 (G) if ∂G is a C

2+k-manifold and the coefficients {aij , aj} all belong to
C1+k(Ḡ).

7 Closed operators, adjoints and eigenfunction ex-

pansions

7.1

We were led in Section 2 to consider a linear map A : D → H whose

domain D is a subspace of the Hilbert space H. We shall call such a map

an (unbounded) operator on the Hilbert space H. Although an operator is

frequently not continuous (with respect to the H-norm on D) it may have

the property we now consider. The graph of A is the subspace

G(A) = {[x,Ax] : x ∈ D}

of the product H × H. (This product is a Hilbert space with the scalar

product

([x1, x2], [y1, y2])H×H = (x1, y1)H + (x2, y2)H .

The addition and scalar multiplication are defined componentwise.) The

operator A on H is called closed if G(A) is a closed subset of H ×H. That
is, A is closed if for any sequence xn ∈ D such that xn → x and Axn → y in

H, we have x ∈ D and Ax = y.

Lemma 7.1 If A is closed and continuous (i.e., ‖Ax‖H ≤ K‖x‖H , x ∈ H)
then D is closed.

Proof : If xn ∈ D and xn → x ∈ H, then {xn} and, hence, {Axn} are
Cauchy sequences. H is complete, so Axn → y ∈ H and G(A) being closed
implies x ∈ D.
When D is dense in H we define the adjoint of A as follows. The domain

of the operator A∗ is the subspace D∗ of all y ∈ H such that the map
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x 7→ (Ax, y)H : D → K is continuous. Since D is dense in H, Theorem I.4.5
asserts that for each such y ∈ D∗ there is a unique A∗y ∈ H such that

(Ax, y) = (x,A∗y) , x ∈ D , y ∈ D∗ . (7.1)

Then the function A∗ : D∗ → H is clearly linear and is called the adjoint of

A. The following is immediate from (7.1).

Lemma 7.2 A∗ is closed.

Lemma 7.3 If D = H, then A∗ is continuous, hence, D∗ is closed.

Proof : If A∗ is not continuous there is a sequence xn ∈ D∗ such that

‖xn‖ = 1 and ‖A∗xn‖ → ∞. From (7.1) it follows that for each x ∈ H,

|(x,A∗xn)H | = |(Ax, xn)H | ≤ ‖Ax‖H ,

so the sequence {A∗xn} is weakly bounded. But Theorem I.6.1 implies that
it is bounded, a contradiction.

Lemma 7.4 If A is closed, then D∗ is dense in H.

Proof : Let y ∈ H, y 6= 0. Then [0, y] /∈ G(A) and G(A) closed in H ×H
imply there is an f ∈ (H ×H)′ such that f [G(A)] = {0} and f(0, y) 6= 0. In
particular, let P : H ×H → G(A)⊥ be the projection onto the orthogonal

complement of G(A) in H ×H, define [u, v] = P [0, y], and set

f(x1, x2) = (u, x1)H + (v, x2)H , x1, x2 ∈ H .

Then we have

0 = f(x,Ax) = (u, x)H + (v,Ax)H , x ∈ D

so v ∈ D∗, and 0 6= f(0, y) = (v, y)H . The above shows (D∗)⊥ = {0}, so D∗

is dense in H.

The following result is known as the closed-graph theorem.

Theorem 7.5 Let A be an operator on H with domain D. Then A is closed

and D = H if and only if A ∈ L(H).
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Proof : If A is closed and D = H, then Lemma 7.3 and Lemma 7.4 imply

A∗ ∈ L(H). Then Theorem I.5.2 shows (A∗)∗ ∈ L(H). But (7.1) shows
A = (A∗)∗, so A ∈ L(H). The converse in immediate.
The operators with which we are most often concerned are adjoints of

another operator. The preceding discussion shows that the domain of such an

operator, i.e., an adjoint, is all of H if and only if the operator is continuous.

Thus, we shall most often encounter unbounded operators which are closed

and densely defined.

We give some examples in H = L2(G), G = (0, 1).

7.2

Let D = H10 (G) and A = i∂. If [un, Aun] ∈ G(A) converges to [u, v] in

H ×H, then in the identity∫ 1
0
Aunϕdx = −i

∫ 1
0
unDϕdx , ϕ ∈ C∞0 (G) ,

we let n→∞ and thereby obtain∫ 1
0
vϕdx = −i

∫ 1
0
uDϕdx , ϕ ∈ C∞0 (G) .

This means v = i∂u = Au and un → u in H1(G). Hence u ∈ H10 (G), and
we have shown A is closed.

To compute the adjoint, we note that∫ 1
0
Auv̄ dx =

∫ 1
0
uf̄ dx , u ∈ H10 (G)

for some pair v, f ∈ L2(G) if and only if v ∈ H1(G) and f = i∂v. Thus

D∗ = H1(G) and A∗ = i∂ is a proper extension of A.

7.3

We consider the operator A∗ above: on its domain D∗ = H1(G) it is given by

A∗ = i∂. Since A∗ is an adjoint it is closed. We shall compute A∗∗ = (A∗)∗,

the second adjoint of A. We first note that the pair [u, f ] ∈ H ×H is in the
graph of A∗∗ if and only if∫ 1

0
A∗vū dx =

∫ 1
0
vf̄ dx , v ∈ H1(G) .
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This holds for all v ∈ C∞0 (G), so we obtain i∂u = f . Substituting this into

the above and using Theorem II.1.6, we obtain

i

∫ 1
0
∂(vū) dx =

∫ 1
0

[
(i∂v)ū − v(i∂u)

]
dx = 0 ,

hence, v(1)ū(1) − v(0)ū(0) = 0 for all v ∈ H1(G). But this implies u(0) =
u(1) = 0, hence, u ∈ H10 (G). From the above it follows that A

∗∗ = A.

7.4

Consider the operator B = i∂ on L2(G) with domain D(B) = {u ∈ H1(G) :
u(0) = cu(1)} where c ∈ C is given. If v, f ∈ L2(G), then B∗v = f if and

only if ∫ 1
0
i∂u · v̄ dx =

∫ 1
0
uf̄ dx , u ∈ D .

But C∞0 (G) ≤ D implies v ∈ H1(G) and i∂v = f . We substitute this

identity in the above and obtain

0 = i

∫ 1
0
∂(uv̄ ) dx = iu(1)[v̄(1) − cv̄(0)] , u ∈ D .

The preceding shows that v ∈ D(B∗) only if v ∈ H1(0, 1) and v(1) =

c̄v(0). It is easy to show that every such v belongs to D(B∗), so we have

shown that D(B∗) = {v ∈ H1(G) : v(1) = c̄v(0)} and B∗ = i∂.

7.5

We return to the situation of Section 2.2. Let a(·, ·) be a continuous sesquilin-
ear form on the Hilbert space V which is dense and continuously imbedded

in the Hilbert space H. We let D be the set of all u ∈ V such that the map
v 7→ a(u, v) is continuous on V with the norm of H. For such a u ∈ D, there
is a unique Au ∈ H such that

a(u, v) = (Au, v)H , u ∈ D , v ∈ V . (7.2)

This defines a linear operator A on H with domain D.

Consider the (adjoint) sesquilinear form on V defined by b(u, v) = a(v, u),

u, v ∈ V . This gives another operator B onH with domainD(B) determined
as before by

b(u, v) = (Bu, v)H , u ∈ D(B) , v ∈ V .
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Theorem 7.6 Assume there is a λ > 0 and c > 0 such that

Re a(u, u) + λ|u|2H ≥ c‖u‖
2
V , u ∈ V . (7.3)

Then D is dense in H, A is closed, and A∗ = B, hence, D∗ = D(B).

Proof : Theorem 2.2 shows D is dense in H. If we prove A∗ = B, then by

symmetry we obtain B∗ = A, hence A is closed by Lemma 7.2.

Suppose v ∈ D(B). Then for all u ∈ D(A) we have (Au, v)H = a(u, v) =
b(v, u) = (Bv, u)H , hence, (Au, v)H = (u,Bv)H . This showsD(B) ≤ D

∗ and

A∗|D(B) = B. We need only to verify that D(B) = D∗. Let u ∈ D∗. Since
B + λ is surjective, there is a u0 ∈ D(B) such that (B + λ)u0 = (A∗ + λ)u.
Then for all v ∈ D we have

((A+ λ)v, u)H = (v, (B + λ)u0)H = a(v, u0) + λ(v, u0)H

= ((A+ λ)v, u0)H .

But A+λ is a surjection, so this implies u = u0 ∈ D(B). Hence, D∗ = D(B).
For those operators as above which arise from a symmetric sesquilinear

form on a space V which is compactly imbedded in H, we can apply the

eigenfunction expansion theory for self-adjoint compact operators.

Theorem 7.7 Let V and H be Hilbert spaces with V dense in H and assume

the injection V ↪→ H is compact. Let A : D → H be the linear operator

determined as above by a continuous sesquilinear form a(·, ·) on V which we
assume is V -elliptic and symmetric:

a(u, v) = a(v, u) , u, v ∈ V .

Then there is a sequence {vj} of eigenfunctions of A with

Avj = λjvj , |vj |H = 1 ,

(vi, vj)H = 0 , i 6= j ,

0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞ as n→ +∞ ,


 (7.4)

and {vj} is a basis for H.

Proof : From Theorem 7.6 it follows that A = A∗ and, hence, A−1 ∈ L(H)
is self-adjoint. The V -elliptic condition (5.5) shows that A−1 ∈ L(H,V ).
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Since the injection V ↪→ H is compact, it follows that A−1 : H → V → H is

compact. We apply Theorem I.7.5 to obtain a sequence {vj} of eigenfunc-
tions of A−1 which are orthonormal in H and form a basis for D = Rg(A−1).

If their corresponding eigenvalues are denoted by {µj}, then the symmetry
of a(·, ·) and (5.5) shows that each µj is positive. We obtain (7.4) by setting
λj = 1/µj for j ≥ 1 and noting that limj→∞ µj = 0.
It remains to show {vj} is a basis for H. (We only know that it is a basis

for D.) Let f ∈ H and u ∈ D with Au = f . Let
∑
bjvj be the Fourier series

for f ,
∑
cjvj the Fourier series for u, and denote their respective partial

sums by

un =
n∑
j=1

cjvj , fn =
n∑
j=1

bjvj .

We know limn→∞ un = u and limn→∞ fn = f∞ exists in H (cf. Exercise

I.7.2). For each j ≥ 1 we have

bj = (Au, vj)H = (u,Avj)H = λjcj ,

so Aun = fn for all n ≥ 1. Since A is closed, it follows Au = f∞, hence,

f = limn→∞ fn as was desired.

If we replace A by A + λ in the proof of Theorem 7.7, we observe that

ellipticity of a(·, ·) is not necessary but only that a(·, ·)+λ(·, ·)H be V -elliptic
for some λ ∈ R.

Corollary 7.8 Let V and H be given as in Theorem 7.7, let a(·, ·) be con-
tinuous, sesquilinear, and symmetric. Assume also that

a(v, v) + λ|v|2H ≥ c‖v‖
2
V , v ∈ V

for some λ ∈ R and c > 0. Then there is an orthonormal sequence of
eigenfunctions of A which is a basis for H and the corresponding eigenvalues

satisfy −λ < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞ as n→ +∞.

We give some examples in H = L2(G), G = (0, 1). These eigenvalue

problems are known as Sturm-Liouville problems. Additional examples are

described in the exercises.

7.6

Let V = H10 (G) and define a(u, v) =
∫ 1
0 ∂u∂v dx. The compactness of V →

H follows from Theorem II.5.7 and Theorem 5.3 shows a(·, ·) is H10 (G)-
elliptic. Thus Theorem 7.7 holds; it is a straightforward exercise to compute
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the eigenfunctions and corresponding eigenvalues for the operator A = −∂2

with domain D(A) = H10 (G) ∩H
2(G):

vj(x) = 2 sin(jπx) , λ = (jπ)2 , j = 1, 2, 3, . . . .

Since {vj} is a basis for L2(G), each F ∈ L2(G) has a Fourier sine-series

expansion. Similar results hold in higher dimension for, e.g., the eigenvalue

problem {
−∆nv(x) = λv(x) , x ∈ G ,

v(s) = 0 , s ∈ ∂G ,

but the actual computation of the eigenfunctions and eigenvalues is difficult

except for very special regions G ⊂ Rn.

7.7

Let V = H1(G) and choose a(·, ·) as above. The compactness follows from
Theorem II.5.8 so Corollary 7.8 applies for any λ > 0 to give a basis of

eigenfunctions for A = −∂2 with domain D(A) = {v ∈ H2(G) : v′(0) =

v′(1) = 0}:
v0(x) = 1 , vj(x) = 2 cos(jπx) , j ≥ 1 ,

λj = (jπ)
2 , j ≥ 0 .

As before, similar results hold for the Laplacean with boundary conditions

of second type in higher dimensions.

7.8

Let a(·, ·) be given as above but set V = {v ∈ H1(G) : v(0) = v(1)}. Then
we can apply Corollary 7.8 to the periodic eigenvalue problem (cf. (4.5))

−∂2v(x) = λv(x) , 0 < x < 1 ,

v(0) = v(1) , v′(0) = v′(1) .

The eigenfunction expansion is just the standard Fourier series.

Exercises

1.1. Use Theorem 1.1 to show the problem −∆nu = F in G, u = 0 on ∂G is
well-posed. Hint: Use Theorem II.2.4 to obtain an appropriate norm

on H10 (G).
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1.2. Use Theorem 1.1 to solve (1.1) with the boundary condition ∂u/∂ν+u =

0 on ∂G. Hint: Use (u, v)V ≡ (u, v)H1(G) + (γu, γv)L2(∂G) on H
1(G).

2.1. Give the details of the construction of α, β in (2.2).

2.2. Verify the remark on H = L2(G) following (2.5) (cf. Section I.5.3).

2.3. Use Theorem I.1.1 to construct the F which appears after (2.6). Check

that it is continuous.

2.4. Show that a(u, v) =
∫ 1
0 ∂u(x)∂v̄(x) dx, V = {u ∈ H

1(0, 1) : u(0) = 0},
and f(v) ≡ v(1/2) are admissible data in Theorem 2.1. Find a formula
for the unique solution of the problem.

2.5. In Theorem 2.1 the continuous dependence of the solution u on the data

f follows from the estimate made in the theorem. Consider the two ab-

stract boundary value problems A1u1 = f and A2u2 = f where f ∈ V ′,
and A1,A2 ∈ L(V, V ′) are coercive with constants c1, c2, respectively.
Show that the following estimates holds:

‖u1 − u2‖ ≤ (1/c1)‖(A2 −A1)u2‖ ,

‖u1 − u2‖ ≤ (1/c1c2)‖A2 −A1‖ ‖f‖ .

Explain how these estimates show that the solution of (2.1) depends

continuously on the form a(·, ·) or operator A.

3.1. Show (3.3) implies (3.1) in Theorem 3.1.

3.2. (Non-homogeneous Boundary Conditions.) In the situation of Theorem

3.1, assume we have a closed subspace V1 with V0 ⊂ V1 ⊂ V and

u0 ∈ V . Consider the problem to find

u ∈ V , u− u0 ∈ V1 , a(u, v) = f(v) , v ∈ V1 .

(a) Show this problem is well-posed if a(·, ·) is V1-coercive.

(b) Characterize the solution by u − u0 ∈ V1, u ∈ D0, Au = F , and

∂u(v) + a2(γu, γv) = g(γv), v ∈ V1.

(c) Construct an example of the above with V0 = H
1
0 (G), V = H

1(G),

V1 = {v ∈ V : v|Γ = 0}, where Γ ⊂ ∂G is given.
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4.1. Verify that the formal operator and Green’s theorem are as indicated

in Section 4.1.

4.2. Characterize the boundary value problem resulting from the choice of

V = {v ∈ H1(G) : v = const. on G0} in Section 4.2, where G0 ⊂ G is

given.

4.3. When G is a cube in Rn, show (4.5) is related to a problem on Rn with

periodic solutions.

4.4. Choose V in Section 4.2 so that the solution u : Rn → K is periodic in
each coordinate direction.

5.1. Formulate and solve the problem (4.8) with non-homogeneous data pre-

scribed on ∂G and Σ.

5.2. Find choices for V in Section 4.3 which lead to well-posed problems.

Characterize the solution by a boundary value problem.

5.3. Prove Corollary 5.4.

5.4. Discuss coercivity of the form (4.6). Hint: Re(
∫
∂G
∂u
∂τ ū ds) = 0.

6.1. Show (6.4) is strongly-elliptic on Q+.

6.2. Show that the result of Theorem 6.1 holds for a(·, ·) if and only if it
holds for a(·, ·) + λ(·, ·)L2(G). Hence, one may infer coercivity from

strong ellipticity without loss of generality.

6.3. If u ∈ H1(G), show ∇h(u) converges weakly in L
2(G) to ∂1(u).

6.4. Prove the case (b) in Theorem 6.1.

6.5. Prove Theorem 6.5.

6.6. Give sufficient conditions for the solution of (6.2) to be a classical solu-

tion in C2u(G).

7.1. Prove Lemma 7.2 of Section 7.1.

7.2. Compute the adjoint of ∂ : {v ∈ H1(G) : v(0) = 0} → L2(G), G =

(0, 1).
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7.3. Let D ≤ H2(G), G = (0, 1), a1(·), a2(·) ∈ C1(Ḡ), and define L : D →
L2(G) by Lu = ∂2u+ a1∂u+ a2u. The formal adjoint of L is defined

by

L∗v(ϕ) =

∫ 1
0
v(x)Lϕ(x) dx , v ∈ L2(G) , ϕ ∈ C∞0 (G) .

(a) Show L∗v = ∂2v − ∂(ā1v) + ā2v in D∗(G).

(b) If u, v ∈ H2(G), then
∫ 1
0 (Luv̄ − uL∗v̄ ) dx = J(u, v)|x=1x=0, where

J(u, v) = v̄∂u− u∂v̄ + a1uv̄.

(c) D(L∗) = {v ∈ H2(G) : J(u, v)|x=1x=0 = 0, all u ∈ D} determines the
domain of the L2(G)-adjoint.

(d) Compute D(L∗) when L = ∂2 + 1 and each of the following:

(i) D = {u : u(0) = u′(0) = 0},

(ii) D = {u : u(0) = u(1) = 0},

(iii) D = {u : u(0) = u(1), u′(0) = u′(1)}.

7.4. Let A be determined by {a(·, ·), V,H} as in (7.2) and Aλ by {a(·, ·) +
λ(·, ·)H , V,H}. Show D(Aλ) = D(A) and Aλ = A+ λI.

7.5. Let Hj, Vj be Hilbert spaces with Vj continuously embedded in Hj for

j = 1, 2. Show that if T ∈ L(H1,H2) and if T1 ≡ T |V1 ∈ L(V1, V2),

then T1 ∈ L(V1, V2).

7.6. In the situation of Section 6.4, let a(·, ·) be 0-regular on V and assume
a(·, ·) is also V -elliptic. Let A be determined by {a(·, ·), V, L2(G)} as
in (7.2).

(a) Show A−1 ∈ L(L2(G), V ).

(b) Show A−1 ∈ L(L2(G),H2(G)).

(c) If a(·, ·) is k-regular, show A−p ∈ L(L2(G),H2+k(G)) if p is suffi-
ciently large.

7.7. Let A be self-adjoint on the complex Hilbert space H. That is, A = A∗.

(a) Show that if Im(λ) 6= 0, then λ−A is invertible and | Im(λ)| ‖x‖H ≤
‖(λ−A)x‖H for all x ∈ D(A).

(b) Rg(λ−A) is dense in H.
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(c) Show (λ−A)−1 ∈ L(H) and ‖(λ−A)−1‖ ≤ | Im(λ)|−1.

7.8. Show Theorem 7.7 applies to the mixed Dirichlet-Neumann eigenvalue

problem

−∂2v = λv(x) , 0 < x < 1 , v(0) = v′(1) = 0 .

Compute the eigenfunctions.

7.9. Show Corollary 7.8 applies to the eigenvalue problem with boundary

conditions of third type

−∂2v(x) = λv(x) , 0 < x < 1 ,

∂v(0) − hv(0) = 0 , ∂v(1) + hv(1) = 0 ,

where h > 0. Compute the eigenfunctions.

7.10. Take cc̄ = 1 in Section 7.4 and discuss the eigenvalue problem Bv = λv.

7.11. In the proof of Theorem 7.7, deduce that {vj} is a basis for H directly
from the fact that D̄ = H.



niets



Chapter IV

First Order Evolution
Equations

1 Introduction

We consider first an initial-boundary value problem for the equation of heat

conduction. That is, we seek a function u : [0, π]× [0,∞]→ R which satisfies
the partial differential equation

ut = uxx , 0 < x < π , t > 0 (1.1)

with the boundary conditions

u(0, t) = 0 , u(π, t) = 0 , t > 0 (1.2)

and the initial condition

u(x, 0) = u0(x) , 0 < x < π . (1.3)

A standard technique for solving this problem is the method of separation of

variables. One begins by looking for non-identically-zero solutions of (1.1)

of the form

u(x, t) = v(x)T (t)

and is led to consider the pair of ordinary differential equations

v′′ + λv = 0 , T ′ + λT = 0

95
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and the boundary conditions v(0) = v(π) = 0. This is an eigenvalue problem

for v(x) and the solutions are given by vn(x) = sin(nx) with corresponding

eigenvalues λn = n
2 for integer n ≥ 1 (cf. Section II.7.6).

The second of the pair of equations has corresponding solutions

Tn(t) = e
−n2t

and we thus obtain a countable set

un(x, t) = e
−n2t sin(nx)

of functions which satisfy (1.1) and (1.2). The solution of (1.1), (1.2) and

(1.3) is then obtained as the series

u(x, t) =
∞∑
n=1

un0e
−n2t sin(nx) (1.4)

where the {un0} are the Fourier coefficients

un0 =
2

π

∫ π
0
u0(x) sin(nx) dx , n ≥ 1 ,

of the initial function u0(x).

We can regard the representation (1.4) of the solution as a function

t 7→ S(t) from the non-negative reals R+0 to the bounded linear operators on

L2[0, π]. We define S(t) to be the operator given by

S(t)u0(x) = u(x, t) ,

so S(t) assigns to each function u0 ∈ L2[0, π] that function u(·, t) ∈ L2[0, π]
given by (1.4). If t1, t2 ∈ R

+
0 , then we obtain for each u0 ∈ L2[0, π] the

equalities

S(t1)u0(x) =
∞∑
n=1

(un0 e
−n2t1) sin(nx)

S(t2)S(t1)u0(x) =
∞∑
n=1

(un0 e
−n2t1) sin(nx)e−n

2t2

=
∞∑
n=1

un0 sin(nx)e
−n2(t1+t2)

= S(t1 + t2)u0(x) .
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Since u0 is arbitrary, this shows that

S(t1) · S(t2) = S(t1 + t2) , t1, t2 ≥ 0 .

This is the semigroup identity . We can also show that S(0) = I, the identity

operator, and that for each u0, S(t)u0 → u0 in L
2[0, π] as t → 0+. Finally,

we find that each S(t) has norm ≤ e−t in L(L2[0, π]). The properties of
{S(t) : t ≥ 0} that we have obtained here will go into the definition of
contraction semigroups. We shall find that each contraction semigroup is

characterized by a representation for the solution of a corresponding Cauchy

problem.

Finally we show how the semigroup {S(t) : t ≥ 0} leads to a representa-
tion of the solution of the non-homogeneous partial differential equation

ut = uxx + f(x, t) , 0 < x < π , t > 0 (1.5)

with the boundary conditions (1.2) and initial condition (1.3). Suppose that

for each t > 0, f(·, t) ∈ L2[0, π] and, hence, has the eigenfunction expansion

f(x, t) =
∞∑
n=1

fn(t) sin(nx) , fn(t) ≡
2

π

∫ π
0
f(ξ, t) sin(nξ) dξ . (1.6)

We look for the solution in the form u(x, t) =
∑∞
n=1 un(t) sin(nx) and find

from (1.5) and (1.3) that the coefficients must satisfy

u′n(t) + n
2un(t) = fn(t) , t ≥ 0 ,

un(0) = u
0
n , n ≥ 1 .

Hence we have

un(t) = u
0
ne
−n2t +

∫ t
0
e−n

2(t−τ)fn(τ) dτ

and the solution is given by

u(x, t) = S(t)u0(x) +

∫ t
0

∫ π
0

{
2

π

∞∑
n=1

e−n
2(t−τ) sin(nx) sin(nξ)

}
f(ξ, τ) dξ dτ .

But from (1.6) it follows that we have the representation

u(·, t) = S(t)u0(·) +
∫ t
0
S(t− τ)f(·, τ) dτ (1.7)

for the solution of (1.5), (1.2), (1.3). The preceding computations will be

made precise in this chapter and (1.7) will be used to prove existence and

uniqueness of a solution.
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2 The Cauchy Problem

Let H be a Hilbert space, D(A) a subspace of H, and A ∈ L(D(A),H). We
shall consider the evolution equation

u′(t) +Au(t) = 0 . (2.1)

The Cauchy problem is to find a function u ∈ C([0,∞],H)∩C1((0,∞),H)
such that, for t > 0, u(t) ∈ D(A) and (2.1) holds, and u(0) = u0, where the
initial value u0 ∈ H is prescribed.
Assume that for every u0 ∈ D(A) there exists a unique solution of the

Cauchy problem. Define S(t)u0 = u(t) for t ≥ 0, u0 ∈ D(A), where u(·)
denotes that solution of (2.1) with u(0) = u0. If u0, v0 ∈ D(A) and if

a, b ∈ R, then the function t 7→ aS(t)u0+ bS(t)v0 is a solution of (2.1), since

A is linear, and the uniqueness of solutions then implies

S(t)(au0 + bv0) = aS(t)u0 + bS(t)v0 .

Thus, S(t) ∈ L(D(A)) for all t ≥ 0. If u0 ∈ D(A) and τ ≥ 0, then the
function t 7→ S(t + τ)u0 satisfies (2.1) and takes the initial value S(τ)u0.

The uniqueness of solutions implies that

S(t+ τ)u0 = S(t)S(τ)u0 , u0 ∈ D(A) .

Clearly, S(0) = I.

We define the operator A to be accretive if

Re(Ax, x)H ≥ 0 , x ∈ D(A) .

If A is accretive and if u is a solution of the Cauchy problem for (2.1), then

Dt(‖u(t)‖
2) = 2Re(u′(t), u(t))H

= −2Re(Au(t), u(t))H ≤ 0 , t > 0 ,

so it follows that ‖u(t)‖ ≤ ‖u(0)‖, t ≥ 0. This shows that

‖S(t)u0‖ ≤ ‖u0‖ , u0 ∈ D(A) , t ≥ 0 ,

so each S(t) is a contraction in theH-norm and hence has a unique extension

to the closure ofD(A). WhenD(A) is dense, we thereby obtain a contraction

semigroup on H.
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Definition. A contraction semigroup on H is a set {S(t) : t ≥ 0} of linear
operators on H which are contractions and satisfy

S(t+ τ) = S(t) · S(τ) , S(0) = I , t, τ ≥ 0 , (2.2)

S(·)x ∈ C([0,∞),H) , x ∈ H . (2.3)

The generator of the contraction semigroup {S(t) : t ≥ 0} is the operator
with domain

D(B) =
{
x ∈ H : lim

h→0+
h−1(S(h) − I)x = D+(S(0)x) exists in H

}

and value Bx = limh→0+ h−1(S(h)− I)x = D+(S(0)x). Note that Bx is the
right-derivative at 0 of S(t)x.

The equation (2.2) is the semigroup identity . The definition of solution

for the Cauchy problem shows that (2.3) holds for x ∈ D(A), and an elemen-
tary argument using the uniform boundedness of the (contraction) operators

{S(t) : t ≥ 0} shows that (2.3) holds for all x ∈ H. The property (2.3) is
the strong continuity of the semigroup.

Theorem 2.1 Let A ∈ L(D(A),H) be accretive with D(A) dense in H.

Suppose that for every u0 ∈ D(A) there is a unique solution u ∈ C1([0,∞),H)
of (2.1) with u(0) = u0. Then the family of operators {S(t) : t ≥ 0} defined
as above is a contraction semigroup on H whose generator is an extension

of −A.

Proof : Note that uniqueness of solutions is implied by A being accretive,

so the semigroup is defined as above. We need only to verify that −A is a
restriction of the generator. Let B denote the generator of {S(t) : t ≥ 0}
and u0 ∈ D(A). Since the corresponding solution u(t) = S(t)u0 is right-

differentiable at 0, we have

S(h)u0 − u0 =
∫ h
0
u′(t) dt = −

∫ h
0
Au(t) dt , h > 0 .

Hence, we have D+(S(0)u0) = −Au0, so u0 ∈ D(B) and Bu0 = −Au0.

We shall see later that if −A is the generator of a contraction semigroup,
then A is accretive, D(A) is dense, and for every u0 ∈ D(A) there is a unique
solution u ∈ C1([0,∞),H) of (2.1) with u(0) = u0. But first, we consider a

simple example.
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Theorem 2.2 For each B ∈ L(H), the series
∑∞
n=0(B

n/n!) converges in

L(H); denote its sum by exp(B). The function t 7→ exp(tB) : R→ L(H) is
infinitely differentiable and satisfies

D[exp(tB)] = B · exp(tB) = exp(tB) · B , t ∈ R . (2.4)

If B1, B2 ∈ L(H) and if B1 · B2 = B2 ·B1, then

exp(B1 +B2) = exp(B1) · exp(B2) . (2.5)

Proof : The convergence of the series in L(H) follows from that of∑∞
n=0 ‖B‖

n
L(H)/n! = exp(‖B‖) in R. To verify the differentiability of exp(tB)

at t = 0, we note that

[
(exp(tB)− I)/t

]
−B = (1/t)

∞∑
n=2

(tB)n/n! , t 6= 0 ,

and this gives the estimate

‖
[
(exp(tB)− I)/t

]
−B‖ ≤ (1/|t|)

[
exp(|t| · ‖B‖)− 1− |t| ‖B‖

]
.

Since t 7→ exp(t‖B‖) is (right) differentiable at 0 with (right) derivative ‖B‖,
it follows that (2.4) holds at t = 0. The semigroup property shows that (2.4)

holds at every t ∈ R. (We leave (2.5) as an exercise.)

3 Generation of Semigroups

Our objective here is to characterize those operators which generate contrac-

tion semigroups.

To first obtain necessary conditions, we assume that B : D(B) → H

is the generator of a contraction semigroup {S(t) : t ≥ 0}. If t ≥ 0 and
x ∈ D(B), then the last term in the identity

h−1(S(t+h)x−S(t)x) = h−1(S(h)−I)S(t)x = h−1S(t)(S(h)x−x) , h > 0 ,

has a limit as h→ 0+, hence, so also does each term and we obtain

D+S(t)x = BS(t)x = S(t)Bx , x ∈ D(B) , t ≥ 0 .
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Similarly, using the uniform boundedness of the semigroup we may take the

limit as h→ 0+ in the identity

h−1(S(t)x− S(t− h)x) = S(t− h)h−1(S(h)x − x) , 0 < h < t ,

to obtain

D−S(t)x = S(t)Bx , x ∈ D(B) , t > 0 .

We summarize the above.

Lemma For each x ∈ D(B), S(·)x ∈ C1(R+0 ,H), S(t)x ∈ D(B), and

S(t)x− x =
∫ t
0
BS(s)x ds =

∫ t
0
S(s)Bxdx , t ≥ 0 . (3.1)

Corollary B is closed.

Proof : Let xn ∈ D(B) with xn → x and Bxn → y in H. For each h > 0

we have from (3.1)

h−1(S(h)xn − xn) = h
−1
∫ h
0
S(s)Bxn ds , n ≥ 1 .

Letting n→∞ and then h→ 0+ gives D+S(0)x = y, hence, Bx = y.

Lemma D(B) is dense in H; for each t ≥ 0 and x ∈ H,
∫ t
0 S(s)x ds ∈

D(B) and

S(t)x− x = B
∫ t
0
S(s)x ds , x ∈ H , t ≥ 0 . (3.2)

Proof : Define xt =
∫ t
0 S(s)x ds. Then for h > 0

h−1(S(h)xt − xt) = h−1
{∫ t
0
S(h+ s)x ds−

∫ t
0
S(s)x ds

}

= h−1
{∫ t+h
h

S(s)x ds−
∫ t
0
S(s)x ds

}
.

Adding and subtracting
∫ h
t S(s)x ds gives the equation

h−1(S(h)xt − xt) = h
−1
∫ t+h
t

S(s)x ds − h−1
∫ h
0
S(s)x ds ,
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and letting h→ 0 shows that xt ∈ D(B) and Bxt = S(t)x−x. Finally, from
t−1xt → x as t→ 0+, it follows that D(B) is dense in H.
Let λ > 0. Then it is easy to check that {e−λtS(t) : t ≥ 0} is a contraction

semigroup whose generator is B−λ with domain D(B). From (3.1) and (3.2)
applied to this semigroup we obtain

e−λtS(t)x− x =
∫ t
0
e−λsS(s)(B − λ)x ds , x ∈ D(B) , t ≥ 0 ,

e−λtS(t)y − y = (B − λ)
∫ t
0
e−λsS(s)y ds , y ∈ H , t ≥ 0 .

Letting t→ ∞ (and using the fact that B is closed to evaluate the limit of
the last term) we find that

x =

∫ ∞
0

e−λsS(s)(λ−B)x ds , x ∈ D(B) ,

y = (λ−B)
∫ ∞
0

e−λsS(s)y ds , y ∈ H .

These identities show that λ − B is injective and surjective, respectively,

with

‖(λ−B)−1y‖ ≤
∫ ∞
0

e−λs ds‖y‖ = λ−1‖y‖ , y ∈ H .

This proves the necessity part of the following fundamental result.

Theorem 3.1 Necessary and sufficient conditions that the operator

B : D(B)→ H be the generator of a contraction semigroup on H are that

D(B) is dense in H and λ − B : D(B) → H is a bijection with ‖λ(λ −
B)−1‖L(H) ≤ 1 for all λ > 0.

Proof : (Continued) It remains to show that the indicated conditions on B

imply that it is the generator of a semigroup. We shall achieve this as follows:

(a) approximate B by bounded operators, Bλ, (b) obtain corresponding

semigroups {Sλ(t) : t ≥ 0} by exponentiating Bλ, then (c) show that S(t) ≡
limλ→∞ Sλ(t) exists and is the desired semigroup.

Since λ − B : D(B) → H is a bijection for each λ > 0, we may define

Bλ = λB(λ−B)
−1, λ > 0.

Lemma For each λ > 0, Bλ ∈ L(H) and satisfies

Bλ = −λ+ λ
2(λ−B)−1 . (3.3)
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For x ∈ D(B), ‖Bλ(x)‖ ≤ ‖Bx‖ and limλ→∞Bλ(x) = Bx.

Proof : Equation (3.3) follows from (Bλ+λ)(λ−B)x = λ
2x, x ∈ D(B). The

estimate is obtained from Bλ = λ(λ−B)
−1B and the fact that λ(λ−B)−1

is a contraction. Finally, we have from (3.3)

‖λ(λ−B)−1x− x‖ = ‖λ−1Bλx‖ ≤ λ
−1‖Bx‖ , λ > 0 , x ∈ D(B) ,

hence, λ(λ−B)−1x 7→ x for all x ∈ D(B). But D(B) dense and {λ(λ−B)−1}
uniformly bounded imply λ(λ − B)−1x → x for all x ∈ H, and this shows
Bλx = λ(λ−B)

−1Bx→ Bx for x ∈ D(B).
Since Bλ is bounded for each λ > 0, we may define by Theorem 2.2

Sλ(t) = exp(tBλ) , λ > 0 , t ≥ 0 .

Lemma For each λ > 0, {Sλ(t) : t ≥ 0} is a contraction semigroup on H
with generator Bλ. For each x ∈ D(B), {Sλ(t)x} converges in H as λ→∞,
and the convergence is uniform for t ∈ [0, T ], T > 0.

Proof : The first statement follows from

‖Sλ(t)‖ = e
−λt‖ exp(λ2(λ−B)−1t)‖ ≤ e−λteλt = 1 ,

and D(Sλ(t)) = BλSλ(t). Furthermore,

Sλ(t)− Sµ(t) =
∫ t
0
DsSµ(t− s)Sλ(s) ds

=

∫ t
0
Sµ(t− s)Sλ(s)(Bλ −Bµ) ds , µ, λ > 0 ,

in L(H), so we obtain

‖Sλ(t)x− Sµ(t)s‖ ≤ t‖Bλx−Bµx‖ , λ, µ > 0 , t ≥ 0 , x ∈ D(B) .

This shows {Sλ(t)x} is uniformly Cauchy for t on bounded intervals, so the
Lemma follows.

Since each Sλ(t) is a contraction and D(B) is dense, the indicated limit

holds for all x ∈ H, and uniformly on bounded intervals. We define S(t)x =
limλ→∞ Sλ(t)x, x ∈ H, t ≥ 0, and it is clear that each S(t) is a linear
contraction. The uniform convergence on bounded intervals implies t 7→
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S(t)x is continuous for each x ∈ H and the semigroup identity is easily

verified. Thus {S(t) : t ≥ 0} is a contraction semigroup on H. If x ∈ D(B)
the functions Sλ(·)Bλx converge uniformly to S(·)Bx and, hence, for h > 0
we may take the limit in the identity

Sλ(h)x − x =
∫ h
0
Sλ(t)Bλx dt

to obtain

S(h)x− x =
∫ h
0
S(t)Bxdt , x ∈ D(B) , h > 0 .

This implies that D+(S(0)x) = Bx for x ∈ D(B). If C denotes the generator
of {S(t) : t ≥ 0}, we have shown that D(B) ⊂ D(C) and Bx = Cx for all

x ∈ D(B). That is, C is an extension of B. But I − B is surjective and
I − C is injective, so it follows that D(B) = D(C).

Corollary 3.2 If −A is the generator of a contraction semigroup, then for
each u0 ∈ D(A) there is a unique solution u ∈ C1([0,∞),H) of (2.1) with
u(0) = u0.

Proof : This follows immediately from (3.1).

Theorem 3.3 If −A is the generator of a contraction semigroup, then for
each u0 ∈ D(A) and each f ∈ C1([0,∞),H) there is a unique u ∈ C1([0,∞),H)
such that u(0) = u0, u(t) ∈ D(A) for t ≥ 0, and

u′(t) +Au(t) = f(t) , t ≥ 0 . (3.4)

Proof : It suffices to show that the function

g(t) =

∫ t
0
S(t− τ)f(τ) dτ , t ≥ 0 ,

satisfies (3.4) and to note that g(0) = 0. Letting z = t− τ we have

(g(t + h)− g(t))/h =
∫ t
0
S(z)(f(t+ h− z)− f(t− z))h−1 dz

+h−1
∫ t+h
t

S(z)f(t+ h− z) dz
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so it follows that g′(t) exists and

g′(t) =

∫ t
0
S(z)f ′(t− z) dz + S(t)f(0) .

Furthermore we have

(g(t+ h)− g(t))/h = h−1
{∫ t+h
0

S(t+ h− τ)f(τ) dτ −
∫ t
0
S(t− τ)f(τ) dτ

}

= (S(h)− I)h−1
∫ t
0
S(t− τ)f(τ) dτ

+h−1
∫ t+h
t

S(t+ h− τ)f(τ) dτ . (3.5)

Since g′(t) exists and since the last term in (3.5) has a limit as h → 0+, it
follows from (3.5) that ∫ t

0
S(t− τ)f(τ) dτ ∈ D(A)

and that g satisfies (3.4).

4 Accretive Operators; two examples

We shall characterize the generators of contraction semigroups among the

negatives of accretive operators. In our applications to boundary value prob-

lems, the conditions of this characterization will be more easily verified than

those of Theorem 3.1. These applications will be illustrated by two examples;

the first contains a first order partial differential equation and the second is

the second order equation of heat conduction in one dimension. Much more

general examples of the latter type will be given in Section 7.

The two following results are elementary and will be used below and

later.

Lemma 4.1 Let B ∈ L(H) with ‖B‖ < 1. Then (I − B)−1 ∈ L(H) and is
given by the power series

∑∞
n=0B

n in L(H).

Lemma 4.2 Let A ∈ L(D(A),H) where D(A) ≤ H, and assume (µ−A)−1 ∈
L(H), with µ ∈ C. Then (λ − A)−1 ∈ L(H) for λ ∈ C, if and only if
[I − (µ− λ)(µ−A)−1]−1 ∈ L(H), and in that case we have

(λ−A)−1 = (µ−A)−1[I − (µ− λ)(µ−A)−1]−1 .



106 CHAPTER IV. FIRST ORDER EVOLUTION EQUATIONS

Proof : Let B ≡ I − (µ − λ)(µ− A)−1 and assume B−1 ∈ L(H). Then we
have

(λ−A)(µ−A)−1B−1 = [(λ− µ) + (µ−A)](µ−A)−1B−1

= [(λ− µ)(µ−A)−1 + I]B−1 = I ,

and

(µ−A)−1B−1(λ−A) = (µ−A)−1B−1[(λ− µ) + (µ−A)]

= (µ−A)−1B−1[B(µ−A)] = I , on D(A) .

The converse is proved similarly.

Suppose now that −A generates a contraction semigroup on H. From
Theorem 3.1 it follows that

‖(λ+A)x‖ ≥ λ‖x‖ , λ > 0 , x ∈ D(A) , (4.1)

and this is equivalent to

2Re(Ax, x)H ≥ −‖Ax‖
2/λ , λ > 0 , x ∈ D(A) .

But this shows A is accretive and, hence, that Theorem 3.1 implies the

necessity part of the following.

Theorem 4.3 The linear operator −A : D(A) → H is the generator of a

contraction semigroup on H if and only if D(A) is dense in H, A is accretive,

and λ+A is surjective for some λ > 0.

Proof : (Continued) It remains to verify that the above conditions on the

operator A imply that −A satisfies the conditions of Theorem 3.1. Since A
is accretive, the estimate (4.1) follows, and it remains to show that λ+A is

surjective for every λ > 0.

We are given (µ+ A)−1 ∈ L(H) for some µ > 0 and ‖µ(µ+ A)−1‖ ≤ 1.
For any λ ∈ C we have ‖(λ − µ)(µ + A)−1‖ ≤ |λ − µ|/µ, hence Lemma 4.1
shows that I − (λ − µ)(λ + A)−1 has an inverse which belongs to L(H) if
|λ − µ| < µ. But then Lemma 4.2 implies that (λ + A)−1 ∈ L(H). Thus,
(µ+ A)−1 ∈ L(H) with µ > 0 implies that (λ + A)−1 ∈ L(H) for all λ > 0
such that |λ−µ| < µ, i.e., 0 < λ < 2µ. The result then follows by induction.
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Example 1. Let H = L2(0, 1), c ∈ C, D(A) = {u ∈ H1(0, 1) : u(0) =

cu(1)}, and A = ∂. Then we have for u ∈ H1(0, 1)

2Re(Au, u)H =

∫ 1
0
(∂u · ū+ ∂u · u) = |u(1)|2 − |u(0)|2 .

Thus, A is accretive if (and only if) |c| ≤ 1, and we assume this hereafter.
Theorem 4.3 implies that −A generates a contraction semigroup on L2(0, 1)
if (and only if) I + A is surjective. But this follows from the solvability of

the problem

u+ ∂u = f , u(0) = cu(1)

for each f ∈ L2(0, 1); the solution is given by

u(x) =

∫ 1
0
G(x, s)f(s) ds ,

G(x, s) =

{
[e/(e − c)]e−(x−s) , 0 ≤ s < x ≤ 1 ,

[c/(e − c)]e−(x−s) , 0 ≤ x < s ≤ 1 .

Since−A generates a contraction semigroup, the initial boundary value prob-
lem

∂tu(x, t) + ∂xu(x, t) = 0 , 0 < x < 1 , t ≥ 0 (4.2)

u(0, t) = cu(1, t) (4.3)

u(x, 0) = u0(x) (4.4)

has a unique solution for each u0 ∈ D(A). This can be verified directly.

Since any solution of (4.2) is locally of the form

u(x, t) = F (x− t)

for some function F ; the equation (4.4) shows

u(x, t) = u0(x− t) , 0 ≤ t ≤ x ≤ 1 .

Then (4.3) gives u(0, t) = cu0(1− t), 0 ≤ t ≤ 1, so (4.2) then implies

u(x, t) = cu0(1 + x− t) , x ≤ t ≤ x+ 1 .

An easy induction gives the representation

u(x, t) = cnu0(n+ x− t) , n− 1 + x ≤ t ≤ n+ 1 , n ≥ 1 .
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The representation of the solution of (4.2)–(4.4) gives some additional

information on the solution. First, the Cauchy problem can be solved only if

u0 ∈ D(A), because u(·, t) ∈ D(A) implies u(·, t) is (absolutely) continuous
and this is possible only if u0 satisfies the boundary condition (4.3). Second,

the solution satisfies u(·, t) ∈ H1(0, 1) for every t ≥ 1 but will not belong
to H2(0, 1) unless ∂u0 ∈ D(A). That is, we do not in general have u(·, t) ∈
H2(0, 1), no matter how smooth the initial function u0 may be. Finally, the

representation above defines a solution of (4.2)–(4.4) on −∞ < t < ∞ by
allowing n to be any integer. Thus, the problem can be solved backwards

in time as well as forward. This is related to the fact that −A generates a
group of operators and we shall develop this notion in Section 5. Also see

Section V.3 and Chapter VI.

Example 2. For our second example, we take H = L2(0, 1) and let A =

−∂2 on D(A) = H10 (0, 1) ∩H
2(0, 1). An integration-by-parts gives

(Au, u)H =

∫ 1
0
|∂u|2 , u ∈ D(A) ,

so A is accretive, and the solvability of the boundary value problem

u− ∂2u = f , u(0) = 0 , u(1) = 0 , (4.5)

for f ∈ L2(0, 1) shows that I + A is surjective. (We may either solve (4.5)
directly by the classical variation-of-parameters method, thereby obtaining

the representation

u(x) =

∫ 1
0
G(x, s)f(s) ds ,

G(x, s) =




sinh(1− x) sinh(s)

sinh(1)
, 0 ≤ s < x ≤ 1

sinh(1− s) sinh(x)

sinh(1)
, 0 ≤ x < s ≤ 1

or observe that it is a special case of the boundary value problem of Chap-

ter III.) Since −A generates a contraction semigroup on L2(0, 1), it follows
from Corollary 3.2 that there is a unique solution of the initial-boundary

value problem

∂tu− ∂
2
xu = 0 , 0 < x < 1 , t ≥ 0

u(0, t) = 0 , u(1, t) = 0 , (4.6)

u(x, 0) = u0(x)
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for each initial function u0 ∈ D(A).
A representation of the solution of (4.6) can be obtained by the method

of separation-of-variables. This representation is the Fourier series (cf. (1.4))

u(x, t) = 2

∫ 1
0

∞∑
n=0

u0(s) sin(ns) sin(nx)e
−n2t ds (4.7)

and it gives information that is not available from Corollary 3.2. First, (4.7)

defines a solution of the Cauchy problem for every u0 ∈ L2(0, 1), not just for
those inD(A). Because of the factor e−n

2t in the series (4.7), every derivative

of the sequence of partial sums is convergent in L2(0, 1) whenever t > 0, and

one can thereby show that the solution is infinitely differentiable in the open

cylinder (0, 1)×(0,∞). Finally, the series will in general not converge if t < 0.
This occurs because of the exponential terms, and severe conditions must

be placed on the initial data u0 in order to obtain convergence at a point

where t < 0. Even when a solution exists on an interval [−T, 0] for some
T > 0, it will not depend continuously on the initial data (cf., Exercise 1.3).

The preceding situation is typical of Cauchy problems which are resolved

by analytic semigroups. Such Cauchy problems are (appropriately) called

parabolic and we shall discuss these notions in Sections 6 and 7 and again in

Chapters V and VI.

5 Generation of Groups; a wave equation

We are concerned here with a situation in which the evolution equation can

be solved on the whole real line R, not just on the half-line R+. This is the

case when −A generates a group of operators on H.

Definition. A unitary group on H is a set {G(t) : t ∈ R} of linear operators
on H which satisfy

G(t+ τ) = G(t) ·G(τ) , G(0) = I , t, τ ∈ R , (5.1)

G(·)x ∈ C(R,H) , x ∈ H , (5.2)

‖G(t)‖L(H) = 1 , t ∈ R . (5.3)

The generator of this unitary group is the operator B with domain

D(B) =
{
x ∈ H : lim

h→0
h−1(G(h) − I)x exists in H

}
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with values given by Bx = limh→0 h
−1(G(h) − I)x = D(G(0)x), the (two-

sided) derivative at 0 of G(t)x.

Equation (5.1) is the group condition, (5.2) is the condition of strong

continuity of the group, and (5.3) shows that each operator G(t), t ∈ R, is
an isometry. Note that (5.1) implies

G(t) ·G(−t) = I , t ∈ R ,

so each G(t) is a bijection of H onto H whose inverse is given by

G−1(t) = G(−t) , t ∈ R .

If B ∈ L(H), then (5.1) and (5.2) are satisfied by G(t) ≡ exp(tB), t ∈ R
(cf., Theorem 2.2). Also, it follows from (2.4) that B is the generator of

{G(t) : t ∈ R} and

D(‖G(t)x‖2) = 2Re(BG(t)x,G(t)x)H , x ∈ H , t ∈ R ,

hence, (5.3) is satisfied if and only if Re(Bx, x)H = 0 for all x ∈ H. These
remarks lead to the following.

Theorem 5.1 The linear operator B : D(B) → H is the generator of a

unitary group on H if and only if D(B) is dense in H and λ − B is a

bijection with ‖λ(λ−B)−1‖L(H) ≤ 1 for all λ ∈ R, λ 6= 0.

Proof : If B is the generator of the unitary group {G(t) : t ∈ R}, then
B is the generator of the contraction semigroup {G(t) : t ≥ 0} and −B is
the generator of the contraction semigroup {G(−t) : t ≥ 0}. Thus, both B
and −B satisfy the necessary conditions of Theorem 3.1, and this implies the
stated conditions on B. Conversely, if B generates the contraction semigroup

{S+(t) : t ≥ 0} and −B generates the contraction semigroup {S−(t) : t ≥ 0},
then these operators commute. For each x0 ∈ D(B) we have

D[S+(t)S−(−t)x0] = 0 , t ≥ 0 ,

so S+(t)S−(−t) = I, t ≥ 0. This shows that the family of operators defined
by

G(t) =

{
S+(t) , t ≥ 0

S−(−t) , t < 0



5. GENERATION OF GROUPS; A WAVE EQUATION 111

satisfies (5.1). The condition (5.2) is easy to check and (5.3) follows from

1 = ‖G(t) ·G(−t)‖ ≤ ‖G(t)‖ · ‖G(−t)‖ ≤ ‖G(t)‖ ≤ 1 .

Finally, it suffices to check that B is the generator of {G(t) : t ∈ R} and
then the result follows.

Corollary 5.2 The operator A is the generator of a unitary group on H if

and only if for each u0 ∈ D(A) there is a unique solution u ∈ C1(R,H) of
(2.1) with u(0) = u0 and ‖u(t)‖ = ‖u0‖, t ∈ R.

Proof : This is immediate from the proof of Theorem 5.1 and the results of

Theorem 2.1 and Corollary 3.2.

Corollary 5.3 If A generates a unitary group on H, then for each u0 ∈
D(A) and each f ∈ C1(R,H) there is a unique solution u ∈ C1(R,H) of

(3.3) and u(0) = u0. This solution is given by

u(t) = G(t)u0 +

∫ t
0
G(t− τ)f(τ) dτ , t ∈ R .

Finally, we obtain an analogue of Theorem 4.3 by noting that both +A

and −A are accretive exactly when A satisfies the following.

Definition. The linear operator A ∈ L(D(A),H) is said to be conservative
if

Re(Ax, x)H = 0 , x ∈ D(A) .

Corollary 5.4 The linear operator A : D(A) → H is the generator of a

unitary group on H if and only if D(A) is dense in H, A is conservative,

and λ+A is surjective for some λ > 0 and for some λ < 0.

Example. Take H = L2(0, 1) × L2(0, 1), D(A) = H10 (0, 1) ×H
1(0, 1), and

define

A[u, v] = [−i∂v, i∂u] , [u, v] ∈ D(A) .

Then we have

(A[u, v], [u, v])H = i

∫ 1
0
(∂v · ū− ∂u · v̄) , [u, v] ∈ D(A)



112 CHAPTER IV. FIRST ORDER EVOLUTION EQUATIONS

and an integration-by-parts gives

2Re(A[u, v], [u, v])H = i( ū(x)v(x) − u(x)v̄(x))
∣∣∣x=1
x=0
= 0 , (5.4)

since u(0) = u(1) = 0. Thus, A is a conservative operator. If λ 6= 0 and
[f1, f2] ∈ H, then

λ[u, v] +A[u, v] = [f1, f2] , [u, v] ∈ D(A)

is equivalent to the system

−∂2u+ λ2u = λf1 − i∂f2 , u ∈ H10 (0, 1) , (5.5)

−i∂u+ λv = f2 , v ∈ H1(0, 1) . (5.6)

But (5.5) has a unique solution u ∈ H10 (0, 1) by Theorem III.2.2 since λf1−
i∂f2 ∈ (H10 )

′ from Theorem II.2.2. Then (5.6) has a solution v ∈ L2(0, 1)
and it follows from (5.6) that

(iλ)∂v = λf1 − λ
2u ∈ L2(0, 1) ,

so v ∈ H1(0, 1). Thus λ+A is surjective for λ 6= 0.
Corollaries 5.3 and 5.4 imply that the Cauchy problem

Du(t) +Au(t) = [0, f(t)] , t ∈ R ,

u(0) = [u0, v0]
(5.7)

is well-posed for u0 ∈ H10 (0, 1), v0 ∈ H
1(0, 1), and f ∈ C1(R,H). Denoting

by u(t), v(t), the components of u(t), i.e., u(t) ≡ [u(t), v(t)], it follows that
u ∈ C2(R, L2(0, 1)) satisfies the wave equation

∂2t u(x, t)− ∂
2
xu(x, t) = f(x, t) , 0 < x < 1 , t ∈ R ,

and the initial-boundary conditions

u(0, t) = u(1, t) = 0

u(x, 0) = u0(x) , ∂tu(x, 0) = −iv0(x) .

See Section VI.5 for additional examples of this type.
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6 Analytic Semigroups

We shall consider the Cauchy problem for the equation (2.1) in the spe-

cial case in which A is a model of an elliptic boundary value problem (cf.

Corollary 3.2). Then (2.1) is a corresponding abstract parabolic equation

for which Example 2 of Section IV.4 was typical. We shall first extend the

definition of (λ + A)−1 to a sector properly containing the right half of the

complex plane C and then obtain an integral representation for an analytic

continuation of the semigroup generated by −A.

Theorem 6.1 Let V and H be Hilbert spaces for which the identity V ↪→ H

is continuous. Let a : V ×V → C be continuous, sesquilinear, and V -elliptic.
In particular

|a(u, v)| ≤ K‖u‖ ‖v‖ , u, v ∈ V ,

Re a(u, u) ≥ c‖u‖2 , u ∈ V ,

where 0 < c ≤ K. Define

D(A) = {u ∈ V : |a(u, v)| ≤ Ku|v|H , v ∈ V } ,

where Ku depends on u, and let A ∈ L(D(A),H) be given by

a(u, v) = (Au, v)H , u ∈ D(A) , v ∈ V .

Then D(A) is dense in H and there is a θ0, 0 < θ0 < π/4, such that for each

λ ∈ S(π/2+ θ0) ≡ {z ∈ C : | arg(z)| < π/2+ θ0} we have (λ+A)−1 ∈ L(H).
For each θ, 0 < θ < θ0, there is an Mθ such that

‖λ(λ +A)−1‖L(H) ≤Mθ , λ ∈ S(θ + π/2) . (6.1)

Proof : Suppose λ ∈ C with λ = σ + iτ , σ ≥ 0. Since the form u, v 7→
a(u, v)+λ(u, v)H is V -elliptic it follows that λ+A : D(A)→ H is surjective.

(This follows directly from the discussion in Section III.2.2; note that A is

the restriction of A to D(A) = D.) Furthermore we have the estimate

σ|u|2H ≤ Re{a(u, u) + λ(u, u)H} ≤ |(A+ λ)u|H |u|H , u ∈ D(A) ,

so it follows that

‖σ(λ+A)−1‖ ≤ 1 , Re(λ) = σ ≥ 0 . (6.2)
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From the triangle inequality we obtain

|τ | |u|2H −K‖u‖
2
V ≤ | Im((λ+A)u, u)H | , u ∈ D(A) , (6.3)

where τ = Im(λ). We show that this implies that either

| Im((λ+A)u, u)H | ≥ (|τ |/2)|u|
2
H (6.4)

or that

Re((λ+A)u, u)H ≥ (c/2K)|τ | |u|
2
H . (6.5)

If (6.4) does not hold, then substitution of its negation into (6.3) gives

(|τ |/2)‖u‖2H ≤ K‖u‖
2
V . But we have

Re((λ+A)u, u)H ≥ c‖u‖
2
V

so (6.5) follows. Since one of (6.4) or (6.5) holds, it follows that

|((λ +A)u, u)H | ≥ (c/2K)|τ | |u|
2
H , u ∈ D(A) ,

and this gives the estimate

‖τ(λ+A)−1‖ ≤ 2K/c , λ = σ + iτ , σ ≥ 0 . (6.6)

Now let λ = σ + iτ ∈ C with τ 6= 0 and set µ = iτ . From (6.6) we have

‖(µ+A)−1‖ ≤ 2K/c|µ| ,

so Lemma 4.1 shows that

‖[I − (λ− µ)(µ+A)−1]−1‖ ≤ [1− |λ− µ|2K/c|µ|]−1

whenever |σ|/|τ | = (λ− µ)/|µ| < c/2K.

From Lemma 4.2 we then obtain (λ+A)−1 ∈ L(H) and

‖λ(λ+A)−1‖ ≤ (2K/c)(|σ|/|τ | + 1)(1 − 2K|σ|/c|τ |)−1 ,

λ = σ + iτ , |σ|/|τ | < c/2K . (6.7)

Theorem 6.1 now follows from (6.2) and (6.7) with θ0 = tan
−1(c/2K).

From (6.2) it is clear that the operator −A is the generator of a contrac-
tion semigroup {S(t) : t ≥ 0} on H. We shall obtain an analytic extension
of this semigroup.
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Theorem 6.2 Let A ∈ L(D(A),H) be the operator of Theorem 6.1. Then
there is a family of operators {T (t) : t ∈ S(θ0)} satisfying

(a) T (t+ τ) = T (t) · T (τ) , t, τ ∈ S(θ0) ,

and for x, y ∈ H, the function t 7→ (T (t)x, y)H is analytic on S(θ0);

(b) for t ∈ S(θ0), T (t) ∈ L(H,D(A)) and

−
dT (t)

dt
= A · T (t) ∈ L(H) ;

(c) if 0 < ε < θ0, then for some constant C(ε),

‖T (t)‖ ≤ C(ε)‖tAT (t)‖ ≤ C(ε) , t ∈ S(θ0 − ε) ,

and for x ∈ H, T (t)→ x as t→ 0, t ∈ S(θ0 − ε).

Proof : Let θ be chosen with θ0/2 < θ < θ0 and let C be the path consisting

of the two rays | arg(z)| = π/2 + θ, |z| ≥ 1, and the semi-circle {eit : |t| ≤
θ + π/2} oriented so as to run from ∞ · e−i(π/2+θ) to ∞ · ei(π/2+θ).
If t ∈ S(2θ − θ0), then we have

| arg(λt)| ≥ | arg λ| − | arg t| ≥ π/2 + (θ0 − θ) , λ ∈ C , |λ| ≥ 1 ,

so we obtain the estimate

Re(λt) ≤ − sin(θ0 − θ)|λt| , t ∈ S(2θ − θ0) .

This shows that the (improper) integral

T (t) ≡
1

2πi

∫
C
eλt(λ+A)−1 dλ , t ∈ S(2θ − θ0) (6.8)

exists and is absolutely convergent in L(H). If x, y ∈ H then

(T (t)x, y)H =
1

2πi

∫
C
eλt((λ+A)−1x, y)H dλ

is analytic in t. If C ′ is a curve obtained by translating C to the right, then

from Cauchy’s theorem we obtain

(T (t)x, y)H =
1

2πi

∫
C′
eλ
′t((λ′ +A)−1x, y)H dλ

′ .
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Hence, we have

T (t) =
1

2πi

∫
C′
eλ
′t(λ′ +A)−1 dλ′ ,

since x, y are arbitrary and the integral is absolutely convergent in L(H).
The semigroup identity follows from the calculation

T (t)T (τ) =

(
1

2πi

)2 ∫
C′

∫
C
eλ
′τ+λt(λ′ +A)−1(λ+A)−1 dλ dλ′

=

(
1

2πi

)2 [∫
C′
eλ
′τ (λ′ +A)−1

{∫
C
eλt(λ− λ′)−1 dλ

}
dλ′

−
∫
C
eλt(λ+A)−1

{∫
C′
eλ
′τ (λ− λ′)−1 dλ′

}
dλ

]

=
1

2πi

∫
C
eλ(t+τ)(λ+A)−1 dλ = T (t+ τ) ,

where we have used Fubini’s theorem and the identities

(λ+A)−1(λ′ +A)−1 = (λ− λ′)−1[(λ′ +A)−1 − (λ+A)−1] ,∫
C
eλt(λ− λ′)−1 dλ = 0 ,

∫
C′
eλ
′τ (λ− λ′)−1dλ′ = −2πieλτ .

Since θ ∈ (θ0/2, θ0) is arbitrary, (a) follows from above.
Similarly, we may differentiate (6.8) and obtain

dT (t)

dt
=
1

2πi

∫
C
eλtλ(λ+A)−1 dλ (6.9)

=
1

2πi

∫
C
eλt[I −A(λ+A)−1] dλ

=
−1

2πi

∫
C
eλtA(λ+A)−1 dλ .

Since A is closed, this implies that for t ∈ S(2θ − θ0), θ0/2 < θ < θ0, we

have

−
dT (t)

dt
= AT (t) ∈ L(H)

so (b) follows.
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We next consider (c). Letting θ = θ0 − ε/2, we obtain from (6.1) and
(6.8) the estimate

‖T (t)‖ ≤
1

2π

∫
C
|eλt| · ‖(λ+A)−1‖ d|λ|

≤
Mθ
2π

∫
C
eReλt

d|λ|

|λ|
.

Since Reλt ≤ − sin(ε/2) · |λt| in this integral, the last quantity depends only
on ε. The second estimate in (c) follows similarly.

To study the behavior of T (t) for t ∈ S(θ0 − ε) close to 0, we first note
that if x ∈ D(A)

T (t)x− x =
1

2πi

∫
C
eλt((λ+A)−1 − λ−1)x dλ

=
−1

2πi

∫
C
eλt(λ+A)−1Axdλ/λ ,

and, hence, we obtain the estimate

‖T (t)x− x‖ ≤ |t|
Mθ
2π

{∫
C
e− sin(ε/2)|λt|

d|tλ|

|tλ|2

}
‖Ax‖ .

Thus, T (t)x → x as t → 0 with t ∈ S(θ0 − ε). Since D(A) is dense and
{T (t) : t ∈ S(θ0 − ε)} is uniformly bounded, this proves (c).

Definition. A family of operators {T (t) : t ∈ S(θ0) ∪ {0}} which satisfies
the properties of Theorem 6.2 and T (0) = I is called an analytic semigroup.

Theorem 6.3 Let A be the operator of Theorem 6.1, {T (t) : t ∈ S(θ0)} be
given by (6.8), and T (0) = I. Then the collection of operators {T (t) : t ≥ 0}
is the contraction semigroup generated by −A.

Proof : Let u0 ∈ H and define u(t) = T (t)u0, t ≥ 0. Theorem 6.2 shows
that u is a solution of the Cauchy problem (2.1) with u(0) = u0. Theorem

2.1 implies that {T (t) : t ≥ 0} is a contraction semigroup whose generator
is an extension of −A. But I +A is surjective, so the result follows.

Corollary 6.4 If A is the operator of Theorem 6.1, then for every u0 ∈ H
there is a unique solution u ∈ C([0,∞),H) ∩ C∞((0,∞),H) of (2.1) with
u(0) = u0. For each t > 0, u(t) ∈ D(Ap) for every p ≥ 1.
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There are some important differences between Corollary 6.4 and its coun-

terpart, Corollary 3.2. In particular we note that Corollary 6.4 solves the

Cauchy problem for all initial data in H, while Corollary 3.2 is appropriate

only for initial data in D(A). Also, the infinite differentiability of the so-

lution from Corollary 6.4 and the consequential inclusion in the domain of

every power of A at each t > 0 are properties not generally true in the sit-

uation of Corollary 3.2. These regularity properties are typical of parabolic

problems (cf., Section 7).

Theorem 6.5 If A is the operator of Theorem 6.1, then for each u0 ∈ H
and each Hölder continuous f : [0,∞)→ H:

‖f(t)− f(τ)‖ ≤ K(t− τ)α , 0 ≤ τ ≤ t ,

where K and α are constant, 0 < α ≤ 1, there is a unique u ∈ C([0,∞),H)∩
C1((0,∞),H) such that u(0) = u0, u(t) ∈ D(A) for t > 0, and

u′(t) +Au(t) = f(t) , t > 0 .

Proof : It suffices to show that the function

g(t) =

∫ t
0
T (t− τ)f(τ) dτ , t ≥ 0 ,

is a solution of the above with u0 = 0. Note first that for t > 0

g(t) =

∫ t
0
T (t− τ)(f(τ)− f(t)) dτ +

∫ t
0
T (t− τ) dτ · f(t) .

from Theorem 6.2(c) and the Hölder continuity of f we have

‖A · T (t− τ)(f(τ)− f(t))‖ ≤ C(θ0)K|t− τ |
α−1 ,

and since A is closed we have g(t) ∈ D(A) and

Ag(t) = A

∫ t
0
T (t− τ)(f(τ)− f(t)) dτ + (I − T (t)) · f(t) .

The result now follows from the computation (3.5) in the proof of Theorem

3.3.
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7 Parabolic Equations

We were led to consider the abstract Cauchy problem in a Hilbert space H

u′(t) +Au(t) = f(t) , t > 0 ; u(0) = u0 (7.1)

by an initial-boundary value problem for the parabolic partial differential

equation of heat conduction. Some examples of (7.1) will be given in which

A is an operator constructed from an abstract boundary value problem.

In these examples A will be a linear unbounded operator in the Hilbert

space L2(G) of equivalence classes of functions on the domain G, so the

construction of a representative U(·, t) of u(t) is non-trivial. In particular,
if such a representative is chosen arbitrarily, the functions t 7→ U(x, t) need

not even be measurable for a given x ∈ G.
We begin by constructing a measurable representative U(·, ·) of a solution

u(·) of (7.1) and then make precise the correspondence between the vector-
valued derivative u′(t) and the partial derivative ∂tU(·, t).

Theorem 7.1 Let I = [a, b], a closed interval in R and G be an open (or

measurable) set in Rn.

(a) If u ∈ C(I, L2(G)), then there is a measurable function U : I → R such
that

u(t) = U(·, t) , t ∈ I . (7.2)

(b) If u ∈ C1(I, L2(G)), U and V are measurable real-valued functions on
G× I for which (7.2) holds for a.e. t ∈ I and

u′(t) = V (·, t) , a.e. t ∈ I ,

then V = ∂tU in D∗(G× I).

Proof : (a) For each t ∈ I, let U0(·, t) be a representative of u(t). For each
integer n ≥ 1, let a = t0 < t1 < · · · < tn = b be the uniform partition of I

and define

Un(x, t) =

{
U0(x, tk) , tk ≤ t < tk+1 , k = 0, 1, . . . , n− 1

U0(x, t) , t = tn .

Then Un : G× I → R is measurable and

lim
n→∞

‖Un(·, t)− u(t)‖L2(G) = 0 ,
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uniformly for t ∈ I. This implies

lim
m,n→∞

∫
I

∫
G
|Um − Un|

2 dx dt = 0

and the completeness of L2(G× I) gives a U ∈ L2(G× I) for which

lim
n→∞

∫
I

∫
G
|U − Un|

2 dx dt = 0 .

It follows from the above (and the triangle inequality)∫
I
‖u(t)− U(·, t)‖2L2(G) dt = 0

so u(t) = U(·, t) for a.e. t ∈ I. The desired result follows by changing u(t)
to U0(·, t) on a set in I of zero measure.
(b) Let Φ ∈ C∞0 (G × I). Then ϕ(t) ≡ Φ(·, t) defines ϕ ∈ C

∞
0 (I, L

2(G)).

But for any ϕ ∈ C∞0 (I, L
2(G)) and u as given

−
∫
I
(u(t), ϕ′(t))L2(G) dt =

∫
I
(u′(t), ϕ(t))L2(G) dt ,

and thus we obtain

−
∫
I

∫
G
U(x, t)DtΦ(x, t) dx dt =

∫
I

∫
G
V (x, t)Φ(x, t) dx dt .

This holds for all Φ ∈ C∞0 (G× I), so the stated result holds.
We next consider the construction of the operator A appearing in (7.1)

from the abstract boundary value problem of Section III.3. Assume we are

given Hilbert spaces V ⊂ H, and B with a linear surjection γ : V → B

with kernel V0. Assume γ factors into an isomorphism of V/V0 onto B, the

injection V ↪→ H is continuous, and V0 is dense in H, and H is identified

with H ′. (Thus, we obtain the continuous injections V0 ↪→ H ↪→ V ′0 and

V ↪→ H ↪→ V ′.) (Cf. Section III.2.3 for a typical example.)

Suppose we are given a continuous sesquilinear form a1 : V ×V → K and
define the formal operator A1 ∈ L(V, V ′0) by

A1u(v) = a1(u, v) , u ∈ V , v ∈ V0 .

Let D0 ≡ {u ∈ V : A1(u) ∈ H} and denote by ∂1 ∈ L(D0, B′) the abstract
Green’s operator constructed in Theorem III.2.3. Thus

a1(u, v) − (A1u, v)H = ∂1u(γ(v)) , u ∈ D0 , v ∈ V .
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Suppose we are also given a continuous sesquilinear form a2 : B × B → K
and define A2 ∈ L(B,B′) by

A2u(v) = a2(u, v) , u, v ∈ B .

Then we define a continuous sesquilinear form on V by

a(u, v) ≡ a1(u, v) + a2(γ(u), γ(v)) , u, v ∈ V .

Consider the triple {a(·, ·), V,H} above. From these we construct as in
Section 6 an unbounded operator on H whose domain D(A) is the set of all

u ∈ V such that there is an F ∈ H for which

a(u, v) = (F, v)H , v ∈ V .

Then define A ∈ L(D(A),H) by Au = F . (Thus, A is the operator in

Theorem 6.1.) From Corollary III.3.2 we can obtain the following result.

Theorem 7.2 Let the spaces, forms and operators be as given above. Then

D(A) ⊂ D0, A = A1|D(A), and u ∈ D(A) if and only if u ∈ V , A1u ∈ H,
and ∂1u+A2(γ(u)) = 0 in B′.

(We leave a direct proof as an exercise.) We obtain the existence of a weak so-

lution of a mixed initial-boundary value problem for a large class of parabolic

boundary value problems from Theorems 6.5, 7.1 and 7.2.

Theorem 7.3 Suppose we are given an abstract boundary value problem

as above (i.e., Hilbert spaces V,H,B, continuous sesquilinear forms a1(·, ·),
a2(·, ·), and operators γ, ∂1, A1 and A2) and that H = L2(G) where G is an
open set in Rn. Assume that for some c > 0

Re
{
a1(v, v) + a2(γ(v), γ(v))

}
≥ c‖v‖2V , v ∈ V .

Let U0 ∈ L2(G) and a measurable F : G × [0, T ] → K be given for which

F (·, t) ∈ L2(G) for all t ∈ [0, T ] and for some K ∈ L2(G) and α, 0 < α ≤ 1,
we have

|F (x, t)− F (x, τ)| ≤ K(x)|t− τ |α , a.e. x ∈ G , t ∈ [0, T ] .

Then there exists a U ∈ L2(G× [0, T ]) such that for all t > 0

U(·, t) ∈ V , ∂tU(·, t) +A1U(·, t) = F (·, t) in L2(G) ,

and ∂1U(·, t) +A2(γU(·, t)) = 0 in B′ ,

}
(7.3)
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and

lim
t→0

∫
G
|U(x, t) − U0(x)|

2 dx = 0 .

We shall give some examples which illustrate particular cases of Theorem

7.3. Each of the following corresponds to an elliptic boundary value problem

in Section III.4, and we refer to that section for details on the computations.

7.1

Let the open set G in Rn, coefficients aij, aj ∈ L∞(G), and sesquilinear

form a(·, ·) = a1(·, ·), and spaces H and B be given as in Section III.4.1.
Let U0 ∈ L2(G) be given together with a function F : G × [0, T ] → K as in
Theorem 7.3. If we choose

V = {v ∈ H1(G) : γ0v(s) = 0 , a.e. s ∈ Γ}

where Γ is a prescribed subset of ∂G, then a solution U of (7.3) satisfies

∂tU −
n∑
i,j=1

∂j(aij∂iU) +
n∑
j=0

aj∂jU = F in L2(G× [0, T ]) ,

U(s, t) = 0 , t > 0 , a.e. s ∈ Γ , and

∂U(s, t)

∂νA
= 0 , t > 0 , a.e. s ∈ ∂G ∼ Γ ,




(7.4)

where
∂U

∂νA
≡

n∑
i=1

∂iU

( n∑
j=1

aijνj

)

denotes the derivative in the direction determined by {aij} and the unit
outward normal ν on ∂G. The second equation in (7.4) is called the boundary

condition of first type and the third equation is known as the boundary

condition of second type.

7.2

Let V be a closed subspace of H1(G) to be chosen below, H = L2(G),

V0 = H
1
0 (G) and define

a1(u, v) =

∫
G
∇u · ∇v , u, v ∈ V .
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Then A1 = −∆n and ∂1 is an extension of the normal derivative ∂/∂ν on
∂G. Let α ∈ L∞(∂G) and define

a2(ϕ,ψ) =

∫
∂G
α(s)ϕ(s)ψ(s) ds , ϕ, ψ ∈ L2(∂G) .

(Note that B ⊂ L2(∂G) ⊂ B′ and A2ϕ = α · ϕ.) Let U0 ∈ L2(G) and F be
given as in Theorem 7.3. Then (exercise) Theorem 7.3 asserts the existence

of a solution of (7.3). If we choose V = H1(G), this solution satisfies

∂tU −∆nU = F in L2(G× [0, T ]) ,

∂U(s, t)

∂ν
+ α(s)U(s, t) = 0 , t > 0 , a.e. s ∈ ∂G


 (7.5)

If we choose V = {v ∈ H1(G) : γv = constant}, then U satisfies

∂tU −∆nU = F in L2(G× [0, T ]) ,

U(s, t) = u0(t) , t > 0 , a.e. s ∈ ∂G ,∫
∂G

∂U(s, t)

∂ν
ds+

∫
∂G
α(s) ds · u0(t) = 0 , t > 0 .




(7.6)

The boundary conditions in (7.5) and (7.6) are known as the third type and

fourth type, respectively. Other types of problems can be solved similarly,

and we leave these as exercises. In particular, each of the examples from

Section III.4 has a counterpart here.

Our final objective of this chapter is to demonstrate that the weak solu-

tions of certain of the preceding mixed initial-boundary value problems are

necessarily strong or classical solutions. Specifically, we shall show that the

weak solution is smooth for problems with smooth or regular data.

Consider the problem (7.4) above with F ≡ 0. The solution u(·) of the
abstract problem is given by the semigroup constructed in Theorem 6.2 as

u(t) = T (t)u0. (We are assuming that a(·, ·) is V -elliptic.) Since T (t) ∈
L(H,D(A)) and AT (t) ∈ L(H) for all t > 0, we obtain from the identity
(T (t/m))m = T (t) that T (t) ∈ L(H,D(Am)) for integer m ≥ 1. This is an
abstract regularity result; generally, for parabolic problems D(Am) consists

of increasingly smooth functions as m gets large. Assume also that a(·, ·) is
k-regular over V (cf. Section 6.4) for some integer k ≥ 0. Then A−1 maps
Hs(G) into H2+s(G) for 0 ≤ s ≤ k, so D(Am) ⊂ H2+k whenever 2m ≥ 2+k.
Thus, we have the spatial regularity result that u(t) ∈ H2+k(G) for all t > 0
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when a(·, ·) is V -elliptic and k-regular. One can clearly use the imbedding
results of Section II.4 to show U(·, t) ∈ Cpu(G) when 2(2 + k) > 2p+ n.

We consider the regularity in time of the solution of the abstract problem

corresponding to (7.4). First note that Am : D(Am) → H defines a scalar

product on D(Am) for which D(Am) is a Hilbert space. Fix t > τ > 0 and

consider the identity

(1/h)(u(t + h)− u(t)) = A−m[(1/h)(T (t + h− τ)− T (t− τ))Amu(t)]

for 0 < |h| < t − τ . Since Amu(τ) ∈ H, the term in brackets converges in
H, hence u′(t) ∈ D(Am) for all t > 0 and integer m. This is an abstract

temporal regularity result. Assume now that a(·, ·) is k-regular over V .
The preceding remarks show that the above difference quotients converge to

u′(t) = ∂tU(·, t) in the space H2+k(G). The convergence holds in Cpu(G) if
2(2 + k) > 2p + n as before, and the solution U is a classical solution for

p ≥ 2. Thus, (7.4) has a classical solution when the above hypotheses hold
for some k > n/2.

Exercises

1.1. Supply all details in Section 1.

1.2. Develop analogous series representations for the solution of (1.5) and

(1.3) with the boundary conditions

(a) ux(0, t) = ux(π, t) = 0 of Neumann type (cf. Section III.7.7),

(b) u(0, t) = u(π, t), ux(0, t) = ux(π, t) of periodic type (cf. Section

III.7.8).

1.3. Find the solution of the backward heat equation

ut + uxx = 0 , 0 < x < π , t > 0

subject to u(0, t) = u(π, t) = 0 and u(x, 0) = sin(nx)/n. Discuss the

dependence of the solution on the initial data u(x, 0).

2.1. If A is given as in Section III.7.C, obtain the eigenfunction series rep-

resentation for the solution of (2.1).
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2.2. Show that if u, v ∈ C1((0, T ),H), then

Dt(u(t), v(t))H = (u
′(t), v(t))H + (u(t), v

′(t))H , 0 < t < T .

2.3. Show (2.3) holds for all x ∈ H.

2.4. Verify (2.5).

3.1. If {S(t)} is a contraction semigroup with generator B, show that {e−λtS(t)}
is a contraction semigroup for λ > 0 and that its generator is B − λ.

3.2. Verify the limits as t→∞ in the two identities leading up to Theorem
3.1.

3.3. Show B(λ−B)−1 = (λ−B)−1B for B as in Theorem 3.1.

3.4. Show that Theorem 3.3 holds if we replace the given hypothesis on f

by f : R+ → D(A) and Af(·) ∈ C([0,∞),H).

4.1. Prove Lemma 4.1.

4.2. Show that the hypothesis in Theorem 4.3 that D(A) is dense in H is

unnecessary. Hint: If x ∈ D(A)⊥, then x = (λ+A)z for some z ∈ D(A)
and z = θ.

4.3. Show that (4.1) follows from A being accretive.

4.4. For the operator A in Example 4(a), find the kernel and range of λ+A

for each λ ≥ 0 and c with |c| ≤ 1.

4.5. Solve (4.5) by the methods of Chapter III.

4.6. Solve (4.5) and (4.6) when the Dirichlet conditions are replaced by Neu-

mann conditions. Repeat for other boundary conditions.

5.1. Show that operators {S+(t)} and {S−(t)} commute in the proof of The-
orem 5.1.

5.2. Verify all details in the Example of Section 5.

5.3. If A is self-adjoint on the complex Hilbert space H, show iA generates

a unitary group. Discuss the Cauchy problem for the Schrodinger

equation ut = i∆nu on R
n × R.
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5.4. Formulate and discuss some well-posed problems for the equation ∂tu+

∂3xu = 0 for 0 < x < 1 and t > 0.

6.1. Verify all the estimates which lead to the convergence of the integral

(6.8).

6.2. Finish the proof of Theorem 6.5.

6.3. Show that f(t) ≡
∫ t
0 F (s) ds is Hölder continuous if F (·) ∈ L

p(0, T ;H)

for some p > 1.

6.4. Show that for 0 < ε < θ0 and integer n ≥ 1, there is a constant cε,n for
which ‖tnAnT (t)‖ ≤ cε,n for t ∈ S(θ0 − ε) in the situation of Theorem
6.2.

7.1. In the proof of Theorem 7.1(a), verify limn→∞ ‖Un(·, t)−u(t)‖ = 0. For
Theorem 7.1(b), show ϕ ∈ C∞0 (I, L

2(G)).

7.2. Give a proof of Theorem 7.2 without appealing to the results of Corol-

lary III.3.2.

7.3. Show that the change of variable u(t) = eλtv(t) in (7.1) gives a cor-

responding equation with A replaced by A + λ. Verify that (7.4) is

well-posed if a1(·, ·) is strongly elliptic.

7.4. Show that (7.3) is equivalent to (7.5) for an appropriate choice of V .

Show how to solve (7.5) with a non-homogeneous boundary condition.

7.5. Show that (7.3) is equivalent to (7.6) for an appropriate choice of V .

Show how to solve (7.6) with a non-homogeneous boundary condition.

If G is an interval, show periodic boundary conditions are obtained.

7.6. Solve initial-boundary value problems corresponding to each of exam-

ples in Sections 4.3, 4.4, and 4.5 of Chapter III.

7.7. Show that u(t) = T (t)u0 converges to u0 in D(A
m) if and only if u0 ∈

D(Am). Discuss the corresponding limit limt→0+ U(·, t) in (7.4).



Chapter V

Implicit Evolution Equations

1 Introduction

We shall be concerned with evolution equations in which the time-derivative

of the solution is not given explicitly. This occurs, for example, in problems

containing the pseudoparabolic equation

∂tu(x, t)− a∂
2
x∂tu(x, t)− ∂

2
xu(x, t) = f(x, t) (1.1)

where the constant a is non-zero. However, (1.1) can be reduced to the stan-

dard evolution equation (3.4) in an appropriate space because the operator

I − a∂2x which acts on ∂tu(x, t) can be inverted. Thus, (1.1) is an example
of a regular equation; we study such problems in Section 2. Section 3 is

concerned with those regular equations of a special form suggested by (1.1).

Another example which motivates some of our discussion is the partial

differential equation

m(x)∂tu(x, t)− ∂
2
xu(x, t) = f(x, t) (1.2)

where the coefficient is non-negative at each point. The equation (1.2) is

parabolic at those points where m(x) > 0 and elliptic where m(x) = 0.

For such an equation of mixed type some care must be taken in order to

prescribe a well posed problem. If m(x) > 0 almost everywhere, then (1.2)

is a model of a regular evolution equation. Otherwise, it is a model of a

degenerate equation. We study the Cauchy problem for degenerate equations

in Section 4 and in Section 5 give more examples of this type.

127
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2 Regular Equations

Let Vm be a Hilbert space with scalar-product (·, ·)m and denote the corre-
sponding Riesz map from Vm onto the dual V

′
m byM. That is,

Mx(y) = (x, y)m , x, y ∈ Vm .

Let D be a subspace of Vm and L : D → V ′m a linear map. If u0 ∈ Vm
and f ∈ C((0,∞), V ′m) are given, we consider the problem of finding u ∈
C([0,∞), Vm) ∩ C1((0,∞), Vm) such that

Mu′(t) + Lu(t) = f(t) , t > 0 , (2.1)

and u(0) = u0.

Note that (2.1) is a generalization of the evolution equation IV(2.1). If

we identify Vm with V
′
m by the Riesz mapM (i.e., take M = I) then (2.1)

reduces to IV(2.1). In the general situation we shall solve (2.1) by reducing

it to a Cauchy problem equivalent to IV(2.1).

We first obtain our a-priori estimate for a solution u(·) of (2.1), with
f = 0 for simplicity. For such a solution we have

Dt(u(t), u(t))m = −2ReLu(t)(u(t))

and this suggests consideration of the following.

Definition. The linear operator L : D → V ′m with D ≤ Vm is monotone (or
non-negative) if

ReLx(x) ≥ 0 , x ∈ D .

We call L strictly monotone (or positive) if

ReLx(x) > 0 , x ∈ D , x 6= 0 .

Our computation above shows there is at most one solution of the Cauchy

problem for (2.1) whenever L is monotone, and it suggests that Vm is the

correct space in which to seek well-posedness results for (2.1).

To obtain an (explicit) evolution equation in Vm which is equivalent to

(2.1), we need only operate on (2.1) with the inverse of the isomorphismM,
and this gives

u′(t) +M−1 ◦ Lu(t) =M−1f(t) , t > 0 . (2.2)
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This suggests we define A =M−1 ◦L with domain D(A) = D, for then (2.2)
is equivalent to IV(2.1). Furthermore, sinceM is the Riesz map determined
by the scalar-product (·, ·)m, we have

(Ax, y)m = Lx(y) , x ∈ D , y ∈ Vm . (2.3)

This shows that L is monotone if and only if A is accretive. Thus, it follows

from Theorem IV.4.3 that −A generates a contraction semigroup on Vm if
and only if L is monotone and I+A is surjective. SinceM(I+A) =M+L,
we obtain the following result from Theorem IV.3.3.

Theorem 2.1 Let M be the Riesz map of the Hilbert space Vm with scalar

product (·, ·)m and let L be linear from the subspace D of Vm into V ′m. As-
sume that L is monotone and M + L : D → V ′m is surjective. Then, for
every f ∈ C1([0,∞), V ′m) and u0 ∈ D there is a unique solution u(·) of (2.1)
with u(0) = u0.

In order to obtain an analogue of the situation in Section IV.6, we suppose

L is obtained from a continuous sesquilinear form. In particular, let V be

a Hilbert space for which V is a dense subset of Vm and the injection is

continuous; hence, we can identify V ′m ⊂ V
′. Let `(·, ·) be continuous and

sesquilinear on V and define the corresponding linear map L : V → V ′ by

Lx(y) = `(x, y) , x, y ∈ V .

Define D ≡ {x ∈ V : Lx ∈ V ′m} and L = L|D. Then (2.3) shows that

`(x, y) = (Ax, y)m , x ∈ D , y ∈ V ,

so it follows that A is the operator determined by the triple {`(·, ·), V, Vm}
as in Theorem IV.6.1. Thus, from Theorems IV.6.3 and IV.6.5 we obtain

the following.

Theorem 2.2 LetM be the Riesz map of the Hilbert space Vm with scalar-

product (·, ·)m. Let `(·, ·) be a continuous, sesquilinear and elliptic form on
the Hilbert space V , which is assumed dense and continuously imbedded in

Vm, and denote the corresponding isomorphism of V onto V
′ by L. Then

for every Hölder continuous f : [0,∞)→ V ′m and u0 ∈ Vm, there is a unique
u ∈ C([0,∞), Vm) ∩ C1((0,∞), Vm) such that u(0) = u0, Lu(t) ∈ V ′m for
t > 0, and

Mu′(t) + Lu(t) = f(t) , t > 0 . (2.4)
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We give four elementary examples to suggest the types of initial-boundary

value problems to which the above results can be applied. In the first three

of these examples we let Vm = H
1
0 (0, 1) with the scalar-product

(u, v)m =

∫ 1
0
(uv̄ + a∂u∂v̄ ) ,

where a > 0.

2.1

Let D = {u ∈ H2(0, 1) ∩H10 (0, 1) : u
′(0) = cu′(1)} where |c| ≤ 1, and define

LU = −∂3u. Then we have Lu(ϕ) = (∂2u, ∂ϕ) for ϕ ∈ H10 (0, 1), and (cf.,
Section IV.4)

2ReLu(u) = |u′(1)|2 − |u′(0)|2 ≥ 0 , u ∈ D .

Thus, Theorem 2.1 shows that the initial-boundary value problem

(∂t − a∂
2
x∂t)U(x, t) − ∂

3
xU(x, t) = 0 , 0 < x < 1 , t ≥ 0 ,

U(0, t) = U(1, t) = 0 , ∂xU(0, t) = c∂xU(1, t) , t ≥ 0 ,

U(x, 0) = U0(x)

has a unique solution whenever U0 ∈ D.

2.2

Let V = H20 (0, 1) and define

`(u, v) =

∫ 1
0
∂2u · ∂2v̄ , u, v ∈ V .

Then D = H20 (0, 1) ∩ H
3(0, 1) and Lu = ∂4u, u ∈ D. Theorem 2.2 then

asserts the existence and uniqueness of a solution of the problem

(∂t − a∂
2
x∂t)U(x, t) + ∂

4
xU(x, t) = 0 , 0 < x < 1 , t > 0 ,

U(0, t) = U(1, t) = ∂xU(0, t) = ∂xU(1, t) = 0 , t > 0 ,

U(x, 0) = U0(x) , 0 < x < 1 ,

for each U0 ∈ H10 (0, 1).
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2.3

Let V = H10 (0, 1) and define

`(u, v) =

∫ 1
0
∂u∂v̄ , u, v ∈ V .

Then D = V = Vm and Lu = −∂2u, u ∈ D. From either Theorem 2.1 or 2.2
we obtain existence and uniqueness for the problem

(∂t − a∂
2
x∂t)U(x, t) − ∂

2
xU(x, t) = 0 , 0 < x < 1 , t > 0 ,

U(0, t) = U(1, t) = 0 , t > 0 ,

U(x, 0) = U0(x) , 0 < x < 1 ,

whenever U0 ∈ D = Vm.

2.4

For our last example we let Vm be the completion of C
∞
0 (G) with the scalar-

product

(u, v)m ≡
∫
G
m(x)u(x)v(x) dx .

We assume G is open in Rn and m ∈ L∞(G) is given with m(x) > 0 for
a.e. x ∈ G. (Thus, Vm is the set of measurable functions u on G for which
m1/2u ∈ L2(G).) Let V = H10 (G) and define

`(u, v) =

∫
G
∇u · ∇v̄ , u, v ∈ V .

Then Theorem 2.2 implies the existence and uniqueness of a solution of the

problem

m(x)∂tU(x, t)−∆nU(x, t) = 0 , x ∈ G , t > 0 ,

U(s, t) = 0 , s ∈ ∂G , t > 0 ,

U(x, 0) = U0(x) , x ∈ G .

Note that the initial condition is attained in the sense that

lim
t→0+

∫
G
m(x)|U(x, t) − U0(x)|

2 dx = 0 .
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The first two of the preceding examples illustrate the use of Theorems

2.1 and 2.2 when M and L are both differential operators with the order

of L strictly higher than the order of M . The equation in (2.2) is called

metaparabolic and arises in special models of diffusion or fluid flow. The

equation in (2.3) arises similarly and is called pseudoparabolic. We shall

discuss this class of problems in Section 3. The last example (2.4) contains

a weakly degenerate parabolic equation. We shall study such problems in

Section 4 where we shall assume only that m(x) ≥ 0, x ∈ G. This allows the
equation to be of mixed type: parabolic where m(x) > 0 and elliptic where

m(x) = 0. Such examples will be given in Section 5.

3 Pseudoparabolic Equations

We shall consider some evolution equations which generalize the example

(2.3). Two types of solutions will be discussed, and we shall show how these

two types differ essentially by the boundary conditions they satisfy.

Theorem 3.1 Let V be a Hilbert space, suppose m(·, ·) and `(·, ·) are con-
tinuous sesquilinear forms on V , and denote byM and L the corresponding
operators in L(V, V ′). (That is, Mx(y) = m(x, y) and Lx(y) = `(x, y) for
x, y ∈ V .) Assume that m(·, ·) is V -coercive. Then for every u0 ∈ V and
f ∈ C(R, V ′), there is a unique u ∈ C1(R, V ) for which (2.4) holds for all
t ∈ R and u(0) = u0.

Proof : The coerciveness assumption shows that M is an isomorphism of

V onto V ′, so the operator A ≡ M−1 ◦ L belongs to L(V ). We can define
exp(−tA) ∈ L(V ) as in Theorem IV.2.1 and then define

u(t) = exp(−tA) · u0 +
∫ t
0
exp(A(τ − t)) ◦M−1f(τ) dτ , t > 0 . (3.1)

Since the integrand is continuous and appropriately bounded, it follows that

(3.1) is a solution of (2.2), hence of (2.1). We leave the proof of uniqueness

as an exercise.

We call the solution u(·) given by Theorem 3.1 a weak solution of (2.1).
Suppose we are given a Hilbert space H in which V is a dense subset, contin-

uously imbedded. Thus H ⊂ V ′ and we can define D(M) = {v ∈ V :Mv ∈
H}, D(L) = {v ∈ V : Lv ∈ H} and corresponding operators M =M|D(M)
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and L = L|D(L) in H. A solution u(·) of (2.1) for which each term in (2.1)
belongs to C(R,H) (instead of C(R, V ′)) is called a strong solution. Such a

function satisfies

Mu′(t) + Lu(t) = f(t) , t ∈ R . (3.2)

Theorem 3.2 Let the Hilbert space V and operators M,L ∈ L(V, V ′) be
given as in Theorem 3.1. Let the Hilbert space H be given as above and define

the domains D(M) and D(L) and operators M and L as above. Assume

D(M) ⊂ D(L). Then for every u0 ∈ D(M) and f ∈ C(R,H) there is a
(unique) strong solution u(·) of (3.2) with u(0) = u0.

Proof : By making the change-of-variable v(t) = e−λtu(t) for some λ > 0

sufficiently large, we may assume without loss of generality that D(M) =

D(L) and `(·, ·) is V -coercive. Then L is a bijection ontoH so we can define a
norm on D(L) by ‖v‖D(L) = ‖Lv‖H , v ∈ D(L), which makes D(L) a Banach
space. (Clearly, D(L) is also a Hilbert space.) Since `(·, ·) is V -coercive, it
follows that for some c > 0

c‖v‖2V ≤ ‖Lv‖H‖v‖H , v ∈ D(L) ,

and the continuity of the injection V ↪→ H shows then that the injection
D(L) ↪→ V is continuous. The operator A ≡M−1L ∈ L(V ) leaves invariant
the subspace D(L). This implies that the restriction of A to D(L) is a

closed operator in the D(L)-norm. To see this, note that if vn ∈ D(L) and
if ‖vn − u0‖D(L) → 0, ‖Avn − v0‖D(L) → 0, then

‖v0 −Au0‖V ≤ ‖v0 −Avn‖V + ‖A(vn − u0)‖V

≤ ‖v0 −Avn‖V + ‖A‖L(V )‖vn − u0‖V ,

so the continuity of D(L) ↪→ V implies that each of these terms converges
to zero. Hence, v0 = Au0.

Since A|D(L) is closed and defined everywhere on D(L), it follows from
Theorem III.7.5 that it is continuous on D(L). Therefore, the restrictions

of the operators exp(−tA), t ∈ R, are continuous on D(L), and the formula
(3.1) in D(L) gives a strong solution as desired.

Corollary 3.3 In the situation of Theorem 3.2, the weak solution u(·) is a
strong solution if and only if u0 ∈ D(M).
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3.1

We consider now an abstract pseudoparabolic initial-boundary value prob-

lem. Suppose we are given the Hilbert spaces, forms and operators as in

Theorem IV.7.2. Let ε > 0 and define

m(u, v) = (u, v)H + εa(u, v)

`(u, v) = a(u, v) , u, v ∈ V .

Thus, D(M) = D(L) = D(A). Let f ∈ C(R,H). If u(·) is a strong solution
of (3.2), then we have

u′(t) + εA1u
′(t) +A1u(t) = f(t) ,

u(t) ∈ V , and

∂1u(t) +A2γ(u(t)) = 0 , t ∈ R .


 (3.3)

Suppose instead that F ∈ C(R,H) and g ∈ C(R, B′). If we define

f(t)(v) ≡ (F (t), v)H + g(t)(γ(v)) , v ∈ V , t ∈ R .

then a weak solution u(·) of (2.4) can be shown by a computation similar to
the proof of Theorem III.3.1 to satisfy

u′(t) + εA1u
′(t) +A1u(t) = F (t) ,

u(t) ∈ V , and

∂1(εu
′(t) + u(t)) +A2(γ(εu′(t) + u(t))) = g(t) , t ∈ R .


 (3.4)

Note that (3.3) implies more than (3.4) with g ≡ 0. By taking suitable
choices of the operators above, we could obtain examples of initial-boundary

value problems from (3.3) and (3.4) as in Theorem IV.7.3.

3.2

For our second example we let G be open in Rn and choose V = {v ∈ H1(G) :
v(s) = 0. a.e. s ∈ Γ}, where Γ is a closed subset of ∂G. We define

m(u, v) =

∫
G
∇u(x) · ∇v(x) dx , u, v ∈ V

and assume m(·, ·) is V -elliptic. (Sufficient conditions for this situation are
given in Corollary III.5.4.) Choose H = L2(G) and V0 = H

1
0 (G); the cor-

responding partial differential operator M : V → V ′0 ≤ D
∗(G) is given by
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Mu = −∆nu, the Laplacian (cf. Section III.2.2). Thus, from Corollary
III.3.2 it follows that D(M) = {u ∈ V : ∆nu ∈ L2(G), ∂u = 0} where ∂
is the normal derivative ∂ν on ∂G ∼ Γ whenever ∂G is sufficiently smooth.
(Cf. Section III.2.3.) Define a second form on V by

`(u, v) =

∫
G
a(x)∂nu(x)v(x) dx , u, v ∈ V ,

and note that L = L : V → H ≤ V ′ is given by Lu = a(x)(∂u/∂xn),
where a(·) ∈ L∞(G) is given. Assume that for each t ∈ R we are given
F (·, t) ∈ L2(G) and that the map t 7→ F (·, t) : R → L2(G) is continuous.
Let g(·, t) ∈ L2(∂G) be given similarly, and define f ∈ C(R, V ′) by

f(t)(v) =

∫
G
F (x, t)v(x) dx+

∫
∂G
g(s, t)v(s) ds , t ∈ R , v ∈ V .

If u0 ∈ V , then Theorem 3.1 gives a unique weak solution u(·) of (2.4) with
u(0) = u0. That is

m(u′(t), v) + `(u(t), v) = f(t)(v) , v ∈ V , t ∈ R ,

and this is equivalent to

Mu′(t) + Lu(t) = F (·, t) , t ∈ R

u(t) ∈ V , ∂t(∂u(t)) = g(·, t) .

From Theorem IV.7.1 we thereby obtain a generalized solution U(·, ·) of the
initial-boundary value problem

−∆n∂tU(x, t) + a(x)∂nU(x, t) = F (x, t) , x ∈ G , t ∈ R ,

U(s, t) = 0 , s ∈ Γ ,

∂νU(s, t) = ∂νU0(s) +

∫ t
0
g(s, τ) dτ , s ∈ ∂G ∼ Γ ,

U(x, 0) = U0(x) , x ∈ G .

Finally, we note that f ∈ C(R,H) if and only if g ≡ 0, and then ∂νU(s, t) =
∂νU0(s) for s ∈ ∂G ∼ Γ, t ∈ R; thus, U(·, t) ∈ D(M) if and only if U0 ∈
D(M). This agrees with Corollary 3.3.
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4 Degenerate Equations

We shall consider the evolution equation (2.1) in the situation where M is

permitted to degenerate, i.e., it may vanish on non-zero vectors. Although it

is not possible to rewrite it in the form (2.2), we shall essentially factor the

equation (2.1) by the kernel ofM and thereby obtain an equivalent problem
which is regular.

Let V be a linear space and m(·, ·) a sesquilinear form on V that is
symmetric and non-negative:

m(x, y) = m(x, y) , x, y ∈ V ,

m(x, x) ≥ 0 , x ∈ V .

Then it follows that

|m(x, y)|2 ≤ m(x, x) ·m(y, y) , x, y ∈ V , (4.1)

and that x 7→ m(x, x)1/2 = ‖x‖m is a seminorm on V . Let Vm denote this
seminorm space whose dual V ′m is a Hilbert space (cf. Theorem I.3.5). The

identity

Mx(y) = m(x, y) , x, y ∈ V

definesM∈ L(Vm, V ′m) and it is just such an operator which we shall place
in the leading term in our evolution equation. Let D ≤ V , L ∈ L(D,V ′m),
f ∈ C((0,∞), V ′m) and g0 ∈ V

′
m. We consider the problem of finding a

function u(·) : [0,∞)→ V such that

Mu(·) ∈ C([0,∞), V ′m) ∩ C
1((0,∞), V ′m) , (Mu)(0) = g0 ,

and u(t) ∈ D with

(Mu)′(t) + Lu(t) = f(t) , t > 0 . (4.2)

(Note that when m(·, ·) is a scalar product on Vm and Vm is complete then
M is the Riesz map and (4.2) is equivalent to (2.1).)

Let K be the kernel of the linear mapM and denote the corresponding

quotient space by V/K. If q : V → V/K is the canonical surjection, then we
define by

m0(q(x), q(y)) = m(x, y) , x, y ∈ V
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a scalar product m0(·, ·) on V/K. The completion of V/K, m0(·, ·) is a
Hilbert space W whose scalar product is also denoted by m0(·, ·). (Cf. The-
orem I.4.2.) We regard q as a map of Vm into W ; thus, it is norm-preserving

and has a dense range, so its dual q′ : W ′ → V ′m is a norm-preserving iso-
morphism (Corollary I.5.3) defined by

q′(f)(x) = f(q(x)) , f ∈W ′ , x ∈ Vm .

IfM0 denotes the Riesz map of W with the scalar product m0(·, ·), then we
have

q′M0q(x)(y) = M0q(x)(q(y)) = m0(q(x), q(y))

= Mx(y) ,

hence,

q′M0q =M . (4.3)

From the linear map L : D → V ′m we want to construct a linear map L0
on the image q[D] of D ≤ Vm by q so that it satisfies

q′L0q = L . (4.4)

This is possible if (and, in general, only if ) K∩D is a subspace of the kernel
of L, K(L) by Theorem I.1.1, and we shall assume this is so.

Let f(·) and g0 be given as above and consider the problem of finding a
function v(·) ∈ C([0,∞),W ) ∩ C1((0,∞),W ) such that v(0) = (q′M0)

−1g0
and

M0v
′(t) + L0v(t) = (q

′)−1f(t) , t > 0 . (4.5)

Since the domain of L0 is q[D], if v(·) is a solution of (4.5) then for each
t > 0 we can find a u(t) ∈ D for which v(t) = q(u(t)). But q′M0 :W → V ′m
is an isomorphism and so from (4.3), (4.4) and (4.5) it follows that u(·) is a
solution of (4.2) withMu(0) = g0. This leads to the following results.

Theorem 4.1 Let Vm be a seminorm space obtained from a symmetric and

non-negative sesquilinear form m(·, ·), and let M ∈ L(Vm, V ′m) be the cor-
responding linear operator given by Mx(y) = m(x, y), x, y ∈ Vm. Let D
be a subspace of Vm and L : D → V ′m be linear and monotone. (a) If

K(M) ∩ D ≤ K(L) and if M + L : D → V ′m is a surjection, then for

every f ∈ C1([0,∞), V ′m) and u0 ∈ D there exists a solution of (4.2) with
(Mu)(0) = Mu0. (b) If K(M) ∩ K(L) = {0}, then there is at most one
solution.
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Proof : The existence of a solution will follow from Theorem 2.1 applied to

(4.5) if we show L0 : q[D] → W ′ is monotone and M0 + L0 is onto. But

(4.5) shows L0 is monotone, and the identity

q′(M0 + L0)q(x) = (M+ L)(x) , x ∈ D ,

implies thatM0 + L0 is surjective wheneverM+ L is surjective.

To establish the uniqueness result, let u(·) be a solution of (4.2) with
f ≡ 0 andMu(0) = 0; define v(t) = qu(t), t ≥ 0. Then

Dtm0(v(t), v(t)) = 2Re(M0v
′(t))(v(t)) , t > 0 ,

and this implies by (4.3) that

Dtm(u(t), u(t)) = 2Re(Mu)′(t)(u(t))

= −2ReLu(t)(u(t)) , t > 0 .

Since L is monotone, this shows Mu(t) = 0, t ≥ 0, and (4.2) implies
Lu(t) = 0, t > 0. Thus u(t) ∈ K(M) ∩K(L), t ≥ 0, and the desired result
follows.

We leave the proof of the following analogue of Theorem 2.2 as an exer-

cise.

Theorem 4.2 Let Vm be a seminorm space obtained from a symmetric and

non-negative sesquilinear form m(·, ·), and let M ∈ L(Vm, V ′m) denote the
corresponding operator. Let V be a Hilbert space which is dense and contin-

uously imbedded in Vm. Let `(·, ·) be a continuous, sesquilinear and elliptic
form on V , and denote the corresponding isomorphism of V onto V ′ by

L. Let D = {u ∈ V : Lu ∈ V ′m}. Then, for every Hölder continuous
f : [0,∞) → V ′m and every u0 ∈ Vm, there exists a unique solution of (4.2)
with (Mu)(0) =Mu0.

5 Examples

We shall illustrate the applications of Theorems 4.1 and 4.2 by solving some

initial-boundary value problems with partial differential equations of mixed

type.
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5.1

Let Vm = L
2(0, 1), 0 ≤ a < b ≤ 1, and

m(u, v) =

∫ b
a
u(x)v(x) dx , v ∈ Vm .

Then V ′m = L
2(a, b), which we identify as that subspace of L2(0, 1) whose

elements are zero a.e. on (0, a)∪(b, 1), andM becomes multiplication by the
characteristic function of the interval (a, b). Let L = ∂ with domain D =

{u ∈ H1(0, 1) : u(0) = cu(1), ∂u ∈ V ′m ⊂ L
2(0, 1)}. We assume |c| ≤ 1, so L

is monotone (cf. Section IV.4(a)). Note that each function in D is constant on

(0, a)∪ (b, 1). Thus, K(M)∩D = {0} and K(M)∩D ≤ K(L) follows. Also,
note that K(L) is either {0} or consists of the constant functions, depending
on whether or not c 6= 1, respectively. Thus, K(M) ∩K(L) = {0}. If u is
the solution of (cf. Section IV.4(a))

u(x) + ∂u(x) = f(x) , a < x < b , u(a) = cu(b)

and is extended to (0, 1) by being constant on each of the intervals, [0, a]

and [b, 1], then (M + L)u = f ∈ V ′m. Hence M + L maps onto V
′
m and

Theorem 4.1 asserts the existence and uniqueness of a generalized solution

of the problem

∂tU(x, t) + ∂xU(x, t) = F (x, t) , a < x < b , t ≥ 0 ,

∂xU(x, t) = 0 , x ∈ (0, a) ∪ (b, a) ,

U(0, t) = cU(1, t) , U(x, 0) = U0(x) , a < x < b ,


 (5.1)

for appropriate F (·, ·) and U0. This example is trivial (i.e., equivalent to
Section IV.4(a) on the interval (a, b)) but motivates the proof-techniques of

Section 4.

5.2

We consider some problems with a partial differential equation of mixed

elliptic-parabolic type. Let m0(·) ∈ L∞(G) with m0(x) ≥ 0, a.e. x ∈ G, an
open subset of Rn whose boundary ∂G is a C1-manifold with G on one side

of ∂G. Let Vm = L
2(G) and

m(u, v) =

∫
G
m0(x)u(x)v(x) dx , u, v ∈ Vm .
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Then M is multiplication by m0(·) and maps L2(G) into V ′m ≡ {
√
m0 · g :

g ∈ L2(G)} ⊂ L2(G). Let Γ be a closed subset of ∂G and define V = {v ∈
H1(G) : γ0v = 0 on Γ} as in Section III.4.1. Let

`(u, v) =

∫
G
∇u · ∇v dx , u, v ∈ V (5.2)

and assume
∑
≡ {s ∈ ∂G : νn(s) > 0} ⊂ Γ. Thus, Theorem III.5.3 implies

`(·, ·) is V -elliptic, so M + L maps onto V ′, hence, onto V ′m. Theorem 4.2
shows that if U0 ∈ L2(G) and if F is given as in Theorem IV.7.3, then there
is a unique generalized solution of the problem

∂t(m0(x)U(x, t)) −∆nU(x, t) = m0(x)F (x, t) , x ∈ G ,

U(s, t) = 0 , s ∈ Γ ,

∂U(s, t)

∂ν
= 0 , s ∈ ∂G ∼ Γ , t > 0 ,

m0(x)(U(x, 0) − U0(x)) = 0 .




(5.3)

The partial differential equation in (5.3) is parabolic at those x ∈ G for which
m0(x) > 0 and elliptic where m0(x) = 0. The boundary conditions are of

mixed Dirichlet-Neumann type (cf. Section III.4.1) and the initial value of

U(x, 0) is prescribed only at those points of G at which the equation is

parabolic.

Boundary conditions of the third type may be introduced by modifying

`(·, ·) as in Section III.4.2. Similarly, by choosing

`(u, v) =

∫
G
∇u · ∇v dx+ (γ0u)(γ0v)

on V = {u ∈ H1(G) : γ0u is constant}, we obtain a unique generalized
solution of the initial-boundary value problem of fourth type (cf., Section

III.4.2)

∂t(m0(x)U(x, t)) −∆nU(x, t) = m0(x)F (x, t) , x ∈ G ,

U(s, t) = h(t) , s ∈ ∂G ,(∫
∂G

∂U(s, t)

∂ν
ds
/∫
∂G
ds

)
+ h(t) = 0 , t > 0 ,

m0(x)(U(x, 0) − U0(x)) = 0 .




(5.4)

The data F (·, ·) and U0 are specified as before; h(·) is unknown and part of
the problem.
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5.3

Problems with a partial differential equation of mixed pseudoparabolic-parabolic

type can be similarly handled. Let m0(·) be given as above and define

m(u, v) =

∫
G
(u(x)v(x) +m0(x)∇u(x) · ∇v (x)) dx , u, v ∈ Vm ,

with Vm = H
1(G). Then Vm ↪→ L2(G) is continuous so we can identify

L2(G) ≤ V ′m. Define `(·, ·) by (5.2) where V is a subspace of H
1(G) which

contains C∞0 (G) and is to be prescribed. Then K(M) = {0} and m(·, ·) +
`(·, ·) is V -coercive, so Theorem 4.2 will apply. In particular, if U0 ∈ L2(G)
and F as in Theorem IV.7.3 are given, then there is a unique solution of the

equation

∂t(U(x, t)−
n∑
j=1

∂j(m0(x)∂jU(x, t)))−∆nU(x, t) = F (x, t) , x ∈ G , t > 0 ,

with the initial condition

U(x, 0) = U0(x) , x ∈ G ,

and boundary conditions which depend on our choice of V .

5.4

We consider a problem with a time derivative and possibly a partial differen-

tial equation on a boundary. Let G be as in (5.2) and assume for simplicity

that ∂G intersects the hyperplane Rn−1 × {0} in a set with relative interior
S. Let an(·) and b(·) be given nonnegative, real-valued functions in L∞(S).
We define Vm = H

1(G) and

m(u, v) =

∫
G
u(x)v(x) dx+

∫
S
a(s)u(s)v(s) ds , u, v ∈ Vm ,

where we suppress the notation for the trace operator, i.e., u(s) = (γ0u)(s)

for s ∈ ∂G. Define V to be the completion of C∞(Ḡ) with the norm given
by

‖v‖2V ≡ ‖v‖
2
H1(G) +

(∫
S
b(s)

n−1∑
j=1

|Djv(s)|
2 ds

)
.
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Thus, V consists of these v ∈ H1(G) for which b1/2 · ∂j(γ0v) ∈ L2(S) for
1 ≤ j ≤ n− 1; it is a Hilbert space. We define

`(u, v) =

∫
G
∇u(x) ·∇v(x) dx+

∫
S
b(s)

(n−1∑
j=1

∂ju(s)∂jv(s)

)
ds , u, v ∈ V .

ThenK(M) = {0} andm(·, ·)+`(·, ·) is V -coercive. If U0 ∈ L2(G) and F (·, ·)
is given as above, then Theorem 4.2 asserts the existence and uniqueness of

the solution U(·, ·) of the initial-boundary value problem


∂tU(x, t)−∆nU(x, t) = F (x, t) , x ∈ G , t > 0 ,

∂t(a(s)U(s, t)) +
∂U(s, t)

∂ν
=
n−1∑
j=1

∂j(b(s)∂jU(s, t)) , s ∈ S ,

∂U(s, t)

∂ν
= 0 , s ∈ ∂G ∼ S ,

b(s)
∂U(s, t)

∂νS
= 0 , s ∈ ∂S ,

U(x, 0) = U0(x) , x ∈ G ,

a(s)(U(s, 0) − U0(s)) = 0 , s ∈ S .

Similar problems with a partial differential equation of mixed type or other

combinations of boundary conditions can be handled by the same technique.

Also, the (n−1)-dimensional surface S can occur inside the region G as well
as on the boundary. (Cf., Section III.4.5.)

Exercises

1.1. Use the separation-of-variables technique to obtain a series representa-

tion for the solution of (1.1) with u(0, t) = u(π, t) = 0 and u(x, 0) =

u0(x), 0 < x < π. Compare the rate of convergence of this series with

that of Section IV.1.

2.1. Provide all details in support of the claim that Theorem 2.1 follows

from Theorem IV.3.3. Show that Theorem 2.2 follows from Theorems

IV.6.3 and IV.6.5.

2.2. Show that Theorem 2.2 remains true if we replace the hypothesis that

L is V -elliptic by λM+ L is V -elliptic for some λ ∈ R.
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2.3. Characterize V ′m in each of the examples (2.1)–(2.3). Construct appro-

priate terms for f(t) in Theorems 2.1 and 2.2. Write out the corre-

sponding initial-boundary value problems that are solved.

2.4. Show V ′m = {m
1/2v : v ∈ L2(0, 1)} in (2.4). Describe appropriate non-

homogeneous terms for the partial differential equation in (2.4).

3.1. Verify that (3.1) is a solution of (2.2) in the situation of Theorem 3.1.

3.2. Prove uniqueness holds in Theorem 3.1. [Hint: Show σ(t) ≡ ‖u(t)‖2V
satisfies |σ′(t)| ≤ Kσ(t), t ∈ R, where u is a solution of the homoge-
neous equation, then show that σ(t) ≤ exp(K|t|) · σ(0).]

3.3. Verify that (3.4) characterizes the solution of (2.4) in the case of Section

3.1. Discuss the regularity of the solution when a(·, ·) is k-regular.

4.1. Prove (4.1).

4.2. Prove Theorem 4.2. [Hint: Compare with Theorem 2.2.]

5.1. Give sufficient conditions on the data F , u0 in (5.1) in order to apply

Theorem 4.1.

5.2. Extend the discussion in Section 5.2 to include boundary conditions of

the third type.

5.3. Characterize V ′m in Section 5.3. Write out the initial-boundary value

problem solved in Section 5.3 for several choices of V .

5.4. Write out the problem solved in Section 5.4 when S is an interface as

in Section III.4.5.
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Chapter VI

Second Order Evolution
Equations

1 Introduction

We shall find well-posed problems for evolution equations which contain the

second order time derivative of the solution. These arise, for example, when

we attempt to use the techniques of the preceding chapters to solve a Cauchy

problem for the wave equation

∂2t u(x, t)−∆nu(x, t) = F (x, t) . (1.1)

The corresponding abstract problem will contain the second order evolution

equation

u′′(t) +Au(t) = f(t) , (1.2)

where A is an operator which contains −∆n in some sense. Wave equations
with damping or friction occur in practice, e.g., the telegraphists equation

∂2t u(x, t) +R · ∂tu(x, t)−∆nu(x, t) = F (x, t) ,

so we shall add terms to (1.2) of the form Bu′(t). Finally, certain models in
fluid mechanics lead to equations, for example,

∂2t (∆nu(x, t)) + ∂
2
nu(x, t) = 0 , x = (x1, . . . , xn) , (1.3)

which contain spatial derivatives in the terms with highest (= second) order

time derivatives. These motivate us to consider abstract evolution equations

145
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of the form

Cu′′(t) + Bu′(t) +Au(t) = f(t) , t > 0 . (1.4)

We consider in Section 2 equations of the form (1.4) in which C is in-
vertible; this situation is similar to that of Section V.2, so we call (1.4) a

regular equation then. The equation (1.3) is known as Sobolev’s equation,

so we call (1.4) a Sobolev equation when C is invertible and both C−1B and
C−1A are continuous. This situation is studied in Section 3 and is the ana-
logue of (first-order) pseudoparabolic problems. Section 4 will be concerned

with (1.4) when C is degenerate in the sense of Section V.4. Such equations
arise, for example from a system described by appropriately coupled wave

and heat equations

∂2t u(x, t)−∆nu(x, t) = 0 , x ∈ G1 ,

∂tu(x, t)−∆nu(x, t) = 0 , x ∈ G2 .

Here the operator C is multiplication by the characteristic function of G1
and B is multiplication by the characteristic function of G2. G1 and G2 are
disjoint open sets whose closures intersect in an (n−1)-dimensional manifold
or interface. Additional examples will be given in Section 5.

2 Regular Equations

Let V and W be Hilbert spaces with V a dense subspace of W for which

the injection is continuous. Thus, we identify W ′ ≤ V ′ by duality. Let

A ∈ L(V, V ′) and C ∈ L(W,W ′) be given. Suppose D(B) ≤ V and B :

D(B) → V ′ is linear. If u0 ∈ V , u1 ∈ W and f ∈ C((0,∞),W ′) are

given, we consider the problem of finding u ∈ C([0,∞), V )∩C1((0,∞), V )∩
C1([0,∞),W ) ∩ C2((0,∞),W ) such that u(0) = u0, u′(0) = u1, and

Cu′′(t) +Bu′(t) +Au(t) = f(t) (2.1)

for all t > 0. Note that for any such solution of (2.1) we have u′(t) ∈ D(B)
and Bu′(t) +Au(t) ∈W ′ for all t > 0.

We shall solve (2.1) by reducing it to a first order equation on a product

space and then applying the results of Section V.2. The idea is to write (2.1)

in the form (
A 0
0 C

)(
u

u′

)′
+

(
0 −A
A B

)(
u

u′

)
=

(
0
f(t)

)
.
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Define Vm = V ×W , the product Hilbert space with scalar-product given by

([x1, x2], [y1, y2])Vm = (x1, y1)V + (x2, y2)W , [x1, x2], [y1, y2] ∈ V ×W .

We have then V ′m = V
′ ×W ′, and we defineM ∈ L(Vm, V ′m) by

M([x1, x2]) = [Ax1, Cx2] , [x1, x2] ∈ Vm .

Define D = {[x1, x2] ∈ V ×D(B) : Ax1 +Bx2 ∈W ′} and L ∈ L(D,V ′m) by

L([x1, x2]) = [−Ax2,Ax1 +Bx2] , [x1, x2] ∈ D .

If u(·) is a solution of (2.1), then the function defined by w(t) = [u(t), u′(t)],
t ≥ 0, satisfies the following: w ∈ C([0,∞), Vm) ∩ C1((0,∞), Vm), w(0) =
[u0, u1] ∈ Vm, and

Mw′(t) + Lw(t) = [0, f(t)] , t > 0 . (2.2)

This is precisely the situation of Section V.2, so we need only to find con-

ditions on the data in (2.1) so that Theorems 2.1 or 2.2 of Chapter V are

applicable. This leads to the following.

Theorem 2.1 Let V andW be Hilbert spaces with V dense and continuously

imbedded in W . Assume A ∈ L(V, V ′) and C ∈ L(W,W ′) are the Riesz maps

of V and W , respectively, and let B be linear from the subspace D(B) of V

into V ′. Assume that B is monotone and that A + B + C : D(B) → V ′ is

surjective. Then for every f ∈ C1([0,∞),W ′) and u0 ∈ V , u1 ∈ D(B) with
Au0+Bu1 ∈W ′, there exists a unique solution u(t) of (2.1) (on t ≥ 0) with
u(0) = u0 and u

′(0) = u1.

Proof : Since A and C are Riesz maps of their corresponding spaces, we
have

M([x1, x2])([y1, y2]) = Ax1(y1) + Cx2(y2)

= (x1, y1)V + (x2, y2)W

= ([x1, x2], [y1, y2])Vm , [x1, x2], [y1, y2] ∈ Vm ,

soM is the Riesz map of Vm. Also we have for [x1, x2] ∈ D

L([x1, x2])([y1, y2]) = −Ax2(y1) + (Ax1 +Bx2)(y2) , [y1, y2] ∈ Vm ,
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hence, L([x1, x2])([x1, x2]) = −Ax1(x2)+Ax1(x2)+Bx2(x2) since A is sym-
metric. From this we obtain

ReL([x1, x2])([x1, x2]) = ReBx2(x2) , [x1, x2] ∈ D ,

so B being monotone implies L is monotone. Finally, if f1 ∈ V ′ and f2 ∈
W ′, then we can find x2 ∈ D(B) such that (A + B + C)x2 = f2 − f1.

Setting x1 = x2 + A−1f1 ∈ V , we have a pair [x1, x2] ∈ D for which (M +
L)[x1, x2] = [f1, f2]. (Note that Ax1 + Bx2 = f2 − Cx2 ∈ W ′ as required.)

Thus M + L is a surjection of D onto V ′m. Theorem 2.1 of Chapter V

asserts the existence of a solution w(t) = [u(t), v(t)] of (2.2). Since A is a
norm-preserving isomorphism, v(t) = u′(t) and the result follows.

A special case of Theorem 2.1 that occurs frequently in applications is

that D(B) = V and B = B ∈ L(V, V ′). Then one needs only to verify that B
is monotone, for then A+B+C is V -coercive, hence surjective. Furthermore,
in this case we may define L ∈ L(V`, V

′
` ) and V` = V × V by

L([x1, x2])([y1, y2]) = −Ax2(y1)+(Ax1+Bx2)(y2) , [x1, x2], [y1, y2] ∈ V` .

Thus, Theorem 2.2 of Chapter V applies if we can show that L(·)(·) is V`-
elliptic. Of course we need only to verify that (λM + L)(·)(·) is V`-elliptic
for some λ > 0 (Exercise V.2.3), and this leads us to the following.

Theorem 2.2 Let A and C be the Riesz maps of the Hilbert spaces V and
W , respectively, where V is dense and continuously imbedded in W . Let

B ∈ L(V, V ′) and assume B + λC is V -elliptic for some λ > 0. Then for

every Hölder continuous f : [0,∞) → W ′, u0 ∈ V and u1 ∈ W , there is a
unique solution u(t) of (2.1) on t > 0 with u(0) = u0 and u

′(0) = u1.

Theorem 2.2 applies to evolution equations of second order which are

parabolic, i.e., those which can be solved for more general data u0, u1 and

f(·), and whose solutions are smooth for all t > 0. Such problems occur
when energy is strongly dissipated; we give examples below. The situation

in which energy is conserved is described in the following result. We leave

its proof as an exercise, as it is a direct consequence of either Theorem 2.2

above or Section IV.5.

Theorem 2.3 In addition to the hypotheses of Theorem 2.1, assume that

ReBx(x) = 0 for all x ∈ D(B) and that both A+B + C and A−B + C are
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surjections of D(B) onto V ′. Then for every f ∈ C1(R,W ′) and u0 ∈ V ,
u1 ∈ D(B) with Au0 +Bu1 ∈W ′, there exists a unique solution of (2.1) on

R with u(0) = u0 and u
′(0) = u1.

We shall describe how Theorems 2.1 and 2.3 apply to an abstract wave

equation. Examples will be given afterward. Assume we are given Hilbert

spaces V ≤ H, and B, and a linear surjection γ : V → B with kernel V0 such

that γ factors into an isomorphism of V/V0 onto B, the injection V ↪→ H

is continuous, V0 is dense in H, and H is identified with its dual H
′ by the

Riesz map. We thereby obtain continuous injections V0 ↪→ H ↪→ V ′0 and

V ↪→ H ↪→ V ′.

Let a1 : V × V → K and a2 : B × B → K be continuous symmetric

sesquilinear forms and define a : V × V → K by

a(u, v) = a1(u, v) + a2(γ(u), γ(v)) , u, v ∈ V . (2.3)

Assume a(·, ·) is V -elliptic. Then a(·, ·) is a scalar-product on V which gives
an equivalent norm on V , so we hereafter consider V with this scalar-product,

i.e., (u, v)V ≡ a(u, v) for u, v ∈ V . The form (2.3) will be used to prescribe
an abstract boundary value problem as in Section III.3. Thus, we define

A : V → V ′0 by

Au(v) = a1(u, v) , u ∈ V , v ∈ V0

and D0 = {u ∈ V : Au ∈ H}. Then Theorem III.2.3 gives the abstract
boundary operator ∂1 ∈ L(D0, B′) for which

a1(u, v) − (Au, v)H = ∂1u(γv) , u ∈ D0 , v ∈ V .

We define D = {u ∈ V : Au ∈ H}, where A is the Riesz map of V given by

Au(v) = a(u, v) , u, v ∈ V ,

and A2 : B → B′ is given by

A2ϕ(ψ) = a2(ϕ,ψ) , ϕ, ψ ∈ B .

Then, we recall from Corollary III.3.2 that u ∈ D if and only if u ∈ D0 and
∂1u+A2(γu) = 0.
Let (·, ·)W be a scalar-product on H whose corresponding norm is equiva-

lent to that of (·, ·)H , and letW denote the Hilbert space consisting ofH with
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the scalar-product (·, ·)W . Then the Riesz map C of W satisfies C ∈ L(H)
(and C−1 ∈ L(H)). Suppose we are also given an operator B ∈ L(V,H)
which is monotone (since H ≤ V ′).

Theorem 2.4 Assume we are given the Hilbert spaces V , H, B, V0, W

and linear operators γ, ∂1, A2, A, A, B and C as above. Then for every
f ∈ C1([0,∞),H), u0 ∈ D and u1 ∈ V , there is a unique solution u(·) of
(2.1), and it satisfies

Cu′′(t) + Bu′(t) +Au(t) = f(t) , t ≥ 0 ,

u(t) ∈ V , ∂1u(t) +A2γ(u(t)) = 0 , t ≥ 0 ,

u(0) = u0 , u′(0) = u1 ,


 (2.4)

Proof : Since A+B+ C ∈ L(V, V ′) is V -elliptic, it is surjective so Theorem
2.1 (with B = B) asserts the existence of a unique solution. Also, since each
of the terms Cu′′(t), Bu′(t) and f(t) of the equation (2.1) are in H, it follows
that Au(t) ∈ H and, hence, u(t) ∈ D. This gives the middle line in (2.4).

In each of our examples below, the first line in (2.4) will imply an ab-

stract wave equation, possibly with damping, and the second line will imply

boundary conditions.

2.1

Let G be open in Rn and take H = L2(G). Let ρ ∈ L∞(G) satisfy ρ(x) ≥
c > 0 for x ∈ G, and define

(u, v)W ≡
∫
G
ρ(x)u(x)v(x) dx , u, v ∈ H .

Then C is just multiplication by ρ(·).
Suppose further that ∂G is a C1 manifold and Γ is a closed subset of ∂G.

We define V = {v ∈ H1(G) : γ0(v)(s) = 0, a.e., s ∈ Γ}, γ = γ0|V and, hence,
V0 = H10 (G) and B is the range of γ. Note that B ↪→ L2(∂G ∼ Γ) ↪→ B′.

We define

a1(u, v) =

∫
G
∇u · ∇v̄ dx , u, v ∈ V ,

and it follows that A = −∆n and ∂1 is the normal derivative

∂u

∂ν
= ∇u · ν
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on ∂G. Let α ∈ L∞(∂G) satisfy α(s) ≥ 0, a.e. s ∈ ∂G, and define

a2(ϕ,ψ) =

∫
∂G∼Γ

α(s)ϕ(s)ψ(s) ds , ϕ, ψ ∈ B .

Then A2 is multiplication by α(·).
Assume that for each t ∈ [0, T ] we are given F (·, t) ∈ L2(G), that

∂tF (x, t) is continuous in t for almost every x ∈ G, and |∂tF (x, t)| ≤ g(x)

for some g ∈ L2(G). It follows that the map t 7→ F (·, t) ≡ f(t) belongs to

C1([0, T ], L2(G)). Finally, let U0(·) ∈ D (see below) and U1(·) ∈ V be given.
Then, if u(·) denotes the solution of (2.4) it follows from Theorem IV.7.1
that we can construct a function U ∈ L2(G× [0, T ]) such that U(·, t) = u(t)
in L2(G) for each t ∈ [0, T ] and this function satisfies the partial differential
equation

ρ(x)∂2t U(x, t)−∆nU(x, t) = F (x, t) , x ∈ G , 0 ≤ t ≤ T (2.5)

and the initial conditions

U(x, 0) = U0(x) , ∂tU(x, 0) = U1(x) , a.e. x ∈ G .

Finally, from the inclusion u(t) ∈ D we obtain the boundary conditions for
t ≥ 0

U(s, t) = 0 , a.e. s ∈ Γ and

∂U(s, t)

∂ν
+ α(s)U(s, t) = 0 , a.e. s ∈ ∂G ∼ Γ .


 (2.6)

The first equation in (2.6) is the boundary condition of first type. The second

is the boundary condition of second type where α(s) = 0 and of third type

where α(s) > 0. (Note that U0 necessarily satisfies the conditions of (2.6)

with t = 0 and that U1 satisfies the first condition in (2.6). If F (·, t) is given
as above but for each t ∈ [−T, T ], then Theorem 2.3 (and Theorem III.7.5)
give a solution of (2.5) on G× [−T, T ].

2.2

In addition to all the data above, suppose we are given R(·) ∈ L∞(G) and
a vector field µ(x) = (µ1(x), . . . , µn(x)), x ∈ G, with each µj ∈ C1(Ḡ). We
define B ∈ L(V,H) (where V ≤ H1(G) and H = L2(G)) by

Bu(v) =
∫
G

(
R(x)u(x) +

∂u(x)

∂µ

)
v(x) dx (2.7)
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the indicated directional derivative being given by

∂u(x)

∂µ
≡

n∑
j=1

∂ju(x)µj(x) .

From the Divergence Theorem we obtain

2Re

∫
G

∂u(x)

∂µ
u(x) dx+

∫
G

( n∑
j=1

∂jµj(x)

)
|u(x)|2 dx =

∫
∂G
(µ · ν)|u(x)|2 ds ,

where µ · ν =
∑n
j=1 µj(s)νj(s) is the indicated euclidean scalar-product.

Thus, B is monotone if

−
(
1
2

) n∑
j=1

∂jµj(x) + Re{R(x)} ≥ 0 , x ∈ G

µ(s) · ν(s) ≥ 0 , s ∈ ∂G ∼ Γ .

The first equation represents friction or energy dissipation distributed through-

out G and the second is friction distributed over ∂G. Note that these are

determined by the divergence of µ and the normal component of µ, respec-

tively. If u(·) is a solution of (2.4) and the corresponding U(·, ·) is obtained
as before from Theorem IV.7.1, then U(·, ·) is a generalized solution of the
initial-boundary value problem




ρ(x)∂2t U(x, t) +R(x)∂tU(x, t) + ∂t
∂U(x, t)

∂µ
−∆nU(x, t) = F (x, t) ,

x ∈ G , t ≥ 0

U(s, t) = 0 , a.e. s ∈ Γ ,

∂U(s, t)

∂ν
+ α(s)U(s, t) = 0 , a.e. s ∈ ∂G ∼ Γ

U(x, 0) = U0(x) , ∂tU(x, 0) = U1(x)

One could similarly solve problems with the fourth boundary condition,

oblique derivatives, transition conditions on an interface, etc., as in Section

III.4. We leave the details as exercises.

We now describe how Theorem 2.2 applies to an abstract viscoelasticity

equation.
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Theorem 2.5 Assume we are given the Hilbert spaces V , H, B, V0, W and

linear operators γ, ∂1, A2, A, A, B and C as in Theorem 2.4. Then for
every f : [0,∞)→ H which is Hölder continuous, u0 ∈ V and u1 ∈ H, there
is a unique solution u(t) of (2.1) with B = B + εA and ε > 0. This solution
satisfies

Cu′′(t) + (B + εA)u′(t) +Au(t) = f(t) , t > 0 ,

u(t) ∈ V , t ≥ 0 ,

∂1(εu
′(t) + u(t)) +A2γ(εu′(t) + u(t)) = 0 , t > 0 ,

u(0) = u0 , u′(0) = u1 .




(2.8)

Proof : This follows immediately from

ReBx(x) ≥ εAx(x) = ε‖x‖2V , x ∈ V ,

(since B is monotone) and the observation that εu′(t) + u(t) ∈ D for t > 0.

2.3

Let all spaces and operators be chosen just as in Section 2.1 above. Suppose

U0 ∈ V , U1 ∈ H and f(t) = F (t, ·), t ≥ 0, where F (·, ·) is given as in Theorem
IV.7.3. Then we obtain a generalized solution of the initial-boundary value

problem

ρ(x)∂2t U(x, t)− ε∂t∆nU(x, t)−∆nU(x, t) = F (x, t) ,
a.e. x ∈ G , t > 0 ,

U(s, t) = 0 , a.e. s ∈ Γ , t ≥ 0 ,

∂

∂ν
(ε∂tU(s, t) + U(s, t)) + α(s)(ε∂tU(s, t) + U(s, t)) = 0 ,

a.e. s ∈ ∂G ∼ Γ , t > 0 ,

U(x, 0) = U0(x) , ∂tU(x, 0) = U1(x) , x ∈ G .




(2.9)

In certain applications the coefficient ε > 0 corresponds to viscosity in the

model and it distinguishes the preceding parabolic problem from the corre-

sponding hyperbolic problem in Section 2.1. Problems with viscosity result

in very strong damping effects on solutions. Dissipation terms of lower or-

der like (2.7) could easily be added to the system (2.9), and other types of

boundary conditions could be obtained.
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3 Sobolev Equations

We shall give sufficient conditions for a certain type of evolution equation

to have either a weak solution or a strong solution, a situation similar to

that for pseudoparabolic equations. The problems we consider here have the

strongest operator as the coefficient of the term in the equation with the

second order derivative.

Theorem 3.1 Let V be a Hilbert space and A,B, C ∈ L(V, V ′). Assume
that the sesquilinear form corresponding to C is V -elliptic. Then for every
u0, u1 ∈ V and f ∈ C(R, V ) there is a unique u ∈ C2(R, V ) such that

Cu′′(t) + Bu′(t) +Au(t) = f(t) , t ∈ R , (3.1)

and u(0) = u0, u
′(0) = u1.

Proof : The change of variable v(t) ≡ e−λtu(t) gives an equivalent problem
with A replaced by A+λB+λ2C, and this last operator is V -coercive if λ is
chosen sufficiently large. Hence, we may assume A is V -elliptic. If we define
M and L as in Section 2.2, then M is V × V ≡ Vm-elliptic, and Theorem

V.3.1 then applies to give a solution of (2.2). The desired result then follows.

A solution u ∈ C2(R, V ) of (3.1) is called a weak solution. If we are given
a Hilbert space H in which V is continuously imbedded and dense, we define

D(C) = {v ∈ V : Cv ∈ H} and C = C|D(C). The corresponding restrictions
of B and A to H are denoted similarly. A (weak) solution u of (3.1) for
which each term belongs to H at each t ∈ R is called a strong solution, and
it satisfies

Cu′′(t) +Bu′(t) +Au(t) = f(t) , t ∈ R . (3.2)

Theorem 3.2 Let the Hilbert space V and operators A, B, C be given as in
Theorem 3.1. Let the Hilbert space H and corresponding operators A, B, C

be defined as above, and assume D(C) ⊂ D(A)∩D(B). Then for every pair
u0 ∈ D(A), u1 ∈ D(C), and f ∈ C(R,H), there is a unique strong solution
u(·) of (3.2) with u(0) = u0, u′(0) = u1.

Proof : We define M [x1, x2] = [Ax1, Cx2] on D(A) × D(C) = D(M) and

L[x1, x2] = [−Ax2, Ax1+Bx2] on D(A)×D(A)∩D(B) and apply Theorem
V.3.2.
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Corollary 3.3 In the situation of Theorem 3.2, the weak solution u(·) is
strong if and only if, for some t0 ∈ R, u(t0) ∈ D(A) and u′(t0) ∈ D(C).

We give an example which includes the classical Sobolev equation from

fluid mechanics and an evolution equation of the type used to describe certain

vibration problems. Let G be open in Rn and suppose that ∂G is a C1

manifold and that Γ is a closed subset of ∂G. Let V = {v ∈ H1(G) :

γv(s) = 0, a.e. s ∈ Γ} and

Cu(v) = (u, v)H1(G) , u, v ∈ V .

Suppose aj(·) ∈ L∞(G) for j = 1, 2, . . . , n, and define

Au(v) =
n∑
j=1

∫
G
aj(x)∂ju(x)∂jv(x) dx , u, v ∈ V .

Let the functions t 7→ F (·, t) : R → L2(G) and t 7→ g(·, t) : R → L2(∂G) be

continuous and define f ∈ C(R, V ′) by

f(t)(v) =

∫
G
F (x, t)v(x) dx+

∫
∂G
g(s, t)γv(s) ds , v ∈ V .

Then for each pair U0, U1 ∈ V , we obtain from Theorems 3.1 and IV.7.1 a
unique generalized solution of the problem

∂2t U(x, t)−∆n∂
2
tU(x, t)−

n∑
j=1

∂j(aj(x)∂jU(x, t)) = F (x, t) ,

x ∈ G , t > 0 ,

U(s, t) = 0 , s ∈ Γ ,

∂ν∂
2
tU(s, t) +

n∑
j=1

aj(s)∂jU(s, t) = g(s, t) , s ∈ ∂G ∼ Γ ,

U(x, 0) = U0(x) , ∂tU(x, 0) = U1(x) .




(3.3)

In the special case of aj ≡ 0, 1 ≤ j ≤ n − 1, and an(x) ≡ 1, the partial
differential equation in (3.3) is Sobolev’s equation which describes inertial

waves in rotating fluids. Terms due to temperature gradients will give (3.3)

with aj(x) ≡ a > 0, 1 ≤ j ≤ n− 1, and an(x) ≡ 1. Finally, if aj(x) ≡ a > 0,
1 ≤ j ≤ n, then the partial differential equation in (3.3) is Love’s equation

for longitudinal vibrations with lateral inertia.
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Suppose now that g ≡ 0 in the above, hence, f ∈ C(R,H), where H =
L2(G). If we assume Γ = ∂G, hence, V = H10 (G), then D(C) = H10 (G) ∩
H2(G) ⊂ D(A), so Theorem 3.2 gives a smoother solution of (3.3) whenever
U0, U1 ∈ D(C). If instead we assume aj(x) ≡ a, 1 ≤ j ≤ n, then D(C) =

D(A), and Theorem 3.2 gives a smoother solution of (3.3) whenever U0, U1 ∈
D(C).

Similar problems containing dissipation effects can easily be added, and

we leave these to the exercises. In particular, there is motivation to consider

problems like (3.3) with viscosity.

4 Degenerate Equations

We shall consider evolution equations of the form (2.1) wherein the leading

operator C may not necessarily be the Riesz map of a Hilbert space. In
particular, certain applications lead to (2.1) with C being symmetric and
monotone. Our plan is to first solve a first order system like (2.2) by using

one of Theorems V.4.1 or V.4.2. Then the first and second components will

be solutions (of appropriate modifications) of (2.1). Also we shall obtain

well-posed problems for a first order evolution equation in which the leading

operator is not necessarily symmetric. (The results of Section V.4 do not

apply to such a situation.)

4.1

Let A be the Riesz map of a Hilbert space V to its dual V ′. Let C ∈ L(V, V ′)
and suppose its sesquilinear form is symmetric and non-negative on V . Then

it follows (cf., Section V.4) that x 7→ Cx(x)1/2 is a seminorm on V ; let W
denote the corresponding seminorm space. Finally, suppose D(B) ≤ V and

B ∈ L(D(B), V ′) are given. Now we define Vm to be the product V ×W
with the seminorm induced by the symmetric and non-negative sesquilinear

form

m(x, y) = Ax1(y1) + Cx2(y2) , x, y ∈ Vm ≡ V ×W .

The identity Mx(y) = m(x, y), x, y ∈ Vm, definesM ∈ L(Vm, V ′m). Finally
we define D ≡ {[x1, x2] ∈ V ×D(B) : Ax1 +Bx2 ∈W ′} and the linear map
L : D → V ′m by

L[x1, x2] = [−Ax2,Ax1 +Bx2] .

We shall apply Theorem V.4.1 to obtain the following result.
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Theorem 4.1 Let A be the Riesz map of the Hilbert space V and let W be

the seminorm space obtained from a symmetric and monotone C ∈ L(V, V ′).
Let D(B) ≤ V and B ∈ L(D(B), V ′) be monotone. Assume B+C is strictly
monotone and A+B+C : D(B)→ V ′ is a surjection. Let f ∈ C1([0,∞),W ′)

and g ∈ C1([0,∞), V ′). If Vm and D are the spaces denoted above, then for
every pair [u0, u1] ∈ D there exists a unique function w(·) : [0,∞)→ D such

that Mw(·) ∈ C1([0,∞), V ′m), Mw(0) =M[u0, u1], and

(Mw)′(t) + Lw(t) = [−g(t), f(t)] , t ≥ 0 . (4.1)

Proof : We need to verify that the hypotheses of Theorem V.4.1 are valid in

this situation. First note that K(M)∩D = {[0, x2] : x2 ∈ D(B), Bx2 ∈W ′,

Cx2 = 0}. But if y ∈ D(B) with By ∈W ′, then there is a K ≥ 0 such that

|By(x)| ≤ K|Cx(x)|1/2 , x ∈ V ,

hence, |By(y)| ≤ K|Cy(y)|1/2 = 0 if Cy = 0. Thus, we have shown that

Re(B + C)x2(x2) = 0 , x = [0, x2] ∈ K(M) ∩D ,

so B+C being strictly monotone implies that K(M)∩D = {[0, 0]}. Finally,
just as in the proof of Theorem 2.1, it follows from A+B+C being surjective
thatM+ L is surjective, so all the hypotheses of Theorem V.4.1 are true.

Let w(·) be the solution of (4.1) from Theorem 4.1 and set w(t) =
[u(t), v(t)] for each t ≥ 0. If we set g ≡ 0 and eliminate v(·) from the
system (4.1), then we obtain an equivalent second order evolution equation

which u(·) satisfies and, thereby, the following result.

Corollary 4.2 Let the spaces and operators be given as in Theorem 4.1.

For every f ∈ C1([0,∞),W ′) and every pair u0 ∈ V , u1 ∈ D(B) with

Au0+Bu1 ∈W ′ there exists a unique u(·) ∈ C1([0,∞), V ) such that Cu′(·) ∈
C1([0,∞),W ′), u(0) = u0, Cu′(0) = Cu1, and for each t ≥ 0, u′(t) ∈ D(B),
Au(t) +Bu′(t) ∈W ′, and

(Cu′(t))′ +Bu′(t) +Au(t) = f(t) . (4.2)

Similarly, the function v(·) obtained from a solution of (4.1) satisfies a
second order equation.
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Corollary 4.3 Let the spaces and operators be given as in Theorem 4.1.

If F ∈ C([0,∞),W ′), g ∈ C1([0,∞), V ′), u1 ∈ D(B) and U2 ∈ W ′, then

there exists a unique v(·) : [0,∞)→ D(B) such that Cv(·) ∈ C1([0,∞),W ′),

(Cv)′+Bv(·) ∈ C1([0,∞), V ′), Cv(0) = Cu1, (Cv′+Bv)(0) = U2+Bu1, and
for each t ≥ 0,

((Cv)′(t) +Bv(t))′ +Av(t) = F (t) + g(t) . (4.3)

Proof : Given F (·) as above, define f(·) ∈ C1([0,∞),W ′) by f(t) =
∫ t
0 F .

With u1 and U2 as above, there is a unique u0 ∈ V for which Au0 = −Bu1−
U2. Thus, Au0+Bu1 ∈W ′ so Theorem 4.1 gives a unique w(·) as indicated.
Letting w(t) ≡ [u(t), v(t)] for t ≥ 0, we have immediately v(t) ∈ D(B) for
t ≥ 0, Cv ∈ C1([0,∞),W ′) and Cv(0) = Cu1. The second line of (4.1) shows

(Cv)′ +Bv = f −Au ∈ C1([0,∞), V ′)

and the choice of u0 above gives (Cv)′(0)+Bv(0) = U+Bu1. Eliminating u(·)
from (4.1) gives (4.3). This establishes the existence of v(·). The uniqueness
result follows by defining u(·) by the second line of (4.1) and then noting
that the function defined by w(t) ≡ [u(t), v(t)] is a solution of (4.1).
Finally, we record the important special case of Corollary 4.3 that occurs

when C = 0. This leads to a well-posed problem for a first order equation
whose leading operator is not necessarily symmetric.

Corollary 4.4 Let the spaces V , D(B) and operators B, A be given as
in Theorem 4.1 but with C = 0, hence, W ′ = {0}. Then for every g ∈
C1([0,∞), V ′) and u1 ∈ D(B), there exists a unique v : [0,∞)→ D(B) such

that Bv(·) ∈ C1([0,∞), V ′), Bv(0) = Bu1, and for each t ≥ 0,

(Bv)′(t) +Av(t) = g(t) . (4.4)

4.2

Each of the preceding results has a parabolic analogue. We begin with the

following.

Theorem 4.5 Let A be the Riesz map of the Hilbert space V and let W be

the seminorm space obtained from a symmetric and monotone C ∈ L(V, V ′).
Let B ∈ L(V, V ′) be monotone and assume that B+λC is V -elliptic for some
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λ > 0. Then for every pair of Hölder continuous functions f : [0,∞)→W ′,

g : [0,∞) → V ′ and each pair u0 ∈ V , U1 ∈ W ′, there exists a unique

function w : [0,∞)→ Vm such thatMw(·) ∈ C([0,∞), V ′m)∩C
1((0,∞), V ′m),

Mw(0) = [Au0, U1], and for all t > 0,

(Mw)′(t) + Lw(t) = [−g(t), f(t)] ,

where L ∈ L(V × V, V ′ × V ′) is defined by L[x1, x2] = [−Ax2,Ax1 + Bx2],
and M is given as in Theorem 4.1.

Proof : By introducing a change-of-variable, if necessary, we may replace L
by λM+ L. Since for x ≡ [x1, x2] ∈ V × V we have

Re(λM+ L)x(x) = λAx1(x1) + (B + λC)x2(x2) ,

we may assume L is V ×V -elliptic. The desired result follows from Theorem
V.4.2.

Corollary 4.6 Let the spaces and operators be given as in Theorem 4.5.

For every Hölder continuous f : [0,∞) → W ′, u0 ∈ V and U1 ∈ W ′,

there exists a unique u(·) ∈ C([0,∞), V ) ∩ C1((0,∞), V ) such that Cu′(·) ∈
C((0,∞),W ′) ∩ C1((0,∞),W ′), u(0) = u0, Cu′(0) = U1, and

(Cu′(t))′ + Bu′(t) +Au(t) = f(t) , t > 0 . (4.5)

Corollary 4.7 Let the spaces and operators be given as in Theorem 4.5.

Suppose F : (0,∞) → W ′ is continuous at all but a finite number of points

and for some p > 1 we have
∫ T
0 ‖F (t)‖

p
W ′ dt < ∞ for all T > 0. If

g : [0,∞) → V ′ is Hölder continuous, u1 ∈ V and U2 ∈ V ′, then there

is a unique function v(·) : [0,∞) → V such that Cv ∈ C([0,∞),W ′) ∩
C1((0,∞),W ′), (Cv)′+Bv ∈ C([0,∞), V ′) and is continuously differentiable
at all but a finite number of points, Cv(0) = Cu1, (Cv′ +Bv)(0) = U2 +Bu1,
and

((Cv)′(t) + Bv(t))′ +Av(t) = F (t) + g(t) (4.6)

at those points at which the derivative exists.

Proof : Almost everything follows as in Corollary 4.3. The only difference is

that we need to note that with F (·) as given above, the function f(t) =
∫ t
0 F
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satisfies

‖f(t)− f(τ)‖W ′ ≤
∫ t
τ
‖F‖W ′ ≤ |t− τ |

1/q
(∫ t
τ
‖F‖pW ′

)1/p

≤ |t− τ |1/q
(∫ T
0
‖F‖pW ′

)1/p
, 0 ≤ τ ≤ t ≤ T ,

where 1/q = 1− 1/p ≥ 0. Hence, f is Hölder continuous.

5 Examples

We shall illustrate some applications of our preceding results by various

examples of initial-boundary value problems. In each such example below,

the operator A will correspond to one of the elliptic boundary value problems
described in Section III.4, and we refer to that section for the computations

as well as occasional notations. Our emphasis here will be on the types of

operators that can be chosen for the remaining coefficients in either of (4.2)

or (4.3).

We begin by constructing the operator A from the abstract boundary
value problem of Section III.3. Let V , H and B be Hilbert spaces and

γ : V → B a linear surjection with kernel V0, and assume γ factors into a

norm-preserving isomorphism of V/V0 onto B. Assume the injection V ↪→ H

is continuous, V0 is dense in H, and H is identified with H
′. Then we obtain

the continuous injections V0 ↪→ H ↪→ V ′0 and V ↪→ H ↪→ V ′ and

(f, v)H = f(v) , f ∈ H , v ∈ V .

Let a1 : V × V → K and a2 : B × B → K be continuous, sesquilinear and
symmetric forms and define

a(u, v) ≡ a1(u, v) + a2(γu, γv) , u, v ∈ V . (5.1)

We shall assume a(·, ·) is V -elliptic; thus, a(·, ·) is a scalar-product on V
whose norm is equivalent to the original one on V . Hereafter, we shall take

a(·, ·) as the scalar-product on V ; the corresponding Riesz map A ∈ L(V, V ′)
is given by

Au(v) = a(u, v) , u, v ∈ V .

Similarly, we define A ∈ L(V, V ′0) by

Au(v) = a1(u, v) , u ∈ V , v ∈ V0 , (5.2)
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Let D0 ≡ {u ∈ V : Au ∈ H}, and denote by ∂ ∈ L(D0, B
′) the abstract

Green’s operator constructed in Theorem III.2.3 and characterized by the

identity

a1(u, v) − (Au, v)H = ∂u(γ(v)) , u ∈ D0 , v ∈ V . (5.3)

Finally, we denote by A2 ∈ L(B,B′) the operator given by

A2ϕ(ψ) = a2(ϕ,ψ) , ϕ, ψ ∈ B .

It follows from (5.1), (5.2) and (5.3) that

Au(v)− (Au, v)H = (∂u+A2(γu))(γv) , u ∈ D0 , v ∈ V , (5.4)

and this identity will be used to characterize the weak or variational bound-

ary conditions below.

Let c : H ×H → K be continuous, non-negative, sesquilinear and sym-
metric; define the monotone C ∈ L(H) by

Cu(v) = c(u, v) , u, v ∈ H ,

where Cu ∈ H follows from H ′ = H. Note that the inclusionW ′ ⊂ H follows
from the continuity of the injection H ↪→ W , where W is the space H with

seminorm induced by c(·, ·). Finally let B ∈ L(V,H) be a given monotone
operator

ReBu(v) ≥ 0 , u ∈ V , v ∈ H ,

and assume C + B is strictly monotone:

(C + B)u(u) = 0 only if u = 0 .

Theorem 5.1 Let the Hilbert spaces and operators be given as above. For

every f ∈ C1([0,∞),W ′) and every pair u0, u1 ∈ V with Au0 + Bu1 ∈ W ′,

there exists a unique u ∈ C1([0,∞), V ) such that Cu′ ∈ C1([0,∞),W ′),

u(0) = u0, Cu′(0) = Cu1, and for each t ≥ 0,

(Cu′(t))′ + Bu′(t) +Au(t) = f(t) , (5.5)

u(t) ∈ D0 ⊂ V , ∂u(t) +A2γ(u(t)) = 0 . (5.6)

Proof : The existence and uniqueness of u(·) follows from Corollary 4.2.
With C and B as above (4.2) shows that Au(t) ∈ H for all t ≥ 0, so (5.6)
follows from Corollary III.3.2. (Cf. (5.4).) To be sure, the pair of equations

(5.5), (5.6), is equivalent to (4.2).

We illustrate Theorem 5.1 in the examples following in Sections 5.1 and

5.2.
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5.1

Let G be open in Rn, H = L2(G), Γ ⊂ ∂G and V = {v ∈ H1(G) : γ0(v)(s) =
0, a.e. s ∈ Γ}. Let p ∈ L∞(G) with p(x) ≥ 0, x ∈ G, and define

c(u, v) =

∫
G
p(x)u(x)v(x) dx , u, v ∈ H . (5.7)

Then C is multiplication by p and W ′ = {p1/2v : v ∈ L2(G)}. Let R ∈
L∞(G) and the real vector field µ(x) = (µ1(x), . . . , µn(x)) be given with

each µj ∈ C1(Ḡ); assume

−
(
1
2

) n∑
j=1

∂jµj(x) + Re{R(x)} ≥ 0 , x ∈ G ,

(
1
2

)
µ(s) · ν(s) ≥ 0 , s ∈ ∂G ∼ Γ .

Then B ∈ L(V,H) given by (2.7) is monotone. Furthermore, we shall assume

p(x)−
(
1
2

) n∑
j=1

∂jµj(x) + Re{R(x)} > 0 , x ∈ G ,

and this implies C + B is strictly-monotone.
Let a0, aij ∈ L∞(G), 1 ≤ i, j ≤ n, and assume a0(x) ≥ 0, aij(x) = aji(x),

x ∈ G, and that

a(u, v) ≡
∫
G

{ n∑
i,j=1

aij(x)∂iu(x)∂jv(x) + a0(x)u(x)v(x)

}
dx (5.8)

is V -coercive (cf. Section III.5). Then (5.8) is a scalar product on V whose

norm is equivalent to that of H1(G) on V .

Let F (·, t) ∈ L2(G) be given for each t ≥ 0 such that t 7→ F (·, t) belongs
to C1([0,∞), L2(G)) (cf. Section 2.1). Then f(t) ≡ p1/2F (·, t) defines f ∈
C1([0,∞),W ′). Finally, let U0, U1 ∈ V satisfy AU0 + BU1 ∈ W ′. (This

can be translated into an elliptic boundary value problem.) Using Theorem

IV.7.1, we can obtain a (measurable) function U(·, ·) on G× [0,∞) which is
a solution of the initial-boundary value problem

∂t(p(x)∂tU(x, t)) +R(x)∂tU(x, t) +
∂

∂µ
(∂tU(x, t)) (5.9)
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−
n∑
j=1

∂jaij(x)∂iU(x, t) + a0(x)U(x, t)

= p1/2(x)F (x, t) , x ∈ G , t ≥ 0 ;

U(s, t) = 0 , s ∈ Γ ,

∂U(s, t)

∂νA
= 0 , s ∈ ∂G ∼ Γ ;


 (5.10)

U(x, 0) = U0(x) ,

p(x)∂tU(x, 0) = p(x)U1(x) , x ∈ G .

}
(5.11)

We refer to Section III.4.1 for notation and computations involving the op-

erators associated with the form (5.8).

The partial differential equation (5.9) is of mixed hyperbolic-parabolic

type. Note that the initial conditions (5.11) imposed on the solution at

x ∈ G depend on whether p(x) > 0 or p(x) = 0. Also, the equation (5.9) is
satisfied at t = 0, thereby imposing a compatibility condition on the initial

data U0, U1. Finally, we observe that (5.10) contains the boundary condition

of first type along Γ and the boundary condition of second type on ∂G ∼ Γ.

5.2

Let H and C be given as in Section 5.1; let V = H1(G) and define B by (2.7)
with µ ≡ 0 and assume

Re{R(x)} ≥ 0 , p(x) ≥ 0 ,

p(x) + Re{R(x)} > 0 , x ∈ G ,

as before. Define

a1(u, v) =
∫
G∇u · ∇v̄ u, v ∈ V ,

a2(ϕ,ψ) =
∫
∂G α(s)ϕ(s)ψ(x) ds , ϕ, ψ ∈ L2(∂G)

where α ∈ L∞(∂G), α(s) ≥ 0, a.e. s ∈ ∂G. Then A2 is multiplication by
α. We assume that a(·, ·) given by (5.1) is V -coercive (cf. Corollary III.5.5).
With F (·, ·), U0, and U1 as above, we obtain a unique generalized solution
of the problem

∂t(p(x)∂tU(x, t)) +R(x)∂tU(x, t)−∆nU(x, t) (5.12)
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= p1/2(x)F (x, t) , x ∈ G , t ≥ 0 ,

∂U(s, t)

∂ν
+ α(s)U(s, t) = 0 , s ∈ ∂G , t ≥ 0 , (5.13)

and (5.11). We note that at those x ∈ G where p(x) > 0, (5.12) is a (hy-
perbolic) wave equation and (5.11) specifies initially U and ∂tU , whereas

at those x ∈ G where p(x) = 0, (5.12) is a homogeneous (parabolic) diffu-
sion equation and only U is specified initially. The condition (5.13) is the

boundary condition of third type.

If we choose V = {v ∈ H1(G) : γ0(v) is constant} as in Section III.4.2
and prescribe everything else as above, then we obtain a solution of (5.12),

(5.11) and the boundary condition of fourth type

U(s, t) = h(t) , s ∈ ∂G ,∫
∂G

∂U(s, t)

∂ν
ds+

∫
∂G
α(s) ds · h(t) = 0 .


 (5.14)

Note that h(·) is an unknown in the problem. Boundary value problems with
periodic boundary conditions can be put in the form of (5.14).

5.3

Let H = L2(G), V = H1(G), and define A as in Section 5.2. Set B ≡ 0 and
define

c(u, v) =

∫
G
p(x)u(x)v(x) dx+

∫
∂G
σ(s)u(s)v(s) ds , u, v ∈ V

when p ∈ L∞(G) and σ ∈ L∞(∂G) satisfy p(x) > 0, x ∈ G, and σ(s) ≥ 0,
s ∈ ∂G. Let t 7→ F (·, t) be given in C1([0,∞), L2(G)) and t 7→ g(·, t) be
given in C1([0,∞), L2(∂G)); then define f ∈ C1([0,∞),W ′) by

f(t)(v) =

∫
G
p1/2(x)F (x, t)v(x) dx+

∫
∂G
σ1/2(s)g(s, t)v(s) ds , v ∈ V , t ≥ 0 .

Let U0, U1 ∈ V withAU0 ∈W ′. (This last inclusion is equivalent to requiring

∆nU0 = p1/2H for some H ∈ L2(G) and ∂νU0 + αU0 = σ1/2h for some

h ∈ L2(∂G).) Then Corollary 4.2 applies to give a unique solution u of (4.2)
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with initial conditions. From this we obtain a solution U of the problem




∂t(p(x)∂tU(x, t)) −∆nU(x, t) = p1/2(x)F (x, t) ,

x ∈ G , t ≥ 0 ,

∂t(σ(s)∂tU(s, t)) + ∂νU(s, t) + α(s)U(s, t) = σ
1/2(s)g(s, t) ,

s ∈ ∂G , t ≥ 0 ,

U(x, 0) = U0(x) , ∂tU(x, 0) = U1(x) .

The boundary condition is obtained formally since we do not know ∆nU(·, t) ∈
L2(G) for all t > 0; hence, (5.3) is not directly applicable. Such boundary

conditions arise in models of vibrating membranes (or strings) with bound-

aries (or ends) loaded with a mass distribution, thereby introducing an in-

ertia term. Such problems could also contain mass distributions (or point

loads) on internal regions. Similarly, internal or boundary damping can be

included by appropriate choices of B, and we illustrate this in the following
example.

5.4

Let H, V , A and C be given as in Section 5.3. Assume R ∈ L∞(G), r ∈
L∞(∂G) and that Re{R(x)} ≥ 0, x ∈ G, Re{r(s)} ≥ 0, s ∈ ∂G. We define
B ∈ L(V, V ′) by

Bu(v) =
∫
G
R(x)u(x)v(x) dx+

∫
∂G
r(s)u(s)v(s) ds , u, v ∈ V .

We need only to assume p(x) + Re{R(x)} > 0 for x ∈ G; then Corol-

lary 4.3 is applicable. Let t 7→ F1(·, t) in C([0,∞), L2(G)), t 7→ G1(·, t) in
C1([0,∞), L2(∂G)), and t 7→ G2(t) in C

1([0,∞), L2(G)) be given. We then
define F ∈ C([0,∞),W ′) and g ∈ C1([0,∞), V ′) by

F (t) = p1/2F1(·, t) ,

g(t)(v) =

∫
∂G
σ1/2(s)G1(s, t)v(s) ds+

∫
G
G2(x, t)v(x) dx , v ∈ V .

If U1 ∈ V and V1 ∈ L2(G), and V2 ∈ L2(∂G), then U2 ∈W ′ is defined by

U2(v) =

∫
G
p1/2(x)V1(x)v(x) dx+

∫
∂G
σ1/2(s)V2(s)v(s) ds , v ∈ V ,
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and Corollary 4.3 gives a generalized solution of the following problem:


∂2t (p(x)U(x, t)) + ∂t(R(x)U(x, t)) −∆nU(x, t)

= p1/2(x)F1(x, t) +G2(x, t) , x ∈ G ,

∂2t (σ(s)U(s, t)) + ∂t(r(s)U(s, t)) + ∂νU(s, t) + (s)U(s, t)

= σ1/2(s)G1(s, t) , s ∈ ∂G , t > 0 ,

p(x)U(x, 0) = p(x)U1(x) ,

σ(s)U(s, 0) = σ(s)U1(s) , s ∈ ∂G

∂t(p(x)U(x, 0)) +R(x)U(x, 0) = p
1/2(x)V1(x) ,

∂t(σ(s)U(s, 0)) + r(s)U(s, 0) = σ
1/2(s)V2(s) .

The right side of the partial differential equation could contain singularities

in x as well. When Re{R(x)} > 0 in G, the preceding problem with p ≡ 0
and σ ≡ 0 is solved by Corollary 4.4.
Similarly one can obtain generalized solutions to boundary value prob-

lems containing partial differential equations of the type (3.3); that is, equa-

tions of the form (5.9) plus the fourth-order term −∂t(∆n∂tU(x, t)). Finally,
we record an abstract parabolic boundary value problem which is solved

by using Corollary 4.6. Such problems arise in classical models of linear

viscoelasticity (cf. (2.9)).

Theorem 5.2 Let the Hilbert spaces and operators be given as in Theorem

5.1, except we do not assume B + C is strictly monotone. If ε > 0, f :

[0,∞) → W ′ is Hölder continuous, u0 ∈ V and U1 ∈ W ′, there exists a

unique u ∈ C([0,∞), V ) ∩ C1([0,∞), V ) such that Cu′ ∈ C([0,∞),W ′) ∩
C1((0,∞),W ′), u(0) = u0, Cu

′(0) = U1, and (5.5), (5.6) hold for each

t > 0.

Exercises

1.1. Use the separation-of-variables technique to obtain a series representa-

tion for the solution u of (1.1) with u(0, t) = u(π, t) = 0, u(x, 0) =

u0(x) and ∂tu(x, 0) = u1(x).

1.2. Repeat the above for the viscoelasticity equation

∂2t u− ε∂t∆nu−∆nu = F (x, t) , ε > 0 .
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1.3. Compare the convergence rates of the two series solutions obtained

above.

2.1. Explain the identification V ′m = V
′ ×W ′ in Section 2.1.

2.2. Use Theorem 2.1 to prove Theorem 2.3.

2.3. Use the techniques of Section 2 to deduce Theorem 2.3 from IV.5.

2.4. Verify that the function f in Section 2.1 belongs to C1([0, T ], L2(G)).

2.5. Use Theorem 2.1 to construct a solution of (2.5) satisfying the fourth

boundary condition. Repeat for each of the examples in Section III.4.

2.6. Add the term
∫
∂G r(s)u(s)v(s) ds to (2.7) and find the initial-boundary

value problem that results.

2.7. Show that Theorem 2.1 applies to appropriate problems for the equation

∂2t u(x, t) + ∂
3
x∂tu(x, t)− ∂

2
xu(x, t) = F (x, t) .

2.8. Find some well-posed problems for the equation

∂2t u(x, t) + ∂
4
xu(x, t) = F (x, t) .

3.1. Complete the proofs of Theorem 3.2 and Corollary 3.3.

3.2. Verify that (3.3) is the characterization of (3.1) with the given data.

4.1. Use Corollary 4.4 to solve the problem

∂t∂xu(x, t)− ∂2xu(x, t) = F (x, t)

u(0, t) = cu(1, t)

u(x, 0) = u0(x)

for |c| ≤ 1, c 6= 1.

4.2. For each of the Corollaries of Section 4, give an example which illustrates

a problem solved by that Corollary only.
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5.1. In the proof of Theorem 5.1, verify that (4.2) is equivalent to the pair

(5.5), (5.6).

5.2. In Section 5.1, show C+B is strictly monotone, give sufficient conditions
for (5.8) to be V -elliptic, and characterize the condition AU0 +BU1 ∈
W ′ as requiring that U0 satisfy an elliptic boundary value problem (cf.

Section 5.3).

5.3. In Section 5.2, give sufficient conditions for a(·, ·) to be V -elliptic.

5.4. Show the following problem with periodic boundary conditions is well-

posed: ∂2t u − ∂2xu = F (x, t), u(x, 0) = u0(x), ∂tu(x, 0) = u1(x, 0),

u(0, t) = u(1, t), ∂xu(0, t) = ∂xu(1, t). Generalize this to higher dimen-

sions.

5.5. A vibrating string loaded with a point mass m at x = 1
2 leads to the

following problem: ∂2t u = ∂2xu, u(0, t) = u(1, t) = 0, u(x, 0) = u0(x),

∂tu(x, 0) = u1(x), u((
1
2 )
−, t) = u((12 )

+, t), m∂2t u(
1
2 , t) = ∂xu((

1
2)
+, t)−

∂xu((
1
2 )
−, t). Use the methods of Section 5.3 to show this problem is

well-posed.



Chapter VII

Optimization and
Approximation Topics

1 Dirichlet’s Principle

When we considered elliptic boundary value problems in Chapter III we

found it useful to pose them in a weak form. For example, the Dirichlet

problem
−∆nu(x) = F (x) , x ∈ G ,

u(s) = 0 , s ∈ ∂G

}
(1.1)

on a bounded open set G in Rn was posed (and solved) in the form

u ∈ H10 (G) ;
∫
G
∇u · ∇v dx =

∫
G
F (x)v(x) dx , v ∈ H10 (G) . (1.2)

In the process of formulating certain problems of mathematical physics as

boundary value problems of the type (1.1), integrals of the form appearing

in (1.2) arise naturally. Specifically, in describing the displacement u(x) at

a point x ∈ G of a stretched string (n = 1) or membrane (n = 2) resulting
from a unit tension and distributed external force F (x), we find the potential

energy is given by

E(u) =
(
1
2

) ∫
G
|∇u(x)|2 dx−

∫
G
F (x)u(x) dx . (1.3)

Dirichlet’s principle is the statement that the solution u of (1.2) is that

function in H10 (G) at which the functional E(·) attains its minimum. That

169
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is, u is the solution of

u ∈ H10 (G) : E(u) ≤ E(v) , v ∈ H10 (G) . (1.4)

To prove that (1.4) characterizes u, we need only to note that for each

v ∈ H10 (G)

E(u+ v)− E(u) =
∫
G
(∇u · ∇v − Fv) dx +

(
1
2

) ∫
G
|∇v|2 dx

and the first term vanishes because of (1.2). Thus E(u + v) ≥ E(u) and
equality holds only if v ≡ 0.
The preceding remarks suggest an alternate proof of the existence of a

solution of (1.2), hence, of (1.1). Namely, we seek the element u of H10 (G)

at which the energy function E(·) attains its minimum, then show that u
is the solution of (1.2). This program is carried out in Section 2 where

we minimize functions more general than (1.3) over closed convex subsets

of Hilbert space. These more general functions permit us to solve some

nonlinear elliptic boundary value problems.

By considering convex sets instead of subspaces we obtain some elemen-

tary results on unilateral boundary value problems. These arise in applica-

tions where the solution is subjected to a one-sided constraint, e.g., u(x) ≥ 0,
and their solutions are characterized by variational inequalities. These top-

ics are presented in Section 3, and in Section 4 we give a brief discussion of

some optimal control problems for elliptic boundary value problems.

Finally, Dirichlet’s principle provides a means of numerically approxi-

mating the solution of (1.2). We pick a convenient finite-dimensional sub-

space of H10 (G) and minimize E(·) over this subspace. This is the Rayleigh-
Ritz method and leads to an approximate algebraic problem for (1.2). This

method is described in Section 5, and in Section 6 we shall obtain related

approximation procedures for evolution equations of first or second order.

2 Minimization of Convex Functions

Suppose F is a real-valued function defined on a closed interval K (possibly

infinite). If F is continuous and if either K is bounded or F (x) → +∞ as
|x| → +∞, then F attains its minimum value at some point of K. This
result will be extended to certain real-valued functions on Hilbert space

and the notions developed will be extremely useful in the remainder of this
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chapter. An essential point is to characterize the minimum by the derivative

of F . Throughout this section V is a real separable Hilbert space, K is a

non-empty subset of V and F : K → R is a function.

2.1

We recall from Section I.6 that the space V is weakly (sequentially) compact.

It is worthwhile to consider subsets of V which inherit this property. Thus,K

is called weakly (sequentially) closed if the limit of every weakly convergent

sequence from K is contained in K. Since convergence (in norm) implies

weak convergence, a weakly closed set is necessarily closed.

Lemma 2.1 If K is closed and convex (cf. Section I.4.2), then it is weakly

closed.

Proof : Let x be a vector not in K. From Theorem I.4.3 there is an x0 ∈ K
which is closest to x. By translation, if necessary, we may suppose (x0 +

x)/2 = θ, i.e., x = −x0. Clearly (x, x0) < 0 so we need to show that
(z, x0) ≥ 0 for all z ∈ K; from this the desired result follows easily. Since K
is convex, the function ϕ : [0, 1] → R given by

ϕ(t) = ‖(1− t)x0 + tz − x‖
2
V , 0 ≤ t ≤ 1 ,

has its minimum at t = 0. Hence, the right-derivative ϕ+(0) is non-negative,

i.e.,

(x0 − x, z − x0) ≥ 0 .

Since x = −x0, this gives (x0, z) ≥ ‖x0‖2V > 0.
The preceding result and Theorem I.6.2 show that each closed, convex

and bounded subset of V is weakly sequentially compact. We shall need to

consider situations in which K is not bounded (e.g., K = V ); the following

is then appropriate.

Definition. The function F has the growth property at x ∈ K if, for some
R > 0, y ∈ K and ‖y − x‖ ≥ R implies F (y) > F (x).

The continuity requirement that is adequate for our purposes is the fol-

lowing.

Definition. The function F : K → R is weakly lower-semi-continuous at
x ∈ K if for every sequence {xn} in K which weakly converges to x ∈ K
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we have F (x) ≤ lim inf F (xn). [Recall that for any sequence {an} in R,
lim inf(an) ≡ supk≥0(infn≥k(an)).]

Theorem 2.2 Let K be closed and convex and F : K → R be weakly lower-
semi-continuous at every point of K. If (a) K is bounded or if (b) F has the

growth property at some point in K, then there exists an x0 ∈ K such that
F (x0) ≤ F (x) for all x ∈ K. That is, F attains its minimum on K.

Proof : Let m = inf{F (x) : x ∈ K} and {xn} a sequence in K for which
m = limF (xn). If (a) holds, then by weak sequential compactness there is

a subsequence of {xn} denoted by {xn′} which converges weakly to x0 ∈ V ;
Lemma 2.1 shows x0 ∈ K. The weak lower-semi-continuity of F shows
F (x0) ≤ lim inf F (xn′) = m, hence, F (x0) = m and the result follows. For
the case of (b), let F have the growth property at z ∈ K and let R > 0
be such that F (x) > F (z) whenever ‖z − x‖ ≥ R and x ∈ K. Then set
B ≡ {x ∈ V : ‖x − z‖ ≤ R} and apply (a) to the closed, convex and
bounded set B ∩ K. The result follows from the observation inf{F (x) :
x ∈ K} = inf{F (x) : x ∈ B ∩K}.
We note that if K is bounded then F has the growth property at ev-

ery point of K; thus the case (b) of Theorem 2.2 includes (a) as a special

case. Nevertheless, we prefer to leave Theorem 2.2 in its (possibly) more

instructive form as given.

2.2

The condition that a function be weakly lower-semi-continuous is in general

difficult to verify. However for those functions which are convex (see below),

the lower-semi-continuity is the same for the weak and strong notions; this

can be proved directly from Lemma 2.1. We shall consider a class of func-

tions for which convexity and lower semicontinuity are easy to check and,

furthermore, this class contains all examples of interest to us here.

Definition. The function F : K → R is convex if its domain K is convex
and for all x, y ∈ K and t ∈ [0, 1] we have

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y) . (2.1)
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Definition. The function F : K → R is G-differentiable at x ∈ K if K is
convex and if there is a F ′(x) ∈ V ′ such that

lim
t→0+

1

t

[
F (x+ t(y − x))− F (x)

]
= F ′(x)(y − x)

for all y ∈ K. F ′(x) is called the G-differential of F at x. If F is G-
differentiable at every point in K, then F ′ : K → V ′ is the gradient of F on
K and F is the potential of the function F ′.

The G-differential F ′(x) is precisely the directional derivative of F at the

point x in the direction toward y. The following shows how it characterizes

convexity of F .

Theorem 2.3 Let F : K → R be G-differentiable on the convex set K. The
following are equivalent: (a) F is convex, (b) For each pair x, y ∈ K we have

F ′(x)(y − x) ≤ F (y)− F (x) . (2.2)

(c) For each pair x, y ∈ K we have

(F ′(x)− F ′(y))(x− y) ≥ 0 . (2.3)

Proof : If F is convex, then F (x + t(y − x)) ≤ F (x) + t(F (y) − F (x)) for
x, y ∈ K and t ∈ [0, 1], so (2.2) follows. Thus (a) implies (b). If (b) holds,
we obtain F ′(y)(x− y) ≤ F (x) − F (y) and F (x)− F (y) ≤ F ′(x)(x− y), so
(c) follows.

Finally, we show (c) implies (a). Let x, y ∈ K and define ϕ : [0, 1] → R
by

ϕ(t) = F (tx+ (1− t)y) = F (y + t(x− y)) , t ∈ [0, 1] .

Then ϕ′(t) = F ′(y + t(x − y))(x − y) and we have for 0 ≤ s < t ≤ 1 the
estimate

(ϕ′(t)−ϕ′(s))(t−s) = (F ′(y+ t(x−y))−F ′(y+s(x−y)))((t−s)(x−y)) ≥ 0

from (c), so ϕ′ is non-decreasing. The Mean-Value Theorem implies that

ϕ(1)− ϕ(t)

1− t
≥
ϕ(t) − ϕ(0)

t− 0
, 0 < t < 1 .

Hence, ϕ(t) ≤ tϕ(1) + (1− t)ϕ(0), and this is just (2.1).
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Corollary 2.4 Let F be G-differentiable and convex. Then F is weakly

lower-semi-continuous on K.

Proof : Let the sequence {xn} ⊂ K converge weakly to x ∈ K. Since
F ′(x) ∈ V ′, we have limF ′(x)(xn) = F ′(x)(x), so from (2.2) we obtain

lim inf(F (xn)− F (x)) ≥ lim inf F
′(x)(xn − x) = 0 .

This shows F is weakly lower-semi-continuous at x ∈ K.

Corollary 2.5 In the situation of Corollary 2.4, for each pair x, y ∈ K the
function

t 7−→ F ′(x+ t(y − x))(y − x) , t ∈ [0, 1]

is continuous.

Proof : We need only observe that in the proof of Theorem 2.3 the function

ϕ′ is a monotone derivative and thereby must be continuous.

2.3

Our goal is to consider the special case of Theorem 2.2 that results when F

is a convex potential function. It will be convenient in the applications to

have the hypothesis on F stated in terms of its gradient F ′.

Lemma 2.6 Let F be G-differentiable and convex. Suppose also we have

lim
‖x‖→+∞

F ′(x)(x)

‖x‖
= +∞ , x ∈ K .

Then lim‖x‖→∞ F (x) = +∞, so F has the growth property at every point in
K.

Proof : We may assume θ ∈ K. For each x ∈ K we obtain from Corol-
lary 2.5

F (x)− F (θ) =
∫ 1
0
F ′(tx)(x) dt

=

∫ 1
0
(F ′(tx)− F ′(θ))(x) dt+ F ′(θ)(x) .
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With (2.3) this implies

F (x)− F (θ) ≥
∫ 1
1/2
(F ′(tx)− F ′(θ))(x) dt+ F ′(θ)(x) . (2.4)

From the Mean-Value Theorem it follows that for some s = s(x) ∈ [12 , 1]

F (x)− F (θ) ≥
(
1
2

)
(F ′(sx)(x) + F ′(θ)(x))

≥
(
1
2

)
‖x‖
{
F ′(sx)(sx)

‖sx‖
− ‖F ′(θ)‖V ′

}
.

Since ‖sx‖ ≥ (12 )‖x‖ for all x ∈ K, the result follows.

Definitions. Let D be a non-empty subset of V and T : D → V ′ be a
function. Then T is monotone if

(T (x)− T (y))(x− y) ≥ 0 , x, y ∈ D ,

and strictly monotone if equality holds only when x = y. We call T coercive

if

lim
‖x‖→∞

(
T (x)(x)

‖x‖

)
= +∞ .

After the preceding remarks on potential functions, we have the following

fundamental results.

Theorem 2.7 Let K be a non-empty closed, convex subset of the real sep-

arable Hilbert space V , and let the function F : K → R be G-differentiable
on K. Assume the gradient F ′ is monotone and either (a) K is bounded or

(b) F ′ is coercive. Then the set M ≡ {x ∈ K : F (x) ≤ F (y) for all y ∈ K}
is non-empty, closed and convex, and x ∈M if and only if

x ∈ K : F ′(x)(y − x) ≥ 0 , y ∈ K . (2.5)

Proof : ThatM is non-empty follows from Theorems 2.2 and 2.3, Corollary

2.4 and Lemma 2.6. Each of the sets My ≡ {x ∈ K : F (x) ≤ F (y)} is closed
and convex so their intersection, M , is closed and convex. If x ∈ M then
(2.5) follows from the definition of F ′(x); conversely, (2.2) shows that (2.5)

implies x ∈M .
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2.4

We close with a sufficient condition for uniqueness of the minimum point.

Definition. The function F : K → R is strictly convex if its domain is

convex and for x, y ∈ K, x 6= y, and t ∈ (0, 1) we have

F (tx+ (1− t)y) < tF (x) + (1− t)F (y) .

Theorem 2.8 A strictly convex function F : K → R has at most one point
at which the minimum is attained.

Proof : Suppose x1, x2 ∈ K with F (x1) = F (x2) = inf{F (y) : y ∈ K} and
x1 6= x2. Since

1
2(x1 + x2) ∈ K, the strict convexity of F gives

F
(
(12 )(x1 + x2)

)
<
(
1
2

)
(F (x1) + F (x2)) = inf{F (y) : y ∈ K} ,

and this is a contradiction.

The third part of the proof of Theorem 2.3 gives the following.

Theorem 2.9 Let F be G-differentiable on K. If the gradient F ′ is strictly

monotone, then F is strictly convex.

3 Variational Inequalities

The characterization (2.5) of the minimum point u of F on K is an example

of a variational inequality . It expresses the fact that from the minimum point

the function does not decrease in any direction into the set K. Moreover, if

the minimum point is an interior point of K, then we obtain the “variational

equality” F ′(u) = 0, a functional equation for the (gradient) operator F ′.

3.1

We shall write out the special form of the preceding results which occur

when F is a quadratic function. Thus, V is a real Hilbert space, f ∈ V ′, and
a(·, ·) : V ×V → R is continuous, bilinear and symmetric. Define F : V → R
by

F (v) =
(
1
2

)
a(v, v) − f(v) , v ∈ V . (3.1)
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From the symmetry of a(·, ·) we find the G-differential of F is given by

F ′(u)(v − u) = a(u, v − u)− f(v − u) , u, v ∈ V .

If A : V → V ′ is the operator characterizing the form a(·, ·), cf. Section I.5.4,
then we obtain

F ′(u) = Au− f , u ∈ V . (3.2)

To check the convexity of F by the monotonicity of its gradient, we compute

(F ′u− F ′v)(u− v) = a(u− v, u− v) = A(u− v)(u− v) .

Thus, F ′ is monotone (strictly monotone) exactly when a(·, ·) is non-negative
(respectively, positive), and this is equivalent to A being monotone (respec-
tively, positive) (cf. Section V.1). The growth of F is implied by the state-

ment

lim
‖v‖→∞

(
a(v, v)

‖v‖

)
= +∞ . (3.3)

Since F (v) ≥ (12)a(v, v)−‖f‖ ·‖v‖, from the identity (3.2) we find that (3.3)
is equivalent to F ′ being coercive.

The preceding remarks show that Theorems 2.7 and 2.8 give the follow-

ing.

Theorem 3.1 Let a(·, ·) : V × V → R be continuous, bilinear, symmetric
and non-negative. Suppose f ∈ V ′ and K is a closed convex subset of V .
Assume either (a) K is bounded or (b) a(·, ·) is V -coercive. Then there exists
a solution of

u ∈ K : a(u, v − u) ≥ f(v − u) , v ∈ K . (3.4)

There is exactly one such u in the case of (b); there is exactly one in case

(a) if we further assume a(·, ·) is positive.

Finally we note that whenK is the whole space V , then (3.4) is equivalent

to

u ∈ V : a(u, v) = f(v) , v ∈ V , (3.5)

the generalized boundary value problem studied in Chapter III. For this

reason, when (3.5) is equivalent to a boundary value problem, (3.5) is called

the variational form of that problem and such problems are called variational

boundary value problems.

We shall illustrate some very simple variational inequalities by examples

in which we characterize the solution by other means.
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3.2 Projection

Given the Hilbert space V , the closed convex subsetK, and the point u0 ∈ V ,
we define

a(u, v) = (u, v)V , f(v) = (u0, v)V , u, v ∈ V .

Then (3.1) gives the function

F (v) =
(
1
2

){
‖u0 − v‖

2 − ‖u0‖
2
}
, v ∈ V ,

so u ∈ K is the minimum of F on K if and only if

‖u0 − u‖ ≤ ‖u0 − v‖ , v ∈ K .

That is, u is that (unique) point of K which is closest to u0. The existence

and uniqueness follows from Theorem 3.1; in this case we have the equivalent

of Theorem I.4.3. The computation

F ′(u)(v − u) = (u− v0, v − u)V

shows that u is characterized by the variational inequality

u ∈ K : (u− u0, v − u)V ≥ 0 , v ∈ K ,

and the geometric meaning of this inequality is that the angle between u−u0
and v − u is between −π/2 and π/2 for each v ∈ K. If K is a subspace of
V , this is equivalent to (3.5) which says u− u0 is orthogonal to K. That is,
u is the projection of u0 on the space K, cf. Section I.4.3.

3.3 Dirichlet’s Principle

Let G be a bounded open set in Rn and V = H10 (G). Let F ∈ L
2(Ω) and

define

a(u, v) =

∫
G
∇u · ∇v dx , f(v) =

∫
G
F (x)v(x) dx , u, v ∈ V .

Thus, the function to be minimized is

E(v) =
(
1
2

) ∫
G

n∑
j=1

|∂jv|
2 dx−

∫
G
Fv dx , v ∈ V .

In the applications this is a measure of the “energy” in the system. Take K

to be the whole space: K = V . The point u at which E attains its minimum

is characterized by (3.5). Thus, the solution is characterized by the Dirichlet

problem (1.1), cf. Chapter III.
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3.4 Free Boundary Problem

We take the space V , the form a(·, ·) and functional f as above. Let g ∈
H10 (Ω) and define

K = {v ∈ H10 (G) : v(x) ≥ g(x) a.e. x ∈ G} .

Since a(·, ·) is V -coercive, there exists a unique solution u of (3.4). This
solution is characterized by the following:

u ≥ g in G , u = 0 on ∂G ,

−∆nu− F ≥ 0 in G , and

(u− g)(−∆nu− F ) = 0 in G .


 (3.6)

The first follows from u ∈ K and the second is obtained from (3.4) by setting
v = u+ϕ for any ϕ ∈ C∞0 (G) with ϕ ≥ 0. Given the first two lines of (3.6),
the third line follows by setting v = g in (3.4). One can show, conversely,

that any u ∈ H1(G) satisfying (3.6) is the solution of (3.4). Note that the
region G is partitioned into two parts

G0 = {x : u(x) = g(x)} , G+ = {x : u(x) > g(x)}

and −∆nu = F in G+. That is, in G0 (G+) the first (respectively, second)
inequality in (3.6) is replaced by the corresponding equation. There is a free

boundary at the interface between G0 and G+; locating this free boundary

is equivalent to reducing (3.6) to a Dirichlet problem.

3.5 Unilateral Boundary Condition

Choose V = H1(G) and K = {v ∈ V : v ≥ g1 on ∂G}, where g1 ∈ H1(G) is
given. Let F (·) ∈ L2(G), g2 ∈ L2(∂G) and define f ∈ V ′ by

f(v) =

∫
G
Fv dx+

∫
∂G
g2v ds , v ∈ V

where we suppress the trace operator in the above and hereafter. Set

a(u, v) = (u, v)H1(G). Theorem 3.1 shows there exists a unique solution
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u ∈ K of (3.4). This solution is characterized by the following:

−∆nu+ u = F in G ,

u ≥ g1 on ∂G ,

∂u

∂ν
≥ g2 on ∂G , and(
∂u

∂ν
− g2

)
(u− g1) = 0 on ∂G .




(3.7)

We shall show that the solution of (3.4) satisfies (3.7); the converse is left to

an exercise. The first inequality in (3.7) follows from u ∈ K. If ϕ ∈ C∞0 (G),
then setting v = u + ϕ, then v = u − ϕ in (3.4) we obtain the partial
differential equation in (3.7). Inserting this equation in (3.4) and using the

abstract Green’s formula (Theorem III.2.3), we obtain

∫
∂G

∂u

∂ν
(v − u) ds ≥

∫
∂G
g2(v − u) , v ∈ K . (3.8)

If w ∈ H1(G) satisfies w ≥ 0 on ∂G, we may set v = u + w in (3.8); this
gives the second inequality in (3.7). Setting v = g1 in (3.8) yields the last

equation in (3.7). Note that there is a region Γ0 in ∂G on which u = g1, and

∂u/∂ν = g2 on ∂G ∼ Γ0. Thus, finding u is equivalent to finding Γ0, so we
may think of (3.7) as another free boundary problem.

4 Optimal Control of Boundary Value Problems

4.1

Various optimal control problems are naturally formulated as minimization

problems like those of Section 2. We illustrate the situation with a model

problem which we discuss in this section.

Example. Let G be a bounded open set in Rn whose boundary ∂G is a

C1-manifold with G on one side. Let F ∈ L2(G) and g ∈ L2(∂G) be given.
Then for each control v ∈ L2(∂G) there is a corresponding state y ∈ H1(G)
obtained as the unique solution of the system

−∆ny + y = F in G
∂y

∂ν
= g + v on ∂G


 (4.1)
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and we denote the dependence of y on v by y = y(v). Assume that we

may observe the state y only on ∂G and that our objective is to choose v

so as to place the observation y(v)|∂G closest to a given desired observation
w ∈ L2(∂G). Each control v is exerted at some cost , so the optimal control
problem is to minimize the “error plus cost”

J(v) =

∫
∂G
|y(v)− w|2 dx+ c

∫
∂G
|v|2 dx (4.2)

over some given set of admissible controls in L2(∂G). An admissible control

u at which J attains its minimum is called an optimal control . We shall

briefly consider problems of existence or uniqueness of optimal controls and

alternate characterizations of them, and then apply these general results to

our model problem.

We shall formulate the model problem (4.1), (4.2) in an abstract setting

suggested by Chapter III. Thus, let V and H be real Hilbert spaces with

V dense and continuously imbedded in H; identify the pivot space H with

its dual and thereby obtain the inclusions V ↪→ H ↪→ V ′. Let a(·, ·) be
a continuous, bilinear and coercive form on V for which the corresponding

operator A : V → V ′ given by

a(u, v) = Au(v) , u, v ∈ V

is necessarily a continuous bijection with continuous inverse. Finally, let

f ∈ V ′ be given. (The system (4.1) with v ≡ 0 can be obtained as the
operator equation Ay = f for appropriate choices of the preceding data; cf.
Section III.4.2 and below.)

To obtain a control problem we specify in addition to the state space

V and data space V ′ a Hilbert space U of controls and an operator B ∈
L(U, V ′). Then for each control v ∈ U , the corresponding state y = y(v) is
the solution of the system (cf. (4.1))

Ay = f + Bv , y = y(v) . (4.3)

We are given a Hilbert spaceW of observations and an operator C ∈ L(V,W ).
For each state y ∈ V there is a corresponding observation Cy ∈ W which
we want to force close to a given desired observation w ∈ W . The cost
of applying the control v ∈ U is given by Nv(v) where N ∈ L(U,U ′) is
symmetric and monotone. Thus, to each control v ∈ U there is the “error
plus cost” given by

J(v) ≡ ‖Cy(v) − w‖2W +Nv(v) . (4.4)
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The optimal control problem is to minimize (4.4) over a given non-empty

closed convex subset Uad of admissible controls in U . An optimal control is

a solution of

u ∈ Uad : J(u) ≤ J(v) for all v ∈ Uad . (4.5)

4.2

Our objectives are to give sufficient conditions for the existence (and possible

uniqueness) of optimal controls and to characterize them in a form which

gives more information.

We shall use Theorem 2.7 to attain these objectives. In order to compute

the G-differential of J we first obtain from (4.3) the identity

Cy(v)− w = CA−1Bv + CA−1f − w

which we use to write (4.4) in the form

J(v) = ‖CA−1Bv‖2W +Nv(v)+2(CA
−1Bv, CA−1f −w)W +‖CA

−1f −w‖2W .

Having expressed J as the sum of quadratic, linear and constant terms, we

easily obtain the G-differential

J ′(v)(ϕ) = 2
{
(CA−1Bv, CA−1Bϕ)W (4.6)

+Nv(ϕ) + (CA−1Bϕ, CA−1f − w)W
}

= 2
{
(Cy(v)− w, CA−1Bϕ)W +Nv(ϕ)

}
.

Thus, we find that the gradient J ′ is monotone and(
1
2

)
J ′(v)(v) ≥ Nv(v)− (const.)‖v‖U ,

so J ′ is coercive if N is coercive, i.e., if

Nv(v) ≥ c‖v‖2U , v ∈ Uad , (4.7)

for some c > 0. Thus, we obtain from Theorem 2.7 the following.

Theorem 4.1 Let the optimal control problem be given as in Section 4.1.

That is, we are to minimize (4.4) subject to (4.3) over the non-empty closed

convex set Uad. Then if either (a) Uad is bounded or (b) N is coercive over

Uad, then the set of optimal controls is non-empty, closed and convex.
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Corollary 4.2 In case (b) there is a unique optimal control.

Proof : This follows from Theorem 2.9 since (4.7) implies J ′ is strictly mono-

tone.

4.3

We shall characterize the optimal controls by variational inequalities. Thus,

u is an optimal control if and only if

u ∈ Uad : J
′(u)(v − u) ≥ 0 , v ∈ Uad ; (4.8)

this is just (2.5). This variational inequality is given by (4.6), of course, but

the resulting form is difficult to interpret. The difficulty is that it compares

elements of the observation space W with those of the control space U ;

we shall obtain an equivalent characterization which contains a variational

inequality only in the control space U . In order to convert the first term on

the right side of (4.6) into a more convenient form, we shall use the Riesz

map RW of W onto W
′ given by (cf. Section I.4.3)

RW (x)(y) = (x, y)W , x, y ∈W

and the dual C′ ∈ L(W ′, V ′) of C given by (cf. Section I.5.1)

C′(f)(x) = f(C(x)) , f ∈W ′ , x ∈ V .

Then from (4.6) we obtain

(
1
2

)
J ′(u)(v) = (Cy(u)− w, CA−1Bv)W +Nu(v)

= RW (Cy(u)− w)(CA
−1Bv) +Nu(v)

= C′RW (Cy(u)− w)(A
−1Bv) +Nu(v) , u, v ∈ U .

To continue we shall need the dual operator A′ ∈ L(V, V ′) given by

A′x(y) = Ay(x) , x, y ∈ V ,

where V ′′ is naturally identified with V . Since A′ arises from the bilinear
form adjoint to a(·, ·), A′ is an isomorphism. Thus, for each control v ∈ U we
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can define the corresponding adjoint state p = p(v) as the unique solution

of the system

A′p = C′RW (Cy(v)− w) , p = p(v) . (4.9)

From above we then have(
1
2

)
J ′(u)(v) = A′p(u)(A−1Bv) +Nu(v)

= Bv(p(u)) +Nu(v)

= B′p(u)(v) +Nu(v)

where B′ ∈ L(V,U ′) is the indicated dual operator. These computations lead
to a formulation of (4.8) which we summarize as follows.

Theorem 4.3 Let the optimal control problem be given as in (4.1). Then

a necessary and sufficient condition for u to be an optimal control is that it

satisfy the following system:

u ∈ Uad , Ay(u) = f + Bu ,

A′p(u) = C′RW (Cy(u) − w) ,

(B′p(u) +Nu)(v − u) ≥ 0 , all v ∈ Uad .


 (4.10)

The system (4.10) is called the optimality system for the control problem.

We leave it as an exercise to show that a solution of the optimality system

satisfies (4.8).

4.4

We shall recover the Example of Section 4.1 from the abstract situation

above. Thus, we choose V = H1(G), a(u, v) = (u, v)H1(G), U = L
2(∂G) and

define

f(v) =

∫
G
F (x)v(x) dx +

∫
∂G
g(s)v(s) ds , v ∈ V ,

Bu(v) =
∫
∂G
u(s)v(s) ds , u ∈ U , v ∈ V .

The state y(u) of the system determined by the control u is given by (4.3),

i.e.,
−∆ny + y = F in G ,

∂y

∂ν
= g + u on ∂G .

(4.11)
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Choose W = L2(∂G), w ∈W , and define

Nu(v) = c

∫
∂G
u(s)v(s) ds , u, v ∈W , (c ≥ 0)

Cu(v) ≡
∫
∂G
u(s)v(s) ds , u ∈ V , v ∈W .

The adjoint state equation (4.9) becomes

−∆np+ p = 0 in G

∂p

∂ν
= y − w on ∂G

(4.12)

and the variational inequality is given by

u ∈ Uad :
∫
∂G
(p + cu)(v − u) ds ≥ 0 , v ∈ Uad . (4.13)

From Theorem 4.1 we obtain the existence of an optimal control if Uad is

bounded or if c > 0. Note that

J(v) =

∫
∂G
|y(v) − w|2 ds+ c

∫
∂G
|v|2 ds (4.14)

is strictly convex in either case, so uniqueness follows in both situations.

Theorem 4.3 shows the unique optimal control u is characterized by the

optimality system (4.11), (4.12), (4.13). We illustrate the use of this system

in two cases.

4.5 Uad = L
2(∂G)

This is the case of no constraints on the control. Existence of an optimal

control follows if c > 0. Then (4.13) is equivalent to p + cu = 0. The

optimality system is equivalent to

−∆ny + y = F , −∆np+ p = 0 in G

∂y

∂ν
= g −

(
1

c

)
p ,

∂p

∂ν
= y − w on ∂G

and the optimal control is given by u = −(1/c)p.
Consider the preceding case with c = 0. We show that an optimal control

might not exist. First show inf{J(v) : v ∈ U} = 0. Pick a sequence {wm} of
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very smooth functions on ∂G such that wm → w in L2(∂G). Define ym by

−∆nym + ym = F in G

ym = wm on ∂G

and set vm = (∂ym/∂ν) − g, m ≥ 1. Then vm ∈ L2(∂G) and J(vm) =
‖wm − w‖2L2(∂G) → 0. Second, note that if u is an optimal control, then
J(u) = 0 and the corresponding state y satisfies

−∆ny + y = F in G

y = w on ∂G .

Then we have (formally) u = (∂y/∂ν)−g. However, if w ∈ L2(∂G) one does
not in general have (∂y/∂ν) ∈ L2(∂G). Thus u might not be in L2(∂G) in
which case there is no optimal control (in L2(∂G)).

4.6

Uad = {v ∈ L
2(∂G) : 0 ≤ v(s) ≤ M a.e.}. Since the set of admissible

controls is bounded, there exists a unique optimal control u characterized

by the optimality system (4.10). Thus, u is characterized by (4.11), (4.12)

and

if 0 < u < M , then p+ cu = 0

if u = 0 , then p ≥ 0 , and (4.15)

if u =M , then p+ cu ≤ 0 .

We need only to check that (4.13) and (4.15) are equivalent. The boundary

is partitioned into the three regions determined by the three respective cases

in (4.15). This is analogous to the free boundary problems encountered in

Sections 3.3 and 3.4.

We specialize the above to the case of “free control,” i.e., c = 0. One

may search for an optimal control in the following manner. Motivated by

(4.11) and (4.14), we consider the solution Y of the Dirichlet problem

−∆nY + Y = F in G ,

Y = w on ∂G .
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If it happens that

0 ≤
∂Y

∂ν
− g ≤M on ∂G , (4.16)

then the optimal control is given by (4.11) as

u =
∂Y

∂ν
− g .

Note that u ∈ Uad and J(u) = 0.
We consider the contrary situation in which (4.16) does not hold. Specif-

ically we shall show that (when all aspects of the problem are regular) the

set Γ ≡ {s ∈ ∂G : 0 < u(s) < M , p(s) = 0} is empty. This implies that the
control takes on only its extreme values 0,M ; this is a result of “bang-bang”

type.

Partition Γ into the three parts Γ0 = {s ∈ Γ : y(s) = w(s)}, Γ+ =
{s ∈ Γ : y(s) > w(s)} and Γ− = {s ∈ Γ : y(s) < w(s)}. On any interval
in Γ0 we have p = 0 (by definition of Γ) and

∂p
∂ν = 0 from (4.12). From

the uniqueness of the Cauchy problem for the elliptic equation in (4.12), we

obtain p = 0 in G, hence, y = w on ∂G. But this implies y = Y , hence

(4.16) holds. This contradiction shows Γ0 is empty. On any interval in Γ+
we have p = 0 and ∂p∂ν > 0. Thus, p < 0 in some neighborhood (in Ḡ)

of that interval. But ∆p < 0 in the neighborhood follows from (4.12), so

a maximum principle implies ∂p∂ν ≤ 0 on that interval. This contradiction
shows Γ+ is empty. A similar argument holds for Γ− and the desired result

follows.

5 Approximation of Elliptic Problems

We shall discuss the Rayleigh-Ritz-Galerkin procedure for approximating

the solution of an elliptic boundary value problem. This procedure can

be motivated by the situation of Section 3.1 where the abstract boundary

value problem (3.5) is known to be equivalent to minimizing a quadratic

function (3.1) over the Hilbert space V . The procedure is to pick a closed

subspace S of V and minimize the quadratic function over S. This is the

Rayleigh-Ritz method. The resulting solution is close to the original solution

if S closely approximates V . The approximate solution is characterized

by the abstract boundary vlaue problem obtained by replacing V with S;

this gives the (equivalent) Galerkin method of obtaining an approximate

solution. The very important finite-element method consists of the above
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procedure applied with a space S of piecewise polynomial functions which

approximates the whole space V . The resulting finite-dimensional problem

can be solved efficiently by computers. Our objectives are to describe the

Rayleigh-Ritz-Galerkin procedure, obtain estimates on the error that results

from the approximation, and then to give some typical convergence rates that

result from standard finite-element or spline approximations of the space.

We shall also construct some of these approximating subspaces and prove

the error estimates as an application of the minimization theory of Section 2.

5.1

Suppose we are given an abstract boundary value problem: V is a Hilbert

space, a(·, ·) : V × V → K is continuous and sesquilinear, and f ∈ V ′. The
problem is to find u satisfying

u ∈ V : a(u, v) = f(v) , v ∈ V . (5.1)

Let S be a subspace of V . Then we may consider the related problem of

determining us satisfying

us ∈ S : a(us, v) = f(v) , v ∈ S . (5.2)

We shall show that the error us−u is small if S approximates V sufficiently
well.

Theorem 5.1 Let a(·, ·) be a V -coercive continuous sesquilinear form and
f ∈ V ′. Let S be a closed subspace of V . Then (5.1) has a unique solution
u and (5.2) has a unique solution us. Furthermore we have the estimate

‖us − u‖ ≤ (K/c) inf{‖u − v‖ : v ∈ S} , (5.3)

where K is the bound on a(·, ·) (cf. the inequality I.(5.2)) and c is the coer-
civity constant (cf. the inequality III.(2.3)).

Proof : The existence and uniqueness of the solutions u and us of (5.1) and

(5.2) follow immediately from Theorem III.2.1 or Theorem 3.1, so we need

only to verify the estimate (5.3). By subtracting (5.1) from (5.2) we obtain

a(us − u, v) = 0 , v ∈ S . (5.4)
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Thus for any w ∈ S we have

a(us − u, us − u) = a(us − u,w − u) + a(us − u, us − w) .

Since us − w ≡ v ∈ S it follows that the last term is zero, so we obtain

c‖us − u‖
2 ≤ K‖us − u‖ ‖w − u‖ , w ∈ S .

This gives the desired result.

Consider for the moment the case of V being separable. Thus, there is a

sequence {v1, v2, v3, . . .} in V which is a basis for V . For each integer m ≥ 1,
the set {v1, v2, . . . , vm} is linearly independent and its linear span will be
denoted by Vm. If Pm is the projection of V into Vm, then limm→∞ Pmv = v

for all v ∈ V . The problem (5.2) with S = Vm is equivalent to

um ∈ Vm : a(um, vj) = f(vj) , 1 ≤ j ≤ m .

There is exactly one such um for each integer m ≥ 1 and we have the
estimates ‖um − u‖ ≤ (K/c)‖u − Pmu‖. Hence, limm→∞ um = u in V and
the rate of convergence is determined by that of {Pmu} to the solution u
of (5.1). Thus we are led to consider an approximating finite-dimensional

problem. Specifically um is determined by the point x = (x1, x2, . . . , xm) ∈
K
m through the identity um =

∑m
i=1 xivi, and (5.2) is equivalent to them×m

system of linear equations

m∑
i=1

a(vi, vj)xi = f(vj) , 1 ≤ j ≤ m . (5.5)

Since a(·, ·) is V -coercive, them×m coefficient matrix (a(vi, vj)) is invertible
and the linear system (5.5) can be solved for x. The dimension of the system

is frequently of the order m = 102 or 103, so the actual computation of

the solution may be a non-trivial consideration. It is helpful to choose the

basis functions so that most of the coefficients are zero. Thus, the matrix

is sparse and various special techniques are available for efficiently solving

the large linear system. This sparseness of the coefficient matrix is one of

the computational advantages of using finite-element spaces. A very special

example will be given in Section 5.4 below.
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5.2

The fundamental estimate (5.3) is a bound on the error in the norm of the

Hilbert space V . In applications to elliptic boundary value problems this

corresponds to an energy estimate. We shall estimate the error in the norm

of a pivot space H. Since this norm is weaker we expect an improvement on

the rate of convergence with respect to the approximation of V by S.

Theorem 5.2 Let a(·, ·) be a continuous, sesquilinear and coercive form on
the Hilbert space V , and let H be a Hilbert space identified with its dual and

in which V is dense, and continuously imbedded. Thus, V ↪→ H ↪→ V ′.
Let A∗ : D∗ → H be the operator on H which is determined by the adjoint
sesquilinear form, i.e.,

a(v,w) = (A∗w, v)H , w ∈ D∗ , v ∈ V

(cf. Section III.7.5). Let S be a closed subspace of V and e∗(S) a corre-

sponding constant for which we have

inf{‖w − v‖ : v ∈ S} ≤ e∗(S)|A∗w|H , w ∈ D∗ . (5.6)

Then the solutions u of (5.1) and us of (5.2) satisfy the estimate

|u− us|H ≤ (K
2/c) inf{‖u− v‖ : v ∈ S}e∗(S) . (5.7)

Proof : We may assume u 6= us; define g = (u − us)/|u − us|H and choose
w ∈ D∗ so that A∗w = g. That is,

a(v,w) = (v, g)H , v ∈ V ,

and this implies that

a(u− us, w) = (u− us, g)H = |u− us|H .

From this identity and (5.4) we obtain for any v ∈ S

|u−us|H = a(u−us, w−v) ≤ K‖u−us‖ ‖w−v‖ ≤ K‖u−us‖e
∗(S)|A∗w|H .

Since |A∗w|H = |g|H = 1, the estimate (5.7) follows from (5.3).
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Corollary 5.3 Let A : D → H be the operator on H determined by a(·, ·),
V , H, i.e.,

a(w, v) = (Aw, v)H , w ∈ D , v ∈ V .

Let e(S) be a constant for which

inf{‖w − v‖ : v ∈ S} ≤ e(S)|Aw|H , w ∈ D .

Then the solutions of (5.1) and (5.2) satisfy the estimate

|u− us|H ≤ (K
2/c)e(S)e∗(S)|Au|H . (5.8)

The estimate (5.7) will provide the rate of convergence of the error that

is faster than that of (5.3). The added factor e∗(S) arising in (5.6) will

depend on how well S approximates the subspaceD∗ of “smoother” or “more

regular” elements of V .

5.3

We shall combine the estimates (5.3) and (5.7) with approximation results

that are typical of finite-element or spline function subspaces of H1(G). This

will result in rate of convergence estimates in terms of a parameter h > 0

related to mesh size in the approximation scheme. The approximation as-

sumption that we make is as follows: SupposeH is a set of positive numbers,
M and k ≥ 0 are integers, and S ≡ {Sh : h ∈ H} is a collection of closed
subspaces of V ⊂ H1(G) such that

inf{‖w − v‖H1(G) : v ∈ Sh} ≤Mh
j−1‖w‖Hj (G) (5.9)

for all h ∈ H, 1 ≤ j ≤ k+2, and w ∈ Hj(G)∩V . The integer k+1 is called
the degree of S.

Theorem 5.4 Let V be a closed subspace of H1(G) with H10 (G) ⊂ V and
let a(·, ·) : V × V → K be continuous, sesquilinear and V -coercive. Let S
be a collection of closed subspaces of V satisfying (5.9) for some k ≥ 0, and
assume a(·, ·) is k-regular on V . Let F ∈ Hk(G) and define f ∈ V ′ by
f(v) = (F, v)H , v ∈ V , where H ≡ L2(G). Let u be the solution of (5.1)
and, for each h ∈ H, uh be the solution of (5.2) with S = Sh. Then for some
constant c1 we have

‖u− uh‖H1(G) ≤ c1h
k+1 , h ∈ H . (5.10)
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If in addition the sesquilinear form adjoint to a(·, ·) is 0-regular, then for
some constant c2 we have

‖u− uh‖L2(G) ≤ c2h
k+2 , h ∈ H . (5.11)

Proof : Since F ∈ Hk(G) and a(·, ·) is k-regular it follows that u ∈ Hk+2(G).
Hence we combine (5.3) with (5.9) to obtain (5.10). If the adjoint form

is 0-regular, then in Theorem 5.2 we have D∗ ⊂ H2(G) and ‖w‖H2(G) ≤
(const.)‖A∗w‖L2(G). Hence (5.9) with j = 2 gives (5.6) with e

∗(Sh) =

(const.)h. Thus (5.11) follows from (5.7).

Sufficient conditions for a(·, ·) to be k-regular were given in Section III.6.
Note that this permits all the hypotheses in Theorem 5.4 to be placed on the

data in the problem (5.1) being solved. For problems for which appropriate

regularity results are not available, one may of course assume the appropriate

smoothness of the solution.

5.4

Let G be the interval (0, 1) and V a closed subspace of H1(G). Any function

f ∈ V can be approximated by a piecewise-linear f0 ∈ V ; we need only to
choose f0 so that it agrees with f at the endpoints of the intervals on which

f0 is affine. This is a simple Lagrange interpolation of f by the linear finite-

element function f0, and it leads to a family of approximating subspaces of

degree 1. We shall describe the spaces and prove the estimates (5.9) for this

example.

Let P = {0 = x0 < x1 < · · · < xN < xN+1 = 1} be a partition of G
and denote by µ(P ) the mesh of P : µ(P ) = max{xj+1 − xj : 0 ≤ j ≤ N}.
The closed convex set K = {v ∈ V : v(xj) = 0, 0 ≤ j ≤ N + 1} is
basic to our construction. Let f ∈ V be given and consider the function
F (v) = (12 )|∂(v − f)|

2
H on V , where H = L

2(G). The G-differential is given

by

F ′(u)(v) = (∂(u− f), ∂v)H , u, v ∈ V .

We easily check that F ′ is strictly monotone onK; this follows from Theorem

II.2.4. Similarly the estimate

F ′(v)(v) = |∂v|2H − (∂f, ∂v)H ≥ |∂v|
2
H − |∂f |H |∂v|H , v ∈ V ,

shows F ′ is coercive on K. It follows from Theorems 2.7 and 2.9 that there

is a unique uf ∈ K at which F takes its minimal value on K, and it is
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characterized in (2.5) by

uf ∈ K : (∂(uf − f), ∂v)H = 0 , v ∈ K .

This shows that for each f ∈ V , there exists exactly one f0 ∈ V which
satisfies

f0 − f ∈ K , (∂f0, ∂v)H = 0 , v ∈ K . (5.12)

(They are clearly related by f0 = f − uf .) The second part of (5.12) states
that −∂2f0 = 0 in each subinterval of the partition so f0 is affine on each
subinterval. The first part of (5.12) determines the value of f0 at each of the

points of the partition, so it follows that f0 is that function in V which is

affine in the intervals of P and equals f at the points of P . This f0 is the

linear finite-element interpolant of f .

To compute the error in this interpolation procedure, we first note that

|∂f0|
2
H + |∂(f0 − f)|

2
H = |∂f |

2
H

follows from setting v = f0 − f in (5.12). Thus we obtain the estimate

|∂(f0 − f)|H ≤ |∂f |H .

If g = f0 − f , then from Theorem II.2.4 we have∫ xj+1
xj

|g|2 dx ≤ 4µ(P )2
∫ xj+1
xj

|∂g|2 dx , 0 ≤ j ≤ N ,

and summing these up gives

|f − f0|H ≤ 2µ(P )|∂(f0 − f)|H . (5.13)

This proves the first two estimates in the following.

Theorem 5.5 For each f ∈ V and partition P as above, the linear finite-
element interpolant f0 of f with respect to P is characterized by (5.12) and

it satisfies

|∂(f0 − f)|H ≤ |∂f |H , (5.14)

and

|f0 − f |H ≤ 2µ(P )|∂f |H . (5.15)

If also f ∈ H2(G), then we have

|∂(f0 − f)|H ≤ 2µ(P )|∂
2f |H (5.16)

|f0 − f |H ≤ 4µ(P )
2|∂2f |H . (5.17)
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Proof : We need only to verify (5.16) and (5.17). Since (f − f0)(xj) = 0 for
0 ≤ j ≤ N + 1, we obtain for each f ∈ H2(G) ∩ V

|∂(f0 − f)|
2
H =

N∑
j=0

∫ xj+1
xj

(−∂2(f0 − f))(f0 − f) dx = (∂
2f, f0 − f)H ,

and thereby the estimate

|∂(f0 − f)|
2
H ≤ |f0 − f |H |∂

2f |H .

With (5.13) this gives (5.16) after dividing the factor |∂(f0 − f)|H . Finally,
(5.17) follows from (5.13) and (5.16).

Corollary 5.6 For each h with 0 < h < 1 let Ph be a partition of G with

mesh µ(Ph) < h, and define Lh to be the space of all linear finite-element

function in H1(G) corresponding to the partition Ph. Then L ≡ {Lh : 0 <
h < 1} satisfies the approximation assumption (5.9) with k = 0. The degree
of L is 1.

Finally we briefly consider the computations that are involved in imple-

menting the Galerkin procedure (5.2) for one of the spaces Lh above. Let

Ph = {x0, x1, . . . , xN+1} be the corresponding partition and define `j to be
the unique function in Lh which satisfies

`j(xi) =

{
1 if i = j ,
0 if i 6= j ,

0 ≤ i, j ≤ N + 1 . (5.18)

For each f ∈ H1(G), the interpolant f0 is given by

f0 =
N+1∑
j=0

f(xj)`j .

We use the basis (5.18) to write the problem in the form (5.5), and we must

then invert the matrix (a(`i, `j)). Since a(·, ·) consists of integrals over G
of products of `i and `j and their derivatives, and since any such product

is identically zero when |i − j| ≥ 2, it follows that the coefficient matrix is
tridiagonal. It is also symmetric and positive-definite. There are efficient

methods for inverting such matrices.
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6 Approximation of Evolution Equations

We present here the Faedo-Galerkin procedure for approximating the solu-

tion of evolution equations of the types considered in Chapters IV, V and VI.

As in the preceding section, the idea is to project a weak form of the problem

onto a finite-dimensional subspace. We obtain thereby a system of ordinary

differential equations whose solution approximates the solution of the orig-

inal problem. In the applications to initial-boundary-value problems, this

corresponds to a discretization of the space variable by a finite-element or

spline approximation. We shall describe these semi-discrete approximation

procedures, obtain estimates on the error that results from the approxima-

tion, and give the convergence rates that result from standard finite-element

or spline approximations in the space variable. This program is carried out

for first-order evolution equations and also for second-order evolution equa-

tions.

6.1

We first consider some first-order equations of the implicit type discussed

in Section V.2. Let M be the Riesz map of the Hilbert space Vm with

scalar-product (·, ·)m. Let V be a Hilbert space dense and continuously
imbedded in Vm and let L ∈ L(V, V ′). For a given f ∈ C((0,∞), V ′m)
and u0 ∈ Vm, we consider the problem of approximating a solution u ∈
C([0,∞), Vm) ∩ C1((0,∞), Vm) of

Mu′(t) + Lu(t) = f(t) , t > 0 , (6.1)

with u(0) = u0. SinceM is symmetric, such a solution satisfies

Dt(u(t), u(t))m + 2`(u(t), u(t)) = 2f(t)(u(t)) , t > 0 , (6.2)

where `(·, ·) : V × V → R is the bilinear form associated with L. This gives
the identity

‖u(t)‖2m + 2
∫ t
0
`(u(s), u(s)) ds = ‖u0‖

2
m + 2

∫ t
0
f(s)(u(s)) ds , t > 0 ,

(6.3)

involving the Vm norm ‖ · ‖m of the solution. Since the right side of (6.2) is
bounded by T‖f‖2V ′m + T

−1‖u‖2m for any given T > 0, we obtain from (6.2)

Dt(e
−t/T ‖u(t)‖2m) + e

−t/T 2`(u(t), u(t)) ≤ Te−t/T ‖f(t)‖2V ′m
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and from this follows the a-priori estimate

‖u(t)‖2m+2
∫ t
0
`(u(s), u(s)) ds ≤ e‖u0‖

2+Te

∫ t
0
‖f(s)‖2V ′m ds , 0 ≤ t ≤ T .

(6.4)

In the situations we consider below, L is monotone, hence, (6.4) gives an
upper bound on the Vm norm of the solution.

In order to motivate the Faedo-Galerkin approximation, we note that a

solution u of (6.1) satisfies

(u′(t), v)m + `(u(t), v) = f(t)(v) , v ∈ V , t > 0 . (6.5)

Since V is dense in Vm, (6.5) is actually equivalent to (6.1). Let S be

a subspace of V . Then we consider the related problem of determining

us ∈ C([0,∞), S) ∩ C1((0,∞), S) which satisfies

(u′s(t), v)m + `(us(t), v) = f(t)(v) , v ∈ S , t > 0 (6.6)

and an initial condition to be specified.

Consider the case of S being a finite-dimensional subspace of V ; let

{v1, v2, . . . , vm} be a basis for S. Then the solution of (6.6) is of the form

us(t) =
m∑
i=1

xi(t)vi

where x(t) ≡ (x1(t), x2(t), . . . , xm(t)) is in C([0,∞),Rm) ∩ C1((0,∞),Rm),
and (6.6) is equivalent to the system of ordinary differential equations

m∑
i=1

(vi, vj)mx
′
i(t) +

m∑
i=1

`(vi, vj)xi(t) = f(t)(vj) , 1 ≤ j ≤ m . (6.7)

The linear system (6.7) has a unique solution x(t) with the initial condition

x(0) determined by us(0) =
∑m
i=1 xi(0)vi. (Note that the matrix coefficient

of x′(t) in (6.7) is symmetric and positive-definite, hence, nonsingular.) As

in the preceding section, it is helpful to choose the basis functions so that

most of the coefficients in (6.7) are zero. Special efficient computational

techniques are then available for the resulting sparse system.
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6.2

We now develop estimates on the error, u(t)−us(t), in the situation of Theo-
rem V.2.2. This covers the case of parabolic and pseudoparabolic equations.

It will be shown that the error in the Faedo-Galerkin procedure for (6.1) is

bounded by the error in the corresponding Rayleigh-Ritz-Galerkin procedure

for the elliptic problem determined by the operator L. Thus, we consider
for each t > 0 the L-projection of u(t) defined by

u`(t) ∈ S : `(u`(t), v) = `(u(t), v) , v ∈ S . (6.8)

Theorem 6.1 Let the real Hilbert spaces V and Vm, operators M and L,
and data u0 and f be given as in Theorem V.2.2, and let S be a closed

subspace of V . Then there exists a unique solution u of (6.1) with u(0) = u0
and there exists a unique solution us of (6.6) for any prescribed initial value

us(0) ∈ S. Assume u ∈ C([0,∞), V ) and choose us(0) = u`(0), the L-
projection (6.8) of u(0). Then we have the error estimate

‖u(t)−us(t)‖m ≤ ‖u(t)−u`(t)‖m+
∫ t
0
‖u′(s)−u′`(s)‖m ds , t ≥ 0 . (6.9)

Proof : The existence-uniqueness results are immediate from Theorem V.2.2,

so we need only to verify (6.9). Note that u(0) = u0 necessarily belongs to

V , so (6.8) defines u`(0) = us(0). For any v ∈ S we obtain from (6.5) and
(6.6)

(u′(t)− u′s(t), v)m + `(u(t)− us(t), v) = 0 ,

so (6.8) gives the identity

(u′(t)− u′`(t), v)m = (u
′
s(t)− u

′
`(t), v)m + `(us(t)− u`(t), v) .

Setting v = us(t)− u`(t) and noting that L is monotone, we obtain

Dt‖us(t)− u`(t)‖
2
m ≤ 2‖u

′(t)− u′`(t)‖m‖us(t)− u`(t)‖m .

The function t 7→ ‖us(t)− u`(t)‖m is absolutely continuous, hence differen-
tiable almost everywhere, and satisfies

Dt‖us(t)− u`(t)‖
2
m = 2‖us(t)− u`(t)‖mDt‖us(t)− u`(t)‖m .

Let Z = {t > 0 : ‖us(t)− u`(t)‖m = 0}. Clearly, for any t /∈ Z we have from
above

Dt‖us(t)− u`(t)‖m ≤ ‖u
′(t)− u′`(t)‖m . (6.10)
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At an accumulation point of Z, the estimate (6.10) holds, since the left side

is zero at such a point. Since Z has at most a countable number of isolated

points, this shows that (6.10) holds at almost every t > 0. Integrating (6.10)

gives the estimate

‖us(t)− u`(t)‖m ≤
∫ t
0
‖u′(s)− u′`(s)‖m ds , t ≥ 0 ,

from which (6.9) follows by the triangle inequality.

The fundamental estimate (6.9) shows that the error in the approxima-

tion procedure is determined by the error in the L-projection (6.8) which is
just the Rayleigh-Ritz-Galerkin procedure of Section 5. Specifically, when

u ∈ C1((0,∞), V ) we differentiate (6.8) with respect to t and deduce that
u′`(t) ∈ S is the L-projection of u

′(t). This regularity of the solution u holds

in both parabolic and pseudoparabolic cases.

We shall illustrate the use of the estimate (6.9) by applying it to a second

order parabolic equation which is approximated by using a set of finite-

element subspaces of degree one. Thus, suppose S ≡ {Sh : h ∈ H} is a
collection of closed subspaces of the closed subspace V of H1(G) and S is of
degree 1; cf. Section 5.3. Let the continuous bilinear form a(·, ·) be V -elliptic
and 0-regular; cf. Section III.6.4. Set H = L2(G) = H ′, soM is the identity,
let f ≡ 0, and let `(·, ·) = a(·, ·). If u is the solution of (6.1) and uh is the
solution of (6.6) with S = Sh, then the differentiability in t > 0 of these

functions is given by Corollary IV.6.4 and their convergence at t = 0+ is

given by Exercise IV.7.8. We assume the form adjoint to a(·, ·) is 0-regular
and obtain from (5.11) the estimates

‖u(t)− u`(t)‖L2(G) ≤ c2h
2‖Au(t)‖L2(G) ,

‖u′(t)− u′`(t)‖L2(G) ≤ c2h
2‖A2u(t)‖L2(G) , t > 0 .


 (6.11)

The a-priori estimate obtained from (6.3) shows that |u(t)|H is non-increasing
and it follows similarly that |Au(t)|H is non-increasing for t > 0. Thus, if
u0 ∈ D(A2) we obtain from (6.9), and (6.11) the error estimate

‖u(t)− uh(t)‖L2(G) ≤ c2h
2{‖Au0‖L2(G) + t‖A

2u0‖L2(G)} . (6.12)

Although (6.12) gives the correct rate of convergence, it is far from optimal in

the hypotheses assumed. For example, one can use estimates from Theorem

IV.6.2 to play off the factors t and ‖Au′(t)‖H in the second term of (6.12) and
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thereby relax the assumption u0 ∈ D(A2). Also, corresponding estimates can
be obtained for the non-homogeneous equation and faster convergence rates

can be obtained if approximating subspaces of higher degree are used.

6.3

We turn now to consider the approximation of second-order evolution equa-

tions of the type discussed in Section VI.2. Thus, we let A and C be the
respective Riesz maps of the Hilbert spaces V and W , where V is dense

and continuously embedded in W , hence, W ′ is identified with a subspace

of V ′. Let B ∈ L(V, V ′), u0 ∈ V , u1 ∈ W and f ∈ C((0,∞),W ′). We shall
approximate the solution u ∈ C([0,∞), V )∩C1((0,∞), V )∩C1([0,∞),W )∩
C2((0,∞),W ) of

Cu′′(t) + Bu′(t) +Au(t) = f(t) , t > 0 , (6.13)

with the initial conditions u(0) = u0, u
′(0) = u1. Equations of this form were

solved in Section VI.2 by reduction to an equivalent first-order system of the

form (6.1) on appropriate product spaces. We recall here the construction,

since it will be used for the approximation procedure. Define Vm ≡ V ×W
with the scalar product

([x1, x2], [y1, y2]) = (x1, y1)V + (x2, y2)W , [x1, x1], [y1, y1] ∈ V ×W ,

so V ′m = V
′ ×W ′; the Riesz mapM of Vm onto V

′
m is given by

M([x1, x2]) = [Ax1, Cx2] , [x1, x2] ∈ Vm .

Define V` = V × V and L ∈ L(V`, V
′
` ) by

L([x1, x2]) = [−Ax2,Ax1 + Bx2] , [x1, x2] ∈ V` .

Then Theorem VI.2.1 applies if B is monotone to give existence and unique-
ness of a solution w ∈ C1([0,∞), Vm) of

Mw′(t) + Lw(t) = [0, f(t)] , t > 0 (6.14)

with w(0) = [u0, u1] and f ∈ C1([0,∞),W ′) given so that u0, u1 ∈ V with
Au0 + Bu1 ∈ W ′. The solution is given by w(t) = [u(t), u′(t)], t ≥ 0;
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from the inclusion [u, u′] ∈ C1([0,∞), V ×W ) and (6.14) we obtain [u, u′] ∈
C1([0,∞), V × V ). From (6.4) follows the a-priori estimate

‖u(t)‖2V + ‖u
′(t)‖2W + 2

∫ t
0
Bu′(s)(u′(s)) ds

≤ e(‖u0‖
2
V + ‖u1‖

2
W ) + Te

∫ t
0
‖f(s)‖2W ′ ds , 0 ≤ t ≤ T ,

on a solution w(t) = [u(t), u′(t)] of (6.14).

The Faedo-Galerkin approximation procedure for the second-order equa-

tion is just the corresponding procedure for (6.14) as given in Section 6.1.

Thus, if S is a finite-dimensional subspace of V , then we let ws be the solu-

tion in C1([0,∞), S × S) of the equation

(w′s(t), v)m + `(w(t), v) = [0, f(t)](v) , v ∈ S × S , t > 0 , (6.15)

with an initial value ws(0) ∈ S×S to be prescribed below. If we look at the
components of ws(t) we find from (6.15) that ws(t) = [us(t), u

′
s(t)] for t > 0

where us ∈ C2([0,∞), S) is the soluton of

(u′′s(t), v)W + b(u
′
s(t), v) + (us(t), v)V = f(t)(v) , v ∈ S , t > 0 . (6.16)

Here b(·, ·) denotes the bilinear form on V corresponding to B. As in Sec-
tion 6.1, we can choose a basis for S and use it to write (6.16) as a system of

m ordinary differential equations of second order. Of course this system is

equivalent to a system of 2m equations of first order as given by (6.15), and

this latter system may be the easier one in which to do the computation.

6.4

Error estimates for the approximation of (6.13) by the related (6.16) will be

obtained in a special case by applying Theorem 6.1 directly to the situation

described in Section 6.3. Note that in the derivation of (6.9) we needed only

that L is monotone. Since B is monotone, the estimate (6.9) holds in the
present situation. This gives an error bound in terms of the L-projection
w`(t) ∈ S × S of the solution w(t) of (6.14) as defined by

`(w`(t), v) = `(w(t), v) , v ∈ S × S . (6.17)

The bilinear form `(·, ·) is not coercive over V` so we might not expect w`(t)−
w(t) to be small. However, in the special case of B = εA for some ε ≥ 0 we



6. APPROXIMATION OF EVOLUTION EQUATIONS 201

find that (6.17) is equivalent to a pair of similar identities in the component

spaces. That is, if e(t) ≡ w(t)−w`(t) denotes the error in the L-projection,
and if e(t) = [e1(t), e2(t)], then (6.17) is equivalent to

(ej(t), v)V = 0 , v ∈ S , j = 1, 2 . (6.18)

Thus, if we write w`(t) = [u`(t), v`(t)], we see that u`(t) is the V -projection

of u(t) on S and v`(t) = u
′
`(t) is the projection of u

′(t) on S. It follows from

these remarks that we have

‖u(t)− u`(t)‖V ≤ inf{‖u(t) − v‖V : v ∈ S} (6.19)

and corresponding estimates on u′(t)−u′`(t) and u
′′(t)−u′′` (t). Our approx-

imation results for (6.13) can be summarized as follows.

Theorem 6.2 Let the Hilbert spaces V and W , operators A and C, and
data u0, u1 and f be given as in Theorem VI.2.1. Suppose furthermore that

B = εA for some ε ≥ 0 and that S is a finite-dimensional subspace of V .
Then there exists a unique solution u ∈ C1([0,∞), V ) ∩ C2([0,∞),W ) of
(6.13) with u(0) = u0 and u

′(0) = u1; and there exists a unique solution

us ∈ C2([0,∞), S) of (6.16) with initial data determined by

(us(0) − u0, v)V = (u
′
s(0) − u1, v)V = 0 , v ∈ S .

We have the error estimate

(‖u(t) − us(t)‖
2
V + ‖u

′(t)− u′s(t)‖
2
W )
1/2

≤ (‖u(t) − u`(t)‖
2
V + ‖u

′(t)− u′`(t)‖
2
W )
1/2 (6.20)

+

∫ t
0
(‖u′(s)− u′`(s)‖

2
V + ‖u

′′(s)− u′′` (s)‖
2
W )
1/2 ds , t ≥ 0

where u`(t) ∈ S is the V -projection of u(t) defined by

(u`(t), v)V = (u(t), v)V , v ∈ S .

Thus (6.19) holds and provides a bound on (6.20).

Finally we indicate how the estimate (6.20) is applied with finite-element

or spline function spaces. Suppose S = {Sh : h ∈ H} is a collection of finite-
dimensional subspaces of the closed subspace V of H1(G). Let k + 1 be the
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degree of S which satisfies the approximation assumption (5.9). The scalar-
product on V is equivalent to the H1(G) scalar-product and we assume it

is k-regular on V . For each h ∈ H let uh be the solution of (6.16) described
above with S = Sh, and suppose that the solution u satisfies the regular-

ity assumptions u, u′ ∈ L∞([0, T ],Hk+2(G)) and u′′ ∈ L1([0, T ],Hk+2(G)).
Then there is a constant c0 such that

(‖u(t) − uh(t)‖
2
V + ‖u

′(t)− u′h(t)‖
2
h)
1/2

≤ c0h
k+1 , h ∈ H , 0 ≤ t ≤ T . (6.21)

The preceding results apply to wave equations (cf. Section VI.2.1), vis-

coelasticity equations such as VI.(2.9), and Sobolev equations (cf. Section

VI.3).

Exercises

1.1. Show that a solution of the Neumann problem−∆nu = F inG, ∂u/∂v =
0 on ∂G is a u ∈ H1(G) at which the functional (1.3) attains its mini-
mum value.

2.1. Show that F : K → R is weakly lower-semi-continuous at each x ∈ K
if and only if {x ∈ V : F (x) ≤ a} is weakly closed for every a ∈ R.

2.2. In the proof of Theorem 2.3, show that ϕ′(t) = F ′(y+ t(x− y))(x− y).

2.3. In the proof of Theorem 2.7, verify that M is closed and convex.

2.4. Prove Theorem 2.9.

2.5. Let F beG-differentiable onK. If F ′ is strictly monotone, prove directly

that (2.5) has at most one solution.

2.6. Let G be bounded and open in Rn and let F : G × R → R satisfy the
following: F (·, u) is measurable for each u ∈ R, F (x, ·) is absolutely
continuous for almost every x ∈ G, and the estimates

|F (x, u)| ≤ a(x) + b|u|2 , |∂uF (x, u)| ≤ c(x) + b|u|

hold for all u ∈ R and a.e. x ∈ G, where a(·) ∈ L1(G) and c(·) ∈ L2(G).
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(a) Define E(u) =
∫
G F (x, u(x)) dx, u ∈ L

2(G), and show

E′(u)(v) =

∫
G
∂uF (x, u(x))v(x) dx , u, v ∈ L2(G) .

(b) Show E′ is monotone if ∂uF (x, ·) is non-decreasing for a.e. x ∈ G.

(c) Show E′ is coercive if for some k > 0 and c0(·) ∈ L2(G) we have

∂uF (x, u) · u ≥ k|u|
2 − c0(x)|u| ,

for u ∈ R and a.e. x ∈ G.

(d) State and prove some existence theorems and uniqueness theorems

for boundary value problems containing the semi-linear equation

−∆nu+ f(x, u(x)) = 0 .

2.7. Let G be bounded and open in Rn. Suppose the function F : G ×
R
n+1 → R satisfies the following: F (·, û) is measurable for û ∈ Rn+1,
F (x, ·) : Rn+1 → R is (continuously) differentiable for a.e. x ∈ G, and
the estimates

|F (x, û)| ≤ a(x) + b
n∑
j=0

|uj|
2 , |∂kF (x, û)| ≤ c(x) + b

n∑
j=0

|uj |

as above for every k, 0 ≤ k ≤ n, where ∂k =
∂
∂uk
.

(a) Define E(u) =
∫
G F (x, u(x),∇u(x)) dx, u ∈ H

1(G), and show

E′(u)(v) =

∫
G

n∑
j=0

∂jF (x, u,∇u)∂jv(x) dx , u, v ∈ H1(G) .

(b) Show E′ is monotone if

n∑
j=0

(∂jF (x, u0, u1, . . . , un)− ∂jF (x, v0, v1, . . . , vn))(uj − vj) ≥ 0

for all û, v̂ ∈ Rn+1 and a.e. x ∈ G.

(c) Show E′ is coercive if for some k > 0 and c0(·) ∈ L2(G)

n∑
j=0

∂jF (x, û)uj ≥ k
n∑
j=0

|uj |
2 − c0(x)

n∑
j=0

|uj |

for û ∈ Rn+1 and a.e. x ∈ Rn.
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(d) State and prove an existence theorem and a uniqueness theorem

for a boundary value problem containing the nonlinear equation

n∑
j=0

∂jFj(x, u,∇u) = f(x) .

3.1. Prove directly that (3.4) has at most one solution when a(·, ·) is (strictly)
positive.

3.2. Give an example of a stretched membrane (or string) problem described

in the form (3.6). Specifically, what does g represent in this applica-

tion?

4.1. Show the following optimal control problem is described by the abstract

setting of Section 4.1: find an admissible control u ∈ Uad ⊂ L
2(G)

which minimizes the function

J(u) =

∫
G
|y(u)− w|2 dx+ c

∫
G
|u|2 dx

subject to the state equations{
−∆ny = F + u in G ,

y = 0 on ∂G .

Specifically, identify all the spaces and operators in the abstract for-

mulation.

4.2. Give sufficient conditions on the data above for existence of an optimal

control. Write out the optimality system (4.10) for cases analogous to

Sections 4.5 and 4.6.

5.1. Write out the special cases of Theorems 5.1 and 5.2 as they apply to

the boundary value problem{
−∂(p(x)∂u(x)) + q(x)u(x) = f(x) , 0 < x < 1 ,

u(0) = u(1) = 0 .

Give the algebraic problem (5.5) and error estimates that occur when

the piecewise-linear functions of Section 5.4 are used.
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5.2. Repeat the above for the boundary value problem{
−∂(p(x)∂u(x)) + q(x)u(x) = f(x) ,

u′(0) = u′(1) = 0 .

(Note that the set K and subspaces are not exactly as above.)

5.3. We describe an Hermite interpolation by piecewise-cubics. Let the in-

terval G and partition P be given as in Section 5.4. Let V ≤ H2(G)
and define

K = {v ∈ V : v(xj) = v
′(xj) = 0 , 0 ≤ j ≤ N + 1} .

(a) Let f ∈ V and define F (v) = (12)|∂
2(v − f)|L2(G). Show there is a

unique uf ∈ K : (∂
2(uf − f), ∂

2v)L2(G) = 0, v ∈ K.

(b) Show there exists a unique f0 ∈ H2(G) for which f0 is a cubic
polynomial on each [xj, xj+1], f0(xj) = f(xj) and f

′
0(xj) = f

′(xj)

for j = 0, 1, . . . ,N + 1.

(c) Construct a corresponding family of subspaces as in Theorem 5.4

and show it is of degree 3.

(d) Repeat exercise 5.1 using this family of approximating subspaces.

5.4. Repeat exercise 5.3 but with V = H20 (G) and

K = {v ∈ V : v(xj) = 0 , 0 ≤ j ≤ N + 1} .

Show that the corresponding Spline interpolant is a piecewise-cubic,

f0(xj) = f(xj) for 0 ≤ j ≤ N + 1, and f0 is in C2(G).

6.1. Describe the results of Sections 6.1 and 6.2 as they apply to the problem

∂tu(x, t)− ∂x(p(x)∂xu(x, t)) = F (x, t) ,

u(0, t) = u(1, t) = 0 ,

u(x, 0) = u0(x) .

Use the piecewise-linear approximating subspaces of Section 5.4.

6.2. Describe the results of Sections 6.3 and 6.4 as they apply to the problem

∂2t u(x, t)− ∂x(p(x)∂xu(x, t)) = F (x, t) ,

u(0, t) = u(1, t) = 0 ,

u(x, 0) = u0(x) , ∂tu(x, 0) = u1(x) .

Use the subspaces of Section 5.4.
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Chapter VIII

Suggested Readings

Chapter I

This material is covered in almost every text on functional analysis. We

mention specifically references [22], [25], [47].

Chapter II

Our definition of distribution in Section 1 is inadequate for many pur-

poses. For the standard results see any one of [8], [24], [25]. For additional

information on Sobolev spaces we refer to [1], [3], [19], [33], [36].

Chapter III

Linear elliptic boundary value problems are discussed in the references

[2], [3], [19], [33], [35], [36] by methods closely related to ours. See [22], [24],

[43], [47] for other approaches. For basic work on nonlinear problems we

refer to [5], [8], [32], [41].

Chapter IV

We have only touched on the theory of semigroups; see [6], [19], [21],

[23], [27], [47] for additional material. Refer to [8], [19], [28], [30] for hyper-

bolic problems and [8], [26], [29], [35] for hyperbolic systems. Corresponding

results for nonlinear problems are given in [4], [5], [8], [32], [34], [41], [47].
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Chapter V and VI

The standard reference for implicit evolution equations is [9]. Also see

[30] and [32], [41] for related linear and nonlinear results, respectively.

Chapter VII

For extensions and applications of the basic material of Section 2 see [8],

[10], [17], [39], [45]. Applications and theory of variational inequalities are

presented in [16], [18], [32]; their numerical approximation is given in [20].

See [31] for additional topics in optimal control. The theory of approximation

of partial differential equations is given in references [3], [11], [37], [40], [42];

also see [10], [14].

Additional Topics

We have painfully rejected the temptation to pursue many interesting

topics; each of them deserves attention. A few of these topics are improperly

posed problems [7], [38], function-theoretic methods [12], bifurcation [15],

fundamental solutions [24], [43], scattering theory [29], the transposition

method [33], non-autonomous evolution equations [5], [8], [9], [19], [27], [30],

[34], [47], and singular problems [9].

Classical treatments of partial differential equations of elliptic and hyper-

bolic type are given in the treatise [13] and the canonical parabolic equation

is discussed in [46]. These topics are similarly presented in [44] together with

derivations of many initial and boundary value problems and their applica-

tions.
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