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Abstract. We study the differential operator L = ∂4

∂x4 + ∂4

∂y4 and investigate positivity pre-

serving properties in the sense that f ≥ 0 implies that solutions u of Lu − λu = f are nonnegative.
Since the operator is of fourth order we have no maximum principle at our disposal. The operator
models the deformation of an anisotropic stiff material like a wire fabric, and it has to be comple-
mented by appropriate boundary conditions. Our operator was introduced by Jacob II Bernoulli as
the operator that supposedly models the vibrations of an elastic plate. This model was later revised
by Kirchhoff, because the operator and its solutions were anisotropic. Modern materials, however,
are often anisotropic and therefore the old model of Bernoulli deserves an updated investigation. It
turns out that even our simple looking model problem contains some hard analytical challenges.
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1. Introduction. Small vertical deformations u of an elastic membrane are usu-
ally described by a second order differential equation −∆u = f with f denoting the
load, whereas the deformation of a plate is commonly modelled by a fourth order
equation ∆2u = f . Suppose the membrane is replaced by a piece of material or cloth
that is woven out of elastic strings. Then the material properties change drastically,
and in [4] such a problem was studied for second order differential operators. If a plate
is replaced by a stiff woven material (running in cartesian directions) its deformation
energy can be described by

∫

Ω

(

u2
xx + u2

yy

)

dx dy (1.1)

rather than the one for the elastic plate

∫

Ω

(

(∆u)2 − (1 − σ)
(

uxxuyy − u2
xy

))

dx dy. (1.2)

For the energy that corresponds to the reinforcement or wire fabric that is embedded
in for example concrete, a linear combination of (1.1) and (1.2) is appropriate.

In contrast to the plate equation, that is, the Euler equation for (1.2) which
contains the operator ∆2u = uxxxx+2uxxyy+uyyyy, the linearized differential equation
for a stiff fabric consisting of perpendicular fibers does not contain mixed terms when
these fibers run parallel to the x and y-axes. Indeed, if the torsional stiffness can be

Fig. 1.1. A rectangular wire fabric with fibers in cartesian directions

neglected the energy stored in the grid under a vertical load f is supposed to be given
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by

E (u) =

∫

Ω

{

1
2

(

u2
xx + u2

yy

)

− fu
}

dx dy.

The corresponding Euler equation is uxxxx + uyyyy = f. This equation has to be
complemented by suitable boundary conditions, and in the present paper we shall
study the problem on a planar domain Ω:

• as a general grid that is hinged at the boundary

{

uxxxx + uyyyy = f in Ω,
u = n2

1 uxx + n2
2 uyy = 0 on ∂Ω,

(1.3)

where n = n(x, y) is the exterior normal at (x, y) ∈ ∂Ω;
• or as a general grid that is clamped at the boundary

{

uxxxx + uyyyy = f in Ω,
u = ∂

∂nu = 0 on ∂Ω.
(1.4)

When we checked the literature for this type of equation, we found a remarkable
hint in the chapter on the history of plate theory in Szabó’s book [37], see p.409. Jacob
II Bernoulli, inspired by Chladni’s experiments on vibrating plates, had attempted to
model their behaviour by our differential equation in [5], but this was later dismissed
for isotropic plates and replaced by Kirchhoff’s theory [24]. But there is more to it.
According to [30] Bernoulli had also studied and absorbed Leonard Euler’s idea that
an elastic membrane should be modelled as a fabric of one-dimensional orthogonal
elastic strings and he tried to carry this idea over to modelling a plate as a fabric of
one-dimensional beams. Thus he arrived at

∂4z

∂x4
+
∂4z

∂y4
=

z

c4

as “the fundamental equation of the entire theory” of plate vibrations. In those days
church bells were intended as applications for the theory. Both operators, the isotropic
plate operator ∆2, and the anisotropic

L =
∂4

∂x4
+

∂4

∂y4
(1.5)

retain a certain degree of isotropy. They are special cases of

L̃ =
∂4

∂x4
+ P

∂4

∂x2∂y2
+Q

∂4

∂y4
(1.6)

with P ≥ 0 and Q > 0 denoting material constants. Notice that L̃ is always invari-
ant under reflections across cartesian axes, but not always under rotations. Plates
whose deformation is described by such operators are called orthotropic, see e.g [29],
[31]. By scaling y and not scaling x one can always force Q to be 1. Realistic
values for P and Q in the case of plywood material (birch with bakelite glue) can
be found in [25, p. 92], [26, p. 269], or in [31]. It is not unrealistic to expect
Q to be of order 1-10 and P ∈ [0, 1). Modern (composite) materials like GLARE,
see http://www.lr.tudelft.nl/highlights/glare.asp, a composite of layers of fibreglass
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and aluminium that is also called “plymetal”, can be expected to satisfy similar or-
thotropic equations. Orthotropic plate equations like L̃u = f have been rigorously
derived by homogenization methods as the right macroscopic model for grid struc-
tures as the thickness of the structure and the size of its cells goes to zero. To be
precise, in [3] p.130, and using our notation the limit equation has coefficients Q = 1
and P = 4/(1 + ν), where ν denotes the Poisson ratio of the original (solid and unho-
mogenized) plate material. For ν = −1/3 one gets P = 6 as in (3.6) below. We take
the differential equation for granted here and do not address issues of homogenization
as in [3].

Section 2 is devoted to proving existence and uniqueness questions, and Section 3
to regularity of solutions to these boundary value problems. Regularity near corners
of Ω is delicate, and its discussion will be limited to some special cases. Moreover, we
address the subject of representations of solutions by series or by means of a Green
function at the end of Section 3.

In Section 4 we study the spectrum of the operator L on rectangular domains
and for hinged and clamped boundary conditions. Since the operator is separable, on
special domains like rectangles all of its eigenfunctions can be represented in terms
of products of one-dimensional eigenfunctions. We learned this from Courant and
Hilbert, see [10], Ch.II Par. 1.6, who did it for operators of second order. Therefore
the one-dimensional cases will always be treated before the rectangular domains. We
present all eigenvalues and eigenfunctions for a number of examples and compare
spectra for different (parallel or diagonal) alignments of our anisotropic grid.

Section 5 is dedicated to positivity questions. Suppose the load f on a beam (or
grid) is pointing downwards. Does this imply that the deformation u has the same sign
everywhere in Ω? The answer is in general negative, unless the geometry of the domain
is special or unless the beam (or grid) is embedded in an elastic ambient medium that
exerts a restoring force proportional to the deformation. So the modified question is,
for which (presumably negative) values of λ one can show that f ≥ 0 implies positivity
of the solution to

uxxxx + uyyyy = λu+ f in Ω,

that satisfies the boundary conditions under consideration. This question turns out
to be technically most challenging and its answer is given using different tricks for
different alignments or boundary conditions.

For the reader’s convenience we finish with a summary in section 6 and an ap-
pendix.

2. Existence and uniqueness for hinged and clamped grids. Let Ω ⊂ R
n

be a bounded simply connected set. Then the variational problem

Minimize: E(v) =

∫

Ω

(

1
2

n
∑

i=1

v2
xixi

− f v

)

dx on W 1,2
0 (Ω) ∩W 2,2(Ω) (2.1)

has a unique solution. To see this directly we follow the ideas of [16] and first show
that E(v) is coercive on W 2,2(Ω). Obviously 2uxxuyy ≤ u2

xx + u2
yy, so that

E(v) ≥ c(n)

∫

Ω

(∆v)2 dx−
∫

Ω

f v dx.

If we denote ∆v by g, then a well known a-priori estimate for solutions of Dirichlet
problems for second order elliptic differential equations on bounded domains (see e.g.
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[14], p.317) implies that

||D2v||L2(Ω) ≤ ||∆v||L2(Ω),

so that all second derivatives of v are in L2(Ω). This and a Poincaré type inequality
show the coerciveness of E on W 1,2

0 (Ω)∩W 2,2(Ω). Now the existence and uniqueness
of a solution follow from the direct method in the calculus of variations and from
the strict convexity of the functional E. The solution satisfies the Euler-equation
∑n

i=1 uxixixixi
= f in Ω. To derive the boundary conditions, we note that a weak

solution satisfies
∫

Ω

(

n
∑

i=1

uxixi
ϕxixi

− f ϕ

)

dx = 0, (2.2)

and after two integrations by parts we obtain

0 =

∫

Ω

(

−
n
∑

i=1

uxixixi
ϕxi

− f ϕ

)

dx+

∫

∂Ω

n
∑

i=1

uxixi
ϕxi

νi dσ (2.3)

= 0 +

∫

∂Ω

n
∑

i=1

uxixi
ϕxi

νi dσ −
∫

∂Ω

n
∑

i=1

uxixixi
ϕ νi dσ (2.4)

=

∫

∂Ω

(

n
∑

i=1

uxixi
ν2

i

)

∂ϕ

∂ν
dσ (2.5)

Notice that the last integral in (2.4) vanishes because ϕ vanishes on the boundary.
Therefore the first boundary integral in (2.4) must vanish too. The vanishing of ϕ on
∂Ω implies in particular that the bracket in (2.5) must vanish on ∂Ω. Thus we have
formally derived (1.3) in the plane case.

If the grid or stiff fabric is clamped, we consider the variational problem

Minimize: E(v) =

∫

Ω

(

1
2

n
∑

i=1

v2
xixi

− f v

)

dx on W 2,2
0 (Ω) (2.6)

and observe that the same existence proof works for this problem, too. The solution
satisfies

{ ∑n
i=1 uxixixixi

= f in Ω,
u = ∂u

∂ν = 0 on ∂Ω,
(2.7)

We have the following existence and uniqueness results..
Theorem 2.1. Let Ω ⊂ R

n be a bounded domain with piecewise smooth boundary
and suppose that f ∈ L2(Ω). Then problems (2.1) and (2.6) have a unique minimizer.
Moreover, the corresponding boundary value problems, which in the case n = 2 are
given by (1.3) and (1.4), have a unique weak solution.

Remark 2.1. As usual a weak solution for (1.3) is a function u in W 2,2
0 (Ω)

that satisfies (2.2) for all ϕ ∈ W 2,2
0 (Ω). A weak solution of (1.4) is a function u in

W 2,2(Ω) ∩W 1,2
0 (Ω), satisfying (2.2) for all ϕ ∈W 2,2(Ω) ∩W 1,2

0 (Ω).
The existence was shown above by variational methods and the uniqueness of the

weak solution follows from the strict convexity of the underlying functional E. Notice
that the second order boundary condition holds only in the sense of distributions. To
see that it holds pointwise in every smooth point of the boundary, we need to know
more about its regularity.
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3. Regularity. One may use the standard regularity theory for elliptic opera-
tors whenever the elliptic system is of an appropriate type and if the boundary is
sufficiently smooth. First we will show that our systems are regular elliptic.

3.1. Regular elliptic. The symbol, that is L = L( ∂
∂x ,

∂
∂y ), of our fourth order

operator can be decomposed as follows:

L(ξ1, ξ2) := ξ41 + ξ42 =
(

ξ21 +
√

2ξ1ξ2 + ξ22

)(

ξ21 −
√

2ξ1ξ2 + ξ22

)

, (3.1)

Hence L can be written as the composition of two second order elliptic operators.
Notice however that the boundary value problem (1.4) cannot be split into a system
of two second order equations with separated boundary conditions. In fact, even
for the boundary value problem (1.3) this seems to be out of reach. The boundary
operators have the following symbols:

• For (1.3): B1 (ξ) = 1 and B2 (ξ) = n1(x)
2ξ21 + n2(x)

2ξ22 .
• For (1.4): B1 (ξ) = 1 and B2 (ξ) = n1(x)ξ1 + n2(x)ξ2.

A necessary condition to have the full classical regularity results is that the cor-
responding boundary value problem should be regular elliptic in the sense of [27], and
this is indeed the case.

Lemma 3.1. Problems (1.3) and (1.4) are regular elliptic.
Proof. The differential operator is regular elliptic of order 2k if there is c > 0

such that L(ξ) ≥ c |ξ|2k
for ξ ∈ R

2 which obviously holds true. In order to show
that the boundary conditions make it into a regular elliptic one has to consider the
factorisation of τ 7→ L(ξ + τη). One finds that the roots of this polynomial are

τk = − ξ1 + (−1)
2k−1

4 ξ2

η1 + (−1)
2k−1

4 η2
with k ∈ {1, 2, 3, 4} .

We use (−1)
α

= cosπα + i sinπα. Depending on ξ and η, which should be taken
independently, there are two roots, τI and τII , which have positive imaginary part.
We find L(ξ + τη) = a+(ξ, η; τ)a−(ξ, η; τ) with

a+(ξ, η; τ) =
√

η4
1 + η4

2 (τ − τI) (τ − τII) ,

a−(ξ, η; τ) =
√

η4
1 + η4

2 (τ − τ̄I) (τ − τ̄II) .

Since the imaginary parts of τI and τII have the same sign the first order term in
a+(ξ, η; τ) has a coefficient with a strictly negative imaginary part, indeed

(τ − τI) (τ − τII) = τ2 − (τI + τII) τ − τIτII .

The condition for regularity that has to be verified is that, for ξ a tangential direc-
tion and η a normal direction, the polynomials τ 7→ B1 (ξ + τη) and τ 7→ B2 (ξ + τη)
are independent modulo τ 7→ a+(ξ, η; τ). Therefore we set η = (n1, n2) and ξ =
(−n2, n1).

For (1.3) B1 (ξ + τη) = 1 and

B2 (ξ + τη) = n2
1 (−n2 + n1τ)

2
+ n2

2 (n1 + n2τ)
2

= 2n2
1n

2
2 + (n2

2 − n2
1)n1n2τ +

(

n4
1 + n4

2

)

τ2.
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This is a polynomial with only real coefficients. Since a+(ξ, η; τ) contains a real second
order term and an imaginary first order term so that both polynomials are linearly
independent.

For (1.4) B1 (ξ + τη) = 1 and B2 (ξ + τη) = 1 + τ. These are clearly independent
modulo any second order polynomial.

3.2. Regularity for smooth domains. Near the smooth boundary part the
standard regularity results e.g. from [27, Ch. 2] may be used, since both the clamped
and the hinged problem are regular elliptic. Only the corners need more attention.
But to fix the facts let us summarize the regularity results in a Theorem.

Theorem 3.2. Let Ω ⊂ R
2 be a bounded domain with piecewise smooth boundary

and let Ω′ ⊂ Ω be a subset such that Ω′ contains only the smooth boundary points
of ∂Ω. If f ∈ W k,2(Ω) and k ∈ {0, 1, 2, . . .} then the weak solutions of (1.3) and
(1.4) are of class W k+4(Ω′). In particular for f ∈ L2(Ω) the derivatives uxixi

are
in W 3/2,2(∂Ω ∩ ∂Ω′), so that the boundary condition in (1.3) holds pointwise a.e. on
∂Ω.

3.3. Regularity near corners. It remains to discuss the regularity near singu-
lar points of the boundary, and this will be done for some special but typical situations.
First we will give an explanation for a simple case.

3.3.1. The hinged rectangular grid with aligned fibers. Let R = (0, a) ×
(0, b). be the rectangle. It will be relatively easy to study the regularity of the hinged

grid near a corner, say (0, 0) when the grid is aligned with the rectangle as in Figure
1.

Reflection:. The first approach is through a reflection argument. As an example
we will consider the hinged rectangular grid with horizontally and vertically aligned
fibers.

Note that the differential operator and boundary conditions all satisfy

L(± ∂
∂x ,

∂
∂y ) = L( ∂

∂x ,
∂
∂y ) and B(± ∂

∂x ,
∂
∂y ) = B( ∂

∂x ,
∂
∂y ).

Instead of considering






uxxxx + uyyyy = f in R,
u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a] × {0, b} ,

(3.2)

we extend f to f̃ on (−a, a) × (0, b) by

f̃(x, y) = sign(x) f(|x| , y)

and consider






ũxxxx + ũyyyy = f̃ in R̃ = (−a, a) × (0, b) ,
ũ = ũxx = 0 on {−a, a} × [0, b] ,
ũ = ũyy = 0 on [−a, a] × {0, b} .

(3.3)

If f ∈ Lp(R) then f̃ ∈ Lp(R̃) and by the result above there is unique solution ũ ∈
W 2,p(R̃) and ũ ∈ W 4,p(R̃\N) with N some neighborhood of the four corners of R̃;
(0, 0) has become a regular boundary point. Since the solution ũ is unique one finds
that ũ(x, y) = −ũ(−x, y) and hence ũ(0, y) = ũxx(0, y) = 0. In other words, u := ũ|R
is the solution of (3.2) which is in W 4,p(R ∩ Bε(0)). Since we may do so for every
corner of R we find that u ∈W 4,p(R).
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Fig. 3.1. Rectangular grid with diagonal fabric

Seperation of eigenfunctions:. A second approach can be used if there is a com-
plete orthonormal system of eigenfunctions of the form {ϕi(x)ψj(y); i, j ∈ N} . For
example for the problem (3.2) the set {Φij ; i, j ∈ N

+} with

Φi,j(x, y) =
2√
ab

sin(i
π

a
x) sin(j

π

b
y)

is a complete orthonormal set of eigenfunctions. Writing fij = 〈Φi,j , f〉 the solution
u is given by

u(x, y) =

∞
∑

i,j=1

fij
(

iπ
a

)4
+
(

j π
b

)4 Φi,j .

Using Parseval a straightforward computation shows that

∥

∥

∥

∥

∥

(

∂

∂x

)k (
∂

∂y

)ℓ

u

∥

∥

∥

∥

∥

2

L2(R)

=

∞
∑

i,j=1

(

iπ
a

)2k (
j π

b

)2ℓ

(

(

iπ
a

)4
+
(

j π
b

)4
)2 (fij)

2

which is bounded if f ∈ L2(R) and k, l ∈ N with k + l ≤ 4. So u ∈W 4,2(R).

3.3.2. The hinged rectangular grid with diagonal fibers. Now suppose
that the grid runs diagonally into the horizontal and vertical axis as in Figure 3.3.2,
and that x̂ := 1

2

√
2 (x+ y) and ŷ = 1

2

√
2 (y − x). Then a straightforward calculation

shows that

uxxxx + uyyyy = 1
2ux̂x̂x̂x̂ + 6

2ux̂x̂ŷŷ + 1
2uŷŷŷŷ = f , (3.4)

while the boundary condition from (2.4) becomes

uxx + uyy = ∆u = 0 = ux̂x̂ + uŷŷ (3.5)

because (ν1)
2 = (ν2)

2 = 1/2 on the sides of the rectangle and because the Laplacian
is invariant under rotations. Since also u = 0 on the boundary, this implies ux̂x̂ = 0 =
uŷŷ. Therefore after an obvious change of notation the deformation u of the hinged

diagonal grid satisfies again a regular elliptic boundary value problem, namely







uxxxx + 6uxxyy + uyyyy = 2f in R =(0, a) × (0, b) ,
u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a] × {0, b} .

(3.6)

Also for this boundary value problem we find that L(± ∂
∂x ,

∂
∂y ) = L( ∂

∂x ,
∂
∂y ) and

B(± ∂
∂x ,

∂
∂y ) = B( ∂

∂x ,
∂
∂y ) and hence we may use the odd reflection argument of (3.3)

to find u ∈W 4,2(R) that does satisfy the boundary conditions for x = 0.
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Incidentally, the transformed elliptic operator has a symbol that can again be
factorized as

2L̂(ξ1, ξ2) := ξ41 + 6ξ21ξ
2
2 + ξ42 =

(

ξ21 +
(

3 − 2
√

2
)

ξ22

)(

ξ21 +
(

3 + 2
√

2
)

ξ22

)

. (3.7)

The fact that (3.6) constitutes a regular elliptic boundary value problem does not need
to be checked again, since this property is invariant under changes of the coordinate
system. Moreover, the boundary conditions fit nicely with this factorization and we
find a system of two well-posed second order problems:















uxx +
(

3 − 2
√

2
)

uyy = v in R,
u = 0 on ∂R

vxx +
(

3 + 2
√

2
)

vyy = 2f in R,
v = 0 on ∂R

(3.8)

Using the result of Kadlec ([22]) for second order operators on convex domains one
finds that f ∈ L2(R) implies v ∈ W 2,2(R) ∩W 1,2

0 (R). Since v satisfies the boundary
conditions of u (!), we do not only find that u ∈ W 2,2(R) ∩W 1,2

0 (R) but even that
u ∈W 4,2(R) ∩W 1,2

0 (R).

We remark that some boundary value problems with different boundary condi-
tions along each side can be treated by a reflection argument. In fact, the same
reflection argument works for the aligned rectangular grid, if it is clamped on the
horizontal parts of the boundary and hinged on the vertical part. To be specific, for
f ∈ L2(Ω) the unique solution u of







uxxxx + uyyyy = f in R,
u = uxx = 0 on {0, a} × [0, b] ,
u = uy = 0 on [0, a] × {0, b} .

(3.9)

is in W 4,2(R).

3.3.3. The clamped rectangular grid with aligned fibers. The regularity
of the clamped grid near a corner does not follow from such a simple reflection ar-
gument, because uxx does in general not vanish on (0, y) with y ∈ (0, b). However,
provided the grid is aligned with the rectangle as in Figure 1, we may proceed by
‘seperation of eigenfunctions’. To complete this argument we need to borrow some
results of subsection 4.2.3 and more specifically Lemma 4.3 and 4.4.

The set {Φij} of eigenfunctions in (4.11) is a complete orthonormal system in
L2(Ω). Then, as above for the hinged rectangular grid, the solution of (1.4) can be
represented by

u(x, y) =

∞
∑

i,j=1

αij

Γij
Φij(x, y) ,

where αij are the Fourier coefficients from the representation of f with
∑

i,j α
2
ij being

finite by Parseval’s identity. The eigenvalues Γij are defined by Γij = a−4λi + b−4λj

and we find that

∂n+m

∂xn∂ym
u(x, y) =

∞
∑

i,j=1

a−nλ
n/4
i b−mλ

m/4
j

a−4λi + b−4λj
αijΦij(x, y) ,

which is bounded when n+m ≤ 4. This shows that u ∈W 4,2(R) even in this case of
a clamped rectangular grid aligned with R. From Theorem 2.1 we were only allowed
to conclude that u ∈W 2,2(R).
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3.3.4. The clamped rectangular grid with diagonal fibers. How to obtain
the regularity of u for a clamped–hinged or clamped–clamped diagonal grid near a
corner is a nontrivial problem and will not be discussed here.

One conceivable way to represent a solution would be a Green function g0,ξ(·) =
F (·−ξ)+h(ξ, ·). It can in principle be obtained by adding a solution h of Lh(ξ, ·) = 0
in R, h(ξ, ·) +F (· − ξ) = 0 = B2h(ξ, ·) +B2F (· − ξ) on ∂R to a fundamental solution
F (·−ξ), i.e. to a distributional solution of LF (·−ξ) = δ0(·). Clearly F is not unique,
but just for the record let us quote a fundamental solution F (for L as in (3.9)) from
[39] or [29]:

F (x, y) = − 1
16π

√
2

[

(x2 + y2) log(x4 + y4) + 2
√

2xy log
(

x2+y2+
√

2xy

x2+y2−
√

2xy

)

+

+ 2
√

2
(

x2 arctan x2

y2 + y2 arctan y2

x2

)]
(3.10)

An explicit calculation of the Green function even on a quarter plane seems to be
beyond reach.

4. Eigenfunctions and eigenvalues.

4.1. Eigenfunctions for a hinged rectangular grid. The eigenfunctions for
the hinged beam

{

ϕxxxx = λϕ in (0, 1),
ϕ = ϕxx = 0 in {0, 1} , (4.1)

are obviously given by φi(x) =
√

2 sin(iπx) and the eigenvalues are λi = i4π4.
If a hinged grid is rectangular and aligned with the cartesian coordinates, then a

calculation shows that the eigenfunctions and eigenvalues of







Φxxxx + Φyyyy = ΛΦ in R,
Φ = Φxx = 0 on {0, a} × [0, b] ,
Φ = Φyy = 0 on [0, a] × {0, b} .

(4.2)

are given by

Φij (x, y) =
2√
ab

sin

(

iπx

a

)

sin

(

jπy

b

)

and Λij =
i4π4

a4
+
j4π4

b4
. (4.3)

For i = j = 1 one finds:
Lemma 4.1. The first eigenfunction for (4.2), the hinged rectangular grid with

aligned fibers, is of fixed sign.
Even if the hinged grid is diagonally aligned we can determine the eigenfunctions

and eigenvalues of







1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = Λ̃Φ in R,
Φ = Φxx = 0 on {0, a} × [0, b] ,
Φ = Φyy = 0 on [0, a] × {0, b} .

(4.4)

by a separation of variables. In fact the eigenfunctions are still given by

Φij (x, y) =
2√
ab

sin

(

iπx

a

)

sin

(

jπy

b

)

,
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but now the eigenvalues are given by

2Λ̃ij = π4

(

i4

a4
+

6i2j2

a2b2
+
j4

b4

)

. (4.5)

We may conclude as before:
Lemma 4.2. The first eigenfunction for (4.4), the hinged rectangular grid with

diagonal fibers, is fixed sign.
Notice that

1
2Λij ≤ Λ̃ij ≤ 2Λij , (4.6)

Λ̃ij =
π4

2

(

i4

a4
+

6i2j2

a2b2
+
j4

b4

)

and Λij = π4

(

i4

a4
+
j4

b4

)

Notice also that the first eigenfunction is of fixed sign.

4.2. Eigenfunctions for clamped problems.

4.2.1. Eigenfunctions for the clamped beam. The set of all normalized
eigenfunctions for

{

ϕ′′′′ = λϕ in (0, 1) ,
ϕ(0) = ϕ′(0) = 0 = ϕ(1) = ϕ′(1)

(4.7)

forms a complete orthonormal system in L2 (0, 1) .
Lemma 4.3. These eigenfunctions and eigenvalues are

ϕi (x) = βi cosh νi

(

cosh (νix) − cos (νix)

cosh νi − cos νi
− sinh (νix) − sin (νix)

sinh νi − sin νi

)

and λi = ν4
i ,

with i = 1, 2, . . . where νi is the ith positive zero of cos ν − 1
cosh ν = 0 and βi is the

normalization factor such that
∫ 1

0
ϕi (x)

2
dx = 1.

Note that the first eigenfunction is of fixed sign.
The statement of this Lemma is shown by a lengthy but straightforward calcula-

tion.
Lemma 4.4. The sequences νi and βi as above have the following asymptotics
• limi→∞ iπ − νi = 1

2π and hence λi ≈ (i− 1/2)
4
π4;

• limi→∞ βi = 1.
Proof. For obvious reasons two subsequent zeroes νi and νi+1 of cos ν− 1

cosh ν = 0
are in the interval ((i− 1

2 )π, (i+ 1
2 )π) and close to its boundaries. Since 1

cosh νi
≤ 2e−νi

and | sinx| > 1
2 in a sufficiently small neighborhood of (i− 1

2 )π we have

|νi − (i− 1
2 )π| < 4 eπ/2 e−iπ.

This proves the first statement, and the following table illustrates it:

λi : 500.56390 3803.5370 14617.630 39943.799 89135.406 173881.31 308208.45�
i −

1
2

�
4

π4 : 493.13352 3805.0426 14617.451 39943.815 89135.406 173881.31 308208.45

Table 4.1

Comparison of the of the eigenvalues λi and the approximation in Lemma 4.4.
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Let us now turn to the second statement. With the help of mathematica one sees
that

βi =
−Zi(cosh νi)

2

4 νi (cos νi − cosh νi)
2

(sin νi − sinh νi)
2

with

Zi = 2 νi cos 2 νi + 4 cosh νi sin νi − sin 2 νi − cosh 2 νi (2 νi + sin 2 νi)
−4 cos νi sinh νi + 8 νi sin νi sinh νi + sinh 2 νi + cos 2 νi sinh 2 νi

Now the second statement follows by a straightforward computation.

4.2.2. Comparing eigenvalues of clamped plates and grids. In [33] Philip-
pin, following ideas of Hersch [20], obtained estimates for the eigenvalues of a clamped
plate through the ones for clamped rectangular and diagonal grid. Let us state a spe-
cial result in this direction that compares the first eigenvalues of a clamped grid

{

Φxxxx + Φyyyy = ΓΦ in Ω,
Φ = |∇Φ| = 0 on ∂Ω,

(4.8)

with those of the clamped plate:
{

∆2Φ = ΥΦ in Ω,
Φ = |∇Φ| = 0 on ∂Ω.

(4.9)

Lemma 4.5. Let Ω ⊂ R
2 be a bounded domain with a C0,1-boundary. Let Γ1 and

Υ1 be the first eigenvalues of (4.8), respectively (4.9). Then it holds that 1
2Υ1 ≤ Γ1 ≤

Υ1.
Proof. The result follows from the definition of the eigenvalue by Rayleigh’s

quotient and some energy estimates. For the first inequality one uses

1
4

∫

Ω

(∆u)2dx dy = 1
4

∫

Ω

(

u2
xx + 2uxxuyy + u2

yy

)

dx dy ≤ 1
2

∫

Ω

(

u2
xx + u2

yy

)

dx dy.

For the second one proceeds via an integration by part that shows, due to the clamped
boundary conditions,

∫

Ω

uxxuyy dx dy =

∫

∂Ω

(uxuyyn1 − uxuxyn2) dσ +

∫

Ω

u2
xy dx dy

=

∫

Ω

u2
xy dx dy ≥ 0,

and hence

1
2

∫

Ω

(

u2
xx + u2

yy

)

dx dy ≤ 1
2

∫

Ω

(

u2
xx + 2u2

xy + u2
yy

)

dx dy = 1
2

∫

Ω

(∆u)2 dx dy.

This completes the proof.

4.2.3. Eigenfunctions for the clamped rectangular grid. A complete or-
thonormal system of eigenfunctions and eigenvalues for the grid aligned with the

cartesian coordinates
{

Φxxxx + Φyyyy = ΓΦ in R,
Φ = |∇Φ| = 0 on ∂R.

(4.10)
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with R = (0, a) × (0, b) is given in terms of the one-dimensional eigenfunctions and
eigenvalues ϕj and λj from Lemma 4.3 by

Φij (x, y) =
1√
ab
ϕi

(x

a

)

ϕj

(y

b

)

and Γij = a−4λi + b−4λj . (4.11)

Lemma 4.6. The first eigenfunction for (4.10), the clamped rectangular grid with
aligned fibers, is of fixed sign.

This is in marked contrast to the biharmonic operator, whose first eigenfunction
under Dirichlet conditions on a rectangle is known to change sign infinitely often (see
[8]), and positivity of the ground state for our anisotropic operator cannot be expected
for a general domain.

Γij : 1001.13 4304.10 15118.2 40444.4 89636.0
7607.07 18421.2 43747.3 92938.9

29235.3 54561. 103753.
79887. 129079.

178271.
Table 4.2

Numerical values for the eigenvalues Λij with i, j ≤ 5 of a clamped square grid of length 1 that
is aligned with cartesian coordinates are (without repeating the multiple ones like Λ1,2 = Λ2,1)

Υij : 1294.93 5386.63
11710.3

Table 4.3

Numerical eigenvalues for a clamped square plate of length 1. We used the values found in
[15, p. 79] and scaled these.

An explicit determination of all eigenfunctions and eigenvalues for the diagonally

aligned clamped grid, however,







1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = Γ̃Φ in R,
Φ = Φx = 0 on {0, a} × [0, b] ,
Φ = Φy = 0 on [0, a] × {0, b} .

(4.12)

seems to be a nontrivial problem. From Lemma 4.5 we can find an estimate, namely
Γ1 ≤ 2Γ̃1, by using Γ1 ≤ Υ1 and 1

2Υ1 ≤ Γ̃1, and similarly Γ̃1 ≤ 2Γ1. This is consistent

with inequality (4.6) for hinged grids. Note that the estimate 1
2 Γ̃1 ≤ Γ1 ≤ 2Γ̃1 even

holds on general domains.
Remark 4.1. We do not know if the first eigenfunction for (4.12), the clamped

rectangular grid with diagonal fibers, is of fixed sign. Some evidence against a fixed
sign follows from Coffman’s result in [8].

4.2.4. Eigenfunctions for the clamped circular grid. For a clamped circu-
lar plate there are radially symmetric eigenfunctions and these can be expressed in
terms of the (modified) Bessel functions J0 and I0. Since Boggio [2] gave an explicit
formula for the Dirichlet biharmonic on a circular disk Jentzsch’ Theorem implies
that the first eigenfunction is positive (of fixed sign) and unique and hence radially
symmetric. Although a numerical approximation shows that the first eigenfunction
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Fig. 4.1. Numerical approximations of the first ‘clamped’ eigenfunctions on a disk for Li,
i = 1, 2, 3. One sees hardly any difference. We remark that the eigenfunctions for the first and the
second operator differ ‘analytically’ just by a 45◦ rotation. The finite difference scheme however is
different since in each case the discrete version of the corresponding operator Li has been used.

of the clamped grid looks similar to the one for the clamped plate this eigenfunction
is not radially symmetric.

Lemma 4.7. Let D denote the unit disk. There is no radial eigenfunction for
{

Φxxxx + Φyyyy = ΓΦ in D,
Φ = |∇Φ| = 0 on ∂D.

(4.13)

Remark 4.2. Of course, since the differential equation uxxxx + uyyyy = λu is
not rotation invariant, this result should not come as a surprise. A nasty consequence
however, is that the first eigenfunction does not seem to have an ‘easy’ explicit rep-
resentation. We do not even have analytical proof that this eigenfunction has a fixed
sign or that it is unique.

Remark 4.3. The first eigenvalue λcp,1 ≈ 104.363 for the cicular clamped plate
one may find in [1]. The first one for the clamped grid is approximately 75% of this
value.

Proof. [Proof of Lemma 4.7] Suppose that Φ is a radial eigenfunction. Then we
can rotate this eigenfunction by π/4 and it is still an eigenfunction. However, the
rotated Φ satisfies now, see (3.6),

{

1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = ΓΦ in D,
Φ = |∇Φ| = 0 on ∂D.

(4.14)

Consequently we can add (4.13) to (4.14) to arrive at 3
2Φxxxx+3Φxxyy+ 3

2Φyyyy = 2ΓΦ
or

{

∆2 Φ = 4
3ΓΦ in D,

Φ = |∇Φ| = 0 on ∂D.
(4.15)

But then Φ must be a radial eigenfunction of the plate equation, an unlikely coin-
cidence. To show that this cannot be the case suppose that Φ(r) is such a radial
function. Then

Φxx = Φ′′ x2

r2 + Φ′ y2

r3 and Φxx = Φ′′ y2

r2 + Φ′ x2

r3

and

Φxxxx + Φyyyy =

Φ′′′′ r
4 − 2x2y2

r4
+ Φ′′′ 12x2y2

r5
+ Φ′′ 3r

4 − 30x2y2

r6
+ Φ′−3r4 + 30x2y2

r7
= ΓΦ ,
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or equivalently

2x2y2
(

−Φ′′′′ + 6r−1Φ′′′ − 15r−2Φ′′ + 15r−3Φ′) = r4ΓΦ − r4Φ′′′′ − 3r2Φ′′ + 3rΦ′.

But this implies that either x2y2 is a function of r, or both sides are identical 0. So
we have to show that this second case cannot occur. Suppose both sides are identical
zero. The general solution of

−Φ′′′′ + 6r−1Φ′′′ − 15r−2Φ′′ + 15r−3Φ′ = 0

is a linear combination of rνi with four distinct numbers νi ∈ {0, 2.32219, 1.83891 ±
1.75438i}. There is no way that such a combination will make the right hand side
identically zero, a contradiction.

5. Positivity questions. From the Krein-Rutman theorem one knows that for
a regular elliptic problem strong positivity of the solution operator implies that the
first eigenfunction has multiplicity one and moreover is of fixed sign. If the solution
operator has an integral kernel one may even use a much earlier result of Jentzsch
[21]. Let us be more precise and consider:

{

Lu = λu+ f in Ω,
Bu = 0 on ∂Ω,

(5.1)

If the solution operator (L− λ)
−1
B : X 7→ X for (5.1) in the Banach lattice X is

compact, positive and irreducible for some λ0, then there exists an eigenvalue λ1 ∈
(λ0,∞) with a positive eigenfunction. For a precise statement see [6]. Moreover, for
all λ ∈ [λ0, λ1) and f ∈ X one finds that there is a solution uλ ∈ X and

f > 0 implies uλ > 0.

5.1. Known results for plates. Let us recall some of the known positivity
preserving results for plates.

For the hinged plate

{

∆2u = λu+ f in Ω,
u = ∆u = 0 on ∂Ω,

(5.2)

this question was studied in [23] on a general bounded domain Ω. The problem is
positivity preserving if λ ∈ [−λc(Ω), λ1(Ω)2). Here λc is a critical number which is
bounded above by λ1(Ω)λ2(Ω) and λi(Ω) are the eigenvalues of the Laplacian operator
under Dirichlet conditions. If Ω is a rectangle R with sides a and b < a one calculates
easily λ1(R) = π2(a2 + b2) and λ2(R) = π2(a2 + 4b2), so that (5.2) with Ω = R is
positivity preserving for

−π4(a2 + b2)(a2 + 4b2) ≤ −λc(R) ≤ λ < π4(a2 + b2)2. (5.3)

The clamped plate

{

∆2u = λu+ f in Ω,
u = |∇u| = 0 on ∂Ω,

(5.4)

is a more delicate problem. In general (5.4) is not positivity preserving for λ = 0, see
[13] or [36]. The boundary value problem in (5.4) is positivity preserving only in the
case of some special domains Ω:
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• If Ω is a ball or a disk Boggio’s explicit formula for the solution operator with
λ = 0 implies positivity.

• For small perturbations of the disk positivity has been shown in [19].
• For Ω some limaçons positivity can be found in [11].
• For a combination of the above results with Möbius transformations see [12].

5.2. Positivity under hinged boundary conditions.

5.2.1. Hinged beam. For the hinged beam
{

uxxxx = λu+ f in (0, 1),
u = uxx = 0 in {0, 1}, (5.5)

the boundary value problem (5.5) is positivity preserving, provided (see [23])

−950.884 ≈ λc ≤ λ < π4 ≈ 97.409. (5.6)

Here the lower bound λc equals 4(κ0)
4 where κ0 is the first positive zero of tan(x) +

tanh(x).
The Green function of the hinged beam. For the sake of completeness we list some

facts about the Green function of the hinged beam problem (5.5). Set ν = 4
√
λ and

µ = 4

√

− 1
4λ

φ (λ;x) =







sinh νx−sin νx
ν3 if λ > 0

1
3x

3 if λ = 0
cosh(µx) sin µx−cos(µx) sinh µx

2µ3 if λ < 0

ψ (λ;x) =







sinh νx+sin νx
2ν if λ > 0
x if λ = 0

cosh(µx) sin µx+cos(µx) sinh µx
2µ if λ < 0

With gλ(x, y) as follows

gλ(x, y) =



















αλ φ (λ;x)φ (λ; 1 − y) + βλ ψ (λ;x)φ (λ; 1 − y) +
+ βλ φ (λ;x)φ′ (λ; 1 − y) + γλ ψ (λ;x)ψ (λ; 1 − y) if 0 ≤ x ≤ y ≤ 1,

αλ φ (λ; y)φ (λ; 1 − x) + βλ ψ (λ; y)φ (λ; 1 − x) +
+ βλ φ (λ; y)ψ (λ; 1 − x) + γλ ψ (λ; y)ψ (λ; 1 − x)

if 0 ≤ y < x ≤ 1.

(5.7)
with appropriate constants to accommodate the boundary values in 1 and the con-
tinuity requirements of gλ. Some tedious calculations lead to the coefficients in the
following table.

For λ ≥ 0 formula (5.7) can be simplified to

gλ(x, y) = sin(x ν) sin(ν(1−y))
2 ν3 sin ν − sinh(x ν) sinh(ν(1−y))

2 ν3 sinh ν if 0 ≤ x ≤ y ≤ 1,

g0(x, y) = 1
6x (1 − y) − 1

6x (1 − y)
3 − 1

6x
3 (1 − y) if 0 ≤ x ≤ y ≤ 1.

(5.8)

5.2.2. Hinged rectangular grid with aligned fibers. In this section it will
be convenient to use (x1, x2) instead of (x, y). An investigation of positivity preserving
properties for the hinged rectangular grid that is aligned with the cartesian axes seems
to be difficult. The eigenfunctions are

Φij (x1, x2) =
1√
ab
ϕi

(

a−1x1

)

ϕj

(

b−1x2

)
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0 < λ 6= λi λ = 0 λ < 0

set ν = 4
√
λ set µ = 4

√

− 1
4λ

αλ
ν3

8

(

1
sin ν − 1

sinh ν

)

ν
2 sin ν 0 µ3 cos µ sinh µ−cosh µ sin µ

cosh 2µ−cos 2µ

βλ −ν
4

(

1
sin ν + 1

sinh ν

)

− 1
2 −µ sinh µ cos µ+cosh µ sin µ

cosh 2µ−cos 2µ

γλ − 1
2ν

(

1
sin ν − 1

sinh ν

)

1
6

cosh µ sin µ−cos µ sinh µ
µ(cosh 2µ−cos 2µ)

Table 5.1

These values were obtained using Mathematica.

with ϕi (t) =
√

2 sin(iπt). Recall that the first eigenfunction is of fixed sign and has
multiplicity one. Using these eigenfunctions and the Green function gλ from (5.7) or
(5.8) the solution of

{ (

∂4

∂x4
1

+ ∂4

∂x4
2

)

u = λu+ f in R,

u = ∆u = 0 on ∂R,
(5.9)

can be written as

u(x) =
∞
∑

i,j=1

1

a−4λi + b−4λj − λ
〈Φij , f〉Φij(x) =

=
1√
ab

∞
∑

j=1

〈

ϕj

(◦
b

)

,

∫ a

s=0

gb−4λj−λ (x1, s) f (s, ◦) ds
〉

(0,b)

ϕj

(x2

b

)

.

An inspection of the series representation above suggests that for nonnegative and
nontrivial f , for λ < Λ11 and λ close to Λ11 the coefficient in front of Φ11 becomes
very large and positive. This suggests that the first term in the series decides about
the sign of u. But estimating the remainder of the series in terms of Φ1,1 turns out
to be a hard technical problem.

In order to verify that problem (5.9) is positivity preserving at least for λ in some
interval [Λ11 − γ,Λ11) it suffices to show that the solution of (5.9) with f = δy is
positive for every y ∈ R, where δy is the delta function at y.

Since the first eigenfunction is strictly positive in the interior we may prove the
following result, in which we use some notation for a domain Ω:

• the ε-interior: Aε = {x ∈ A; d(x, ∂Ω) > ε}
• the ε-neighborhood: A+Bε = {x ∈ Ω; d(x, ∂A) < ε}

Lemma 5.1. Let uλ be the solution of (5.9). For every ε > 0 there is a positive
γ > 0 such that for λ ∈ [Λ11 − γ,Λ11) and f ≥ 0 the following two statements hold
(here C denotes the set of corner points):

• if support f ∈ Rε, then uλ(x) ≥ 0 for all x ∈ R \ (C +Bε),
• if support f ∈ R \ (C +Bε) , then uλ(x) ≥ 0 for all x ∈ Rε.

Proof. It is sufficient to show such a result for f = δy, the delta function, with
y ∈ Rε. Formally we have

δy (·) =

∞
∑

i,j=1

Φij (y)Φij (·)
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Fig. 5.1. The sets Rε and R \ (C + Bε) from Lemma 5.1

but since δy /∈ L2(R) this series does not converge. The distributional solution uy,λ

of (5.9) with f = δy, that is

uy,λ (·) =

∞
∑

i,j=1

Φij (y)

Λij − λ
Φij (·) , (5.10)

lies in L2 (R) since its coefficients are in ℓ2 :

∞
∑

i,j=1

(

Φij (y)

Λij − λ

)2

≤
∞
∑

i,j=1





1

π4
(

i4

a4 + j4

b4

)

− λ





2

<∞.

We even find for α+ β < 3 that
{

iαjβ Φij (y)

Λij − λ

}

∈ ℓ2.

and hence uy,λ ∈W 3−t,2(R) for all t > 0.

We split uy,λ = uy,λ
1 + uy,λ

2 where

uy,λ
1 (·) =

Φ11 (y)

Λ11 − λ
Φ11 (·) .

By our assumption we have

|Φij (y)| ≤ c

ε
Φ11 (y) and |Φij (x)| ≤ cmax (i, j) Φ11(x).

This implies that we find

∣

∣

∣
uy,λ

2 (x)
∣

∣

∣
≤

∞
∑

i,j=1
(i,j) 6=(1,1)

∣

∣

∣

∣

Φij (y)

Λij − λ
Φij (x)

∣

∣

∣

∣

≤

≤ c3

ε2
Φ11 (x)Φ11 (y)

∞
∑

i,j=1
(i,j) 6=(1,1)

max (i, j)

π4
(

i4

a4 + j4

b4

)

− λ
.

Since Λ12 and Λ21 are greater than Λ11, a straightforward computation shows that the
last sum is bounded uniformly with respect to λ < Λ11 by a constant γ = C (a, b) ε−2.
For λ ∈ [Λ11 − γ,Λ11) we find

∣

∣

∣u
y,λ
2 (x)

∣

∣

∣ ≤ γΦ11 (x) Φ11 (y) ≤ uy,λ
1 (x)



18 B. KAWOHL & G. SWEERS

and hence that uy,λ(x) > 0.
With Proposition A.1 we may conclude that the follwing holds.
Lemma 5.2. For every ε > 0 there is a γ > 0 such that if λ ∈ [Λ11 − γ,Λ11) and

f ≥ 0, then the solution of (5.9) satisfies uλ(x) ≥ 0 for all x ∈ Rε∪(R\ (suppf +Bε)) .

Fig. 5.2. The sets suppf and Rε ∪ (R \ (suppf + Bε)) from Lemma 5.2

Proof. If suppf ∈ Rε then the previous lemma yields that uλ(x) ≥ 0 ex-
cept near the corners C. By the Proposition A.3 and using duality we find that
∥

∥uλ
2

∥

∥

W 28,2(C+Bε/2)
≤ c(ε) ‖f‖W−4,2(Ω) . Let us denote by dh(x) and dv(x) the dis-

tance of x ∈ R to the horizontal and vertical part of its boundary and by 〈v, f〉 the
L2(R) product, when applicable. Then one continues with the imbedding W 4,2

0 (Ω) in
C2(Ω̄) ∩ C1

0 (Ω̄), through

‖f‖W−4,2(Ω) = sup
{

〈v, f〉 ; v ∈W 4,2
0 (Ω) with ‖v‖W 4,2(Ω) ≤ 1

}

≤

≤ c sup
{

〈v, f〉 ; v ∈ C2(Ω̄) ∩ C1
0 (Ω̄) with ‖v‖C2(Ω̄) ≤ 1

}

≤
≤ c sup {〈v, f〉 ; |v(x)| ≤ dh(x)dv(x)|}
≤ c′ 〈Φ11, f〉 .

The last inequality is due to the fact that Φ11 can be bounded above and below by
multiples of dh(x)dv(x).

Similarly, again with an imbedding, we find for the function uλ
2 ∈ C2Ω̄) ∩ C1

0 (Ω̄)
and for x ∈ C +Bε/2 that

uλ
2 (x) ≤ c1

∥

∥uλ
2

∥

∥

C2(C+Bε/2)
Φ11(x) ≤ c2

∥

∥uλ
2

∥

∥

W 28,2(C+Bε/2)
Φ11(x) ≤

≤ c(ε) ‖f‖W−3,2(Ω) Φ11(x) ≤ c′(ε) 〈Φ11, f〉Φ11(x)

Since uλ
1 (x) = (Λ11 − λ)

−1 〈Φ11, f〉Φ11(x) we find uλ(x) > 0 near the corners for
Λ11 − λ chosen sufficiently small. A similar proof does it for the remaining claim.

Let us summarize our results in terms of positivity for the Green function uy,λ

from (5.10) belonging to the hinged rectangular grid.
Corollary 5.3. For every ε > 0 there is a γ(ε) > 0 such that uy,λ(x) ≥ 0 for

all x ∈ R, all y ∈ R2ε and all λ ∈ [Λ11 − γ(ε),Λ11).
Proof. We approximate δy(·) in D′(Ω) by a sequence of smooth fn with support

in Bε(y) and note that the corresponding solutions uy,λ
n (x) of (5.9) are nonnegative

for all x ∈ R and all y ∈ R2ε due to Lemma 5.2. Then we send n → ∞. Since fn

converges in W−1,2(R), the sequence un converges pointwise.
Notice that when sending ε to zero, it is conceivable (although it seems unlikely)

that γ(ε) → 0. In that case, as εn → 0, there exists sequences λn < Λ11 with
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λn → Λ11, yn ∈ R \R2εn
with yn → y0 ∈ ∂R and xn → x0 ∈ R such that

zn := uyn,λn(xn) < 0 for all n ∈ N .

At present we are unable to derive a contradiction from this.

We wil end this section by a another nonuniform positivity result near Λ11 by
using the fact that the projection on the first eigenfunction will dominate near Λ11.
We proceed as for the non-uniform version of the anti-maximum principle in [7] to
obtain the following nonuniform result.

Proposition 5.4. For all f ∈ L2(R) with f ≥ 0 there exists λf < Λ11 such that
for λ ∈ [λf ,Λ11) the solution uλ of (5.9) satisfies uλ ≥ 0.

Proof. We will adjust the arguments in [7] for the present situation. Let L :
W 4,2(R) ∩W 2,2

0 (R) → L2(R) be the operator that corresponds to (5.9). Fix P0 to
be the projection on the first eigenfunction, that is, P0f = 〈Φ11, f〉R Φ11 and set

Λ̃ ∈ (Λ11,min (Λ12,Λ21)). Then using our regularity result for (5.9) as in [7], we find

that there exists a constant C such that for all λ ∈
[

0, Λ̃
]

the following holds

∥

∥

∥(L − λ)
−1

(I − P0) f
∥

∥

∥

W 4,2(R)
≤ C ‖f‖L2(R) .

Since the domain R satisfies a uniform interior cone condition we find by [18, Theorem
7.26] that W 4,2(R) is imbedded in C2,α(Ω̄) for any α ∈ (0, 1) . Since

(L − λ)
−1

(I − P0) f ∈W 2,2
0 (Ω)

we find that u ∈ C0(Ω̄) and hence that

∥

∥

∥

∥

∥

(L − λ)
−1

(I − P0) f

Φ11

∥

∥

∥

∥

∥

∞
≤ C ′

∥

∥

∥(L − λ)
−1

(I − P0) f
∥

∥

∥

W 4,2(R)
.

The solution uλ of (5.9) can be written as

uλ(x) =
〈Φ11, f〉R
Λ11 − λ

Φ11(x) +
(

(L − λ)
−1

(I − P0) f
)

(x)

≥
( 〈Φ11, f〉R

Λ11 − λ
− C ′′ ‖f‖L2(R)

)

Φ11(x)

which is positive for 0 ≤ Λ11 − λ sufficiently small.

5.2.3. Hinged rectangular grid with diagonal fibers. The positivity ques-
tion is much simpler to decide if the grid runs diagonally. For the diagonally hinged

grid on the rectangle R as in (3.4)–(3.7),







1
2uxxxx + 3uxxyy + 1

2uyyyy = λu+ f in R,
u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a] × {0, b} .

(5.11)

one may decouple the fourth order equation (3.6) (or (5.11) with λ = 0) into a system
of two second order equations by using (3.7).

Since the boundary conditions decouple nicely with the two second order opera-
tors, one may use the substitution v := −uxx − (3 + 2

√
2)uyy and two iterations of
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the standard maximum principle for second order differential operators to find that
(5.11) is positivity preserving for λ = 0.

Going back to the fourth order problem one has a strongly positive and compact
solution operator that maps f ∈ C(Ω) to u ∈ C(Ω). From Krein-Rutman’s Theorem
one finds that there exists a first eigenvalue and this eigenvalue corresponds to an
eigenfunction of fixed sign. But then one can show the following as in [35].

Proposition 5.5. For λ ∈
[

0, π4
(

1
2a

−4 + 3a−2b−2 + 1
2b

−4
))

the problem (5.11)
is positivity preserving.

The upper bound for λ is the first eigenvalue Γ11 given in (4.5).

5.2.4. Numerical comparison for hinged rectangles. For the hinged rec-
tangular plate and grids we obtained the following numerical result by a finite differ-
ence method.

Fig. 5.3. A hinged plate, a hinged grid with rectangular fibers and a hinged grid with diagonal
fibers. The arrow denotes the location of the pointed force and the red (dark) part represents the
part of the grid with a negative deviation.

5.3. Positivity under clamped boundary conditions.

5.3.1. Clamped beam. What can be said about positivity preservation for the
clamped beam (5.12)?

{

uxxxx = λu+ f in (0, 1),
u = ux = 0 in {0, 1}. (5.12)

This requires more efforts. If λ is not an eigenvalue there exists a Green function gλ

for the clamped beam problem (5.12) such that the solution can be represented as

u(x) =

∫ 1

0

gλ(x, y)f(y) dy.

Let us define

φ (λ;x) =











ν−3 (sinh (νx) − sin (νx)) if λ > 0,
1
3x

3 if λ = 0,
1
2µ

−3 (cosh (µx) sin (µx) − sinh (µx) cos (µx)) if λ < 0.

(5.13)

where ν = 4
√
λ and µ = 4

√

− 1
4λ. The functions φ (λ; ·) and ∂

∂xφ (λ; ·) are two linearly

independent solutions of the differential equation and the boundary conditions of
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(5.12) in the left end point 0. By the definition of the Green function it follows that

gλ(x, y) =



















αλ φ (λ;x)φ (λ; 1 − y) + βλ φ
′ (λ;x)φ (λ; 1 − y) +

+ βλ φ (λ;x)φ′ (λ; 1 − y) + γλ φ
′ (λ;x)φ′ (λ; 1 − y)if 0 ≤ x ≤ y ≤ 1,

αλ φ (λ; y)φ (λ; 1 − x) + βλ φ
′ (λ; y)φ (λ; 1 − x) +

+ βλ φ (λ; y)φ′ (λ; 1 − x) + γλ φ
′ (λ; y)φ′ (λ; 1 − x)

if 0 ≤ y < x ≤ 1.

(5.14)
with appropriate constants to accommodate the boundary values in 1 and the con-
tinuity requirements of gλ. Some tedious calculations lead to the coefficients in the
following table.

0 < λ 6= λi λ = 0 λ < 0

set ν = 4
√
λ set µ = 4

√

− 1
4λ

αλ
ν3(sinh ν+sin ν)
4−4 cosh ν cos ν 3 2µ3(cos µ sinh µ+cosh µ sin µ)

cosh 2µ+cos 2µ−2

βλ
ν2(cos ν−cosh ν)
4−4 cosh ν cos ν − 3

2
−2µ2 sinh µ sin µ
cosh 2µ+cos 2µ−2

γλ
ν(sinh ν−sin ν)
4−4 cosh ν cos ν

1
2

µ(cosh µ sin µ−cos µ sinh µ)
cosh 2µ+cos 2µ−2

Table 5.2

These values were obtained using Mathematica.

For λ = 0 formula (5.14) can be simplified to

g0(x, y) =

{

1
2x

2(1 − y)
2 (
y − x+ 2

3x(1 − y)
)

if 0 ≤ x ≤ y ≤ 1,

1
2y

2(1 − x)
2 (
x− y + 2

3y(1 − x)
)

if 0 ≤ y < x ≤ 1.

Problem (5.12) is positivity preserving if and only if the Green function is positive
and for g0 this is now easily seen to be the case. Instead of directly computing for
which λ the Green function gλ is in fact positive one may proceed through the results
of Schröder in [34]. The Green function changes sign for some λ if and only if this λ
is an eigenvalue of either (4.7) or of

{

ϕ′′′′ = λϕ in (0, 1) ,
ϕ(0) = ϕ′(0) = ϕ′′′(0) = 0 = ϕ(1).

(5.15)

The ‘first’ solution of (5.15) is gλ(x, 1) with λc = −4ν4
0 where ν0 is the first positive

zero of tanh ν = tan ν.
Lemma 5.6. Problem (5.12) is positivity preserving if and only if λ ∈ [λc, λ1)

where
• λ1 is the first eigenvalue of (4.7), that is, the fourth power of the first positive

solution of

cosλ =
1

coshλ
,

• λc is the ‘first’ eigenvalue of (5.15), that is, the first negative solution of

tan 4

√

− 1
4λ = tanh 4

√

− 1
4λ (5.16)
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The numerical approximations are λ1 ≈ 4.7300 and λc ≈ −950.884. Notice that
this is the same λc as in (5.6) for Problem (5.5).

Proof. The arguments are similar to the ones in [23] and reflect the ideas from
[34].

Direct inspection shows that g0 is strictly positive. To study the case of positive
λ, notice that (5.12 can be rewritten as (I − λL−1)u = f , where Lu = uxxxx, so that
by a Neumann series argument u =

∑∞
k=1(λL

−1)kf converges and is positive for all
λ ∈ [0, λ1) . For λ = λ1 no solution exists when f = ϕ1. For λ > λ1 and f = ϕ1 the
solution is u = (λ1 − λ)−1ϕ1 and this is negative.

For λ < 0 one finds from (5.14)-(5.13) and the coefficients in Table 5.1 that
λ 7→ gλ(x, y) is continuous for λ ≤ 0 in almost every sense. Let λc < 0 be the first
number after which positivity fails. Suppose that for a fixed y ∈ (0, 1) the value of
gλc

(x, y) is nonnegative but equals 0 for some xy ∈ (0, 1) . And suppose w.l.o.g. that
xy ≤ y. Then gλc

(xy, y) = ∂
∂xgλc

(xy, y) = ∂
∂xgλc

(0, y) = ∂
∂xgλc

(0, y) = 0 and we have
found an eigenfunction scaled to [0, xy] , a contradiction. Hence xy = 0. Using the
symmetry gλ(x, y) = gλ(y, x) we may assume that y is at the boundary, say y = 1 . We

may repeat the argument above for g̃λc
defined by g̃λ(x) = limy↑1 (1 − y)

−2
gλ(x, y)

which is a nontrivial function. Again if g̃(x1) = 0 for some x1 ∈ (0, 1) we find an
eigenfunction by scaling on [0, x1] . Since g̃′(1) < 0 = g̃(1) it remains that x1 = 0. One
finds that g̃ is an eigenfunction of (5.15). The first eigenfunction of that eigenvalue
problem is

ψ1(x) = cosh (µx) sin (µx) − sinh (µx) cos (µx)

with µ the first positive root of coshµ sinµ = sinhµ cosµ and λc = 4µ2. This can be
rephrased to (5.16). For λ < λc one finds that g̃λ is sign changing implying that for
y near 1 the function x 7→ gλ(x, y) is sign changing.

5.3.2. Clamped rectangular grid with aligned fibers. In this section we
investigate the problem

{

uxxxx + uyyyy = λu+ f in R,
u = |∇u| = 0 on ∂R.

(5.17)

Numerical calculations suggest that for λ = 0 a point load f = δy(·) can lead to a
sign changing solution, see Figure 5.4 in which the sign of u is colour coded. This
behaviour is also known and recorded in [9] for isotropic rectangular plates, whose
deformation solves ∆2u = f instead.

Fig. 5.4. Numerical simulation of a clamped rectangularly aligned grid; (5.17) with µ = 0 and
a point source f .
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However, since the first eigenfunction is positive, by using the eigenfunction ex-
pansion one finds the following solution formula for (5.17):

u (x, y) =
∞
∑

i,j=1

1

Λij − λ
〈Φij , f〉R Φij (x, y) .

As for the hinged plate one might hope that for λ near Λ11 the projection on the first
eigenfunction will dominate the sign. But to find such a result we would need a C4

estimate near corner points which, unfortunately, we do not have at our disposal.

5.3.3. Clamped diagonal grid. Since we do not know if the first eigenfunction
is of fixed sign for this grid we can only give some numerical evidence. With the same
point source and domain as in rectangularly aligned grid from Figure 5.4 the area
where the solutions changes sign seems to be much smaller for the diagonally aligned
grid.

Fig. 5.5. Numerical simulation of a clamped diagonally aligned grid.

5.3.4. Numerical comparison for clamped rectangles. Duffin’s famous
counterexample in [13] for the conjecture of Boggio-Hadamard (the clamped plate
problem on convex domains is positivity preserving) uses a long thin rectangle. Here
we present numerical results for long clamped rectangular plate and grids. Rather
surprisingly the numerical result for long thin rectangle with a diagonal fabric hardly
shows any sign change.

Fig. 5.6. A clamped plate, a clamped grid with rectangular fibers, and a clamped grid with
diagonal fibers. The arrow denotes the location of the pointed force and the red (dark) part represents
the part of the grid with a negative deviation.

The numerical illustrations have been obtained using a finite difference method.
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6. Summary for rectangular grids. We set out to study positivity for rec-
tangular grids with aligned and with diagonal fibers. An overview of the results we
obtained for those problems can be found in Table 6.1. For the sake of comparison
we include the known results for the rectangular plate.

positive eigenfunction positivity preserving

plate Φ1 > 0 for λ ∈ [0, Λ1)

hinged grid aligned with sides Φ1 > 0 conditionally near Λ1

grid with diagonal fibers Φ1 > 0 for λ ∈ [0, Λ1)

plate Φ1 changes sign no

grid aligned with sides Φ1 > 0 conditionally near Λ1

clamped grid with diagonal fibers ? ?

Table 6.1

Overview for rectangular plates and grids

Numerics for the clamped plate with diagonal fabric suggest that the first question
mark in the table above should be answered affirmatively; the second question mark
might have a positive answer for λ near Λ1. Of course ‘near Λ1’ always means in a
left neighbourhood of Λ1.

Appendix A. Nonlocal smoothness.

The standard regularity statement for 2m−th order elliptic problems is usually a
statement of the form f ∈ W k,p(Ω) implies u ∈ W k+2m,p(Ω) or f ∈ Ck,γ(Ω̄) implies
u ∈ Ck+2m,γ(Ω̄). Such a maximal regularity result is optimal. However, for a function
f ∈ Lp(Ω) which has its support in Ω′ ⊂ Ω one may show that the corresponding
solution is smooth outside of Ω′. Although this result is well-known we are not aware
of any reference. So allow us to formulate a corresponding statement.

Consider a regular elliptic problem with L of order 2m and Ω a domain in R
n :

{

Lu = f in Ω,
Biu = 0 on ∂Ω for i = 0, . . . ,m.

(A.1)

Proposition A.1. Let Ω1,Ω2 be two disjoint subdomains of Ω having a positive
distance r, that is, r := inf {|x− y| ;x ∈ Ω1, y ∈ Ω2} > 0. Suppose that there exists
c > 0 such that for all k ∈ {0, . . . , κ} and all f ∈ W k,2(Ω) there is a solution
u ∈W 2m+k,2(Ω) of (A.1) with

‖u‖W 2m+k,2(Ω) ≤ c ‖f‖W k,2(Ω) , (A.2)

then there exists C (c, κ, r) such that for all f ∈ L2(Ω) with supportf ⊂ Ω1 the
following holds true:

‖u‖W 2m+κ,2(Ω2)
≤ C (c, κ, r) ‖f‖L2(Ω1)

. (A.3)
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Proof. We will prove this by induction. For k = 0 the estimate (A.3) follows
from (A.2) and the fact that supp f ⊂ Ω1. Next we do the induction from k to k+ 1
and suppose that ‖u‖W 2m+k,2(Ω2)

≤ C (c, k, r) ‖f‖L2(Ω1)
for some k ≥ 0. One may

construct a cut-off functions χ such that for some c1 ∈ R
+

1. χ ∈ C∞(Ω̄) with χ|Ω1
= 0 and χ|Ω2

= 1;
2. Ω̄2 ⋐ supportχ ⋐ Ω̄\Ω1;
3. ‖χ‖Ci(Ω̄) ≤ c1r

−i for i ∈ {0, . . . , k} .
Note that L (χu) = χLu + l.o.t. = 0 + l.o.t. and that χu satisfies the boundary

conditions from (A.1). Since the right hand side l.o.t. lies in W k+1,2(Ω) we find
χu ∈W 2m+k+1,2(Ω). Moreover

‖u‖W 2m+k+1,2(Ω2)
≤ ‖χu‖W 2m+k+1,2(Ω) ≤ c1 ‖l.o.t.‖W k+1,2(Ω) =

= c1 ‖l.o.t.‖W k+1,2(supportχ) ≤ c(r) ‖u‖W 2m+k,2(Ω̃2)
≤ C ′ (c, k, r/2) ‖f‖L2(Ω1)

.

Here Ω̃2 can be chosen so that d(Ω1, Ω̃2) < r/(2k).
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