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Functional Delta Method 

The delta method was introduced in Chapter 3 as an easy way to tum 
the weak convergence of a sequence of random vectors rn (Tn - ()) into 
the weak convergence of transformations of the type rn(¢(Tn) - ¢«(}»). 
It is useful to apply a similar technique in combination with the more 
powerful convergence of stochastic processes. In this chapter we consider 
the delta method at two levels. The first section is of a heuristic character 
and limited to the case that Tn is the empirical distribution. The second 
section establishes the delta method rigorously and in general, completely 
parallel to the delta method for JRk , for Hadamard differentiable maps 
between normed spaces. 

20.1 von Mises Calculus 

Let JPl n be the empirical distribution of a random sample Xl, ... , Xn from a distribution P. 
Many statistics can be written in the form ¢(JP>n), where ¢ is a function that maps every 

distribution of interest into some space, which for simplicity is taken equal to the real line. 
Because the observations can be regained from JPln completely (unless there are ties), any 

statistic can be expressed in the empirical distribution. The special structure assumed here 
is that the statistic can be written as a fixed function ¢ of JPln , independent of n, a strong 
assumption. 

Because JPl n converges to P as n tends to infinity, we may hope to find the asymptotic 
behavior of ¢(JP>n) - ¢(P) through a differential analysis of ¢ in a neighborhood of P. A 
first-order analysis would have the form 

¢(JP>n) - ¢(P) = ¢~(JP>n - P) + ... , 

where ¢~ is a "derivative" and the remainder is hopefully negligible. The simplest approach 
towards defining a derivative is to consider the function t ~ ¢(P + t H) for a fixed 

perturbation H and as a function of the real-valued argument t. If ¢ takes its values in JR, 
then this function is just a function from the reals to the reals. Assume that the ordinary 
derivatives of the map t ~ ¢(P + tH) at t = 0 exist for k = 1,2, ... , m. Denoting them 
by ¢t)(H), we obtain, by Taylor's theorem, 

I 
¢(P + tH) - ¢(P) = t¢~(H) + ... + _tm¢~m)(H) + o(tm). 

m! 
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292 Functional Delta Method 

Substituting t = 1/..[ii and H = Gn, for Gn = ..[ii (lP' n - P) the empirical process of the 
observations, we obtain the von Mises expansion 

Actually, because the empirical process Gn is dependent on n, it is not a legal choice for 
H under the assumed type of differentiability: There is no guarantee that the remainder is 
small. However, we make this our working hypothesis. This is reasonable, because the 
remainder has one factor 1/..[ii more, and the empirical process Gn shares at least one 
property with a fixed H: It is "bounded." Then the asymptotic distribution of ifJ (lP' n) - ifJ (P) 
should be determined by the first nonzero term in the expansion, which is usually the first­
order term ifJ~ (G n). A method to make our wishful thinking rigorous is discussed in the next 
section. Even in cases in which it is hard to make the differentation operation rigorous, the 
von Mises expansion still has heuristic value. It may suggest the type of limiting behavior 
of ifJ(lP'n) - ifJ(P), which can next be further investigated by ad-hoc methods. 

We discuss this in more detail for the case that m = 1. A first derivative typically gives 
a linear approximation to the original function. If, indeed, the map H 1-+ ifJ~(H) is linear, 
then, writing lP' n as the linear combination lP' n = n -1 L 0 Xi of the Dirac measures at the 
observations, we obtain 

(20.1) 

Thus, the difference ifJ(lP'n) - ifJ(P) behaves as an average of the independent random 
variables ifJ~ (0 Xi - P). If these variables have zero means and finite second moments, then 
a normal limit distribution of ..[ii ( ifJ (lP' n) - ifJ (P)) may be expected. Here the zero mean 
ought to be automatic, because we may expect that 

/ ifJ~(ox - P) dP(x) = ifJ~ (/ (ox - P) dP(X)) = ifJ~(O) = o. 

The interchange of order of integration and application of ifJ~ is motivated by linearity (and 
continuity) of this derivative operator. 

The function x 1-+ ifJ~ (ox - P) is known as the influence function of the function ifJ. It 
can be computed as the ordinary derivative 

ifJ~(ox - P) =!--. ifJ(O - t)P + tox). 
dt It=O 

The name "influence function" originated in developing robust statistics. The function 
measures the change in the value ifJ (P) if an infinitesimally small part of P is replaced by a 
pointmass at x. In robust statistics, functions and estimators with an unbounded influence 
function are suspect, because a small fraction of the observations would have too much 
influence on the estimator if their values were equal to an x where the influence function is 
large. 

In many examples the derivative takes the form of an "expectation operator" ifJ~(H) = 
f ¢ p d H, for some function ¢ p with f ¢ pdP = 0, at least for a subset of H. Then the 
influence function is precisely the function ¢ p. 
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20.1 von Mises Calculus 293 

20.2 Example (Mean). The sample mean is obtained as ¢Wn) from the mean function 

¢(P) = f s dP(s). The influence function is 

¢~(ox - P) = !!:.- Is d[ (1 - t)P + tox](s) = x - Is dP(s). 
dt It=O 

In this case, the approximation (20.1) is an identity, because the function is linear already. If 
the sample space is a Euclidean space, then the influence function is unbounded and hence 
the sample mean is not robust. 0 

20.3 Example (Wilcoxon). Let (Xl, Yl), ... , (Xn' Yn) be a random samplefromabivari­
ate distribution. Write IF nand Gn for the empirical distribution functions of the Xi and Yj , 

respectively, and consider the Mann-Whitney statistic 

l in n 
Tn = IFndGn = n2 8f;I{Xi ~ Yj }. 

This statistic corresponds to the function ¢(F, G) = f F dG, which can be viewed as 
a function of two distribution functions, or also as a function of a bivariate distribution 
function with marginals F and G. (We have assumed that the sample sizes of the two 
samples are equal, to fit the example into the previous discussion, which, for simplicity, is 
restricted to i.i.d. observations.) The influence function is 

¢(F,G)(Ox,y - P) = !!:.- /[(1 - t)F + tox] d((1- t)G + tOy] 
dt It=O 

= F(y) + 1 -G_(x) - 2/ F dG. 

The last step follows on multiplying out the two terms between square brackets: The function 
that is to be differentiated is simply a parabola in t. For this case (20.1) reads 

From the two-sample U -statistic theorem, Theorem 12.6, it is known that the difference 
between the two sides of the approximation sign is actually 0 P (1 / .jii). Thus, the heuristic 
calculus leads to the correct answer. In the next section an alternative proof of the asymptotic 
normality of the Mann-Whitney statistic is obtained by making this heuristic approach 
rigorous. 0 

20.4 Example (Z-Junctions). For every e in an open subset of IRk, let x 1-+ 1/fo(x) be 
a given, measurable map into IRk. The corresponding Z-function assigns to a probability 
measure P a zero ¢(P) of the map e 1-+ P1/fo. (Consider only P for which a unique zero 
exists.) If applied to the empirical distribution, this yields a Z-estimator ¢(lP'n). 

Differentiating with respect to t across the identity 

and assuming that the derivatives exist and that e 1-+ 1/fo is continuous, we find 

0= (:e P1/fo) [dd ¢(P + tox)] + 1/ft/>(P)(x). 
u O=t/>(P) t t=O 
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294 Functional Delta Method 

The expression enclosed by squared brackets is the influence function of the Z-function. 
Informally, this is seen to be equal to 

(a)-I 
- ae Pt/le t/lq,(P) (x). 

e=q,(p) 

In robust statistics we look for estimators with bounded influence functions. Because the 
influence function is, up to a constant, equal to t/lq,(P)(x), this is easy to achieve with 
Z-estimators ! 

The Z-estimators are discussed at length in Chapter 5. The theorems discussed there 
give sufficient conditions for the asymptotic normality, and an asymptotic expansion for 
Jii" (t/J (lP n) - t/J (P) ). This is of the type (20.1) with the influence function as in the preceding 
display. 0 

20.5 Example (Quantiles). The pth quantile of a distribution function F is, roughly, the 
number t/J(F) = F-I(p) such that FF-I(p) = p. We set Ft = (1 - I)F + lax, and 
differentiate with respect to I the identity 

p = FtFt-l(p) = (1 - I)F(Ft-l(p») + lax (Ft- I (p) ). 

This "identity" may actually be only an inequality for certain values of p, I, and x, but we 
do not worry about this. We find that 

0== -F(F-I(p») + f(F-1(P»)[dd Ft-I(P)] + ax(F-1(p»). 
I It=O 

The derivative within square brackets is the influence function of the quantile function and 
can be solved from the equation as 

The graph of this function is given in Figure 20.1 and has the following interpretation. 
Suppose the pth quantile has been computed for a large sample, but an additional observation 
x is obtained. If x is to the left of the pth quantile, then the pth quantile decreases; if x 
is to the right, then the quantile increases. In both cases the rate of change is constant, 
irrespective of the location of x. Addition of an observation x at the pth quantile has an 
unstable effect. 

-p-
-----------f(F1 (p)) 

-1 
F (p) 

~ -------------
f(F"1 (p)) 

Figure 20.1. Influence function of the pth quantile. 
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20.1 von Mises Calculus 295 

The von Mises calculus suggests that the sequence of empirical quantiles J1i(IF;1 (t) -

F-1(t)) is asymptotically normal with variance varF l/>~(OXl) = p(l - p)/f 0 F-l(p)2. 
In Chapter 21 this is proved rigorously by the delta method of the following section. Alter­
natively, a pth quantile may be viewed as an M -estimator, and we can apply the results of 
Chapter 5. 0 

20.1.1 Higher-Order Expansions 

In most examples the analysis of the first derivative suffices. This statement is roughly 
equivalent to the statement that most limiting distributions are normal. However, in some 
important examples the quadratic term dominates the von Mises expansion. 

The second derivative l/>;(H) ought to correspond to a bilinear map. Thus, it is better 
to write it as l/>;(H, H). If the first derivative in the von Mises expansion vanishes, then 
we expect that 

The right side is a V-statistic of degree 2 with kernel function equal to h p (x, y) = !l/>; (ox -
P,Oy - P). The kernel ought to be symmetric and degenerate in that Php(X, y) = 0 for 
every y, because, by linearity and continuity, 

/ l/>;(ox - P, Oy - P) dP(x) = l/>; (/ (ox - P) dP(x), Oy - p) 
= l/>; (0, Oy - P) = O. 

If we delete the diagonal, then a V -statistic turns into a U -statistic and hence we can apply 
Theorem 12.10 to find the limit distribution of n(l/>(]P>n) -l/>(P»). We expect that 

If the function x H- hp(x. x) is P-integrable, then the second term on the right only 
contributes a constantto the limit distribution. If the function (x, y) H- h~(x, y) is (P x P)­
integrable, then the first term on the right converges to an infinite linear combination of 
independent xr-variables, according to Example 12.12. 

20.6 Example (Cramer-von Mises). The Cramer-von Mises statistic is the function 
l/>(lFn) for l/>(F) = J(F - Fo)2dFo and a fixed cumulative distribution function Fo. By 
direct calculation, 

Consequently, the first derivative vanishes at F = Fo and the second derivative is equal to 
l/>~o (H) = 2 J H2 d Fo. The von Mises calculus suggests the approximation 
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296 Functional Delta Method 

This is certainly correct, because it is just the definition of the statistic. The preceding 
discussion is still of some interest in that it suggests that the limit distribution is nonnormal 
and can be obtained using the theory of V -statistics. Indeed, by squaring the sum that is 
hidden in G~, we see that 

1 n n f 
n4>(lFn ) =;; t;f; (lxi~x - Fo(x»)(lxi~x - Fo(x»)dFo(x). 

In Example 12.13 we used this representation to find that the sequence n4>(lFn ) ~ (1/6) + 
L~1 r 21l'-2(Z; - 1) for an Li.d. sequence of standard normal variables ZI, Z2,"" if 
the true distribution Fo is continuous. 0 

20.2 Hadamard-Differentiable Functions 

Let Tn be a sequence of statistics with values in a normed space ][)) such that rn(Tn - 0) 
converges in distribution to a limit T, for a given, nonrandom 0, and given numbers r n -+ 00. 
In the previous section the role of Tn was played by the empirical distribution lPn' which 
might, for instance, be viewed as an element of the normed space D[-oo, 00]. We wish 
to prove that rn (4) (Tn) - 4>(0») converges to a limit, for every appropriately differentiable 
map 4>, which we shall assume to take its values in another normed space IE. 

There are several possibilities for defining differentiability of a map 4> : ][)) t-+ IE between 
normed spaces. A map 4> is said to be Gateaux differentiable at 0 E ][)) if for every fixed h 
there exists an element 4>~ (h) E IE such that 

4>(0 + th) - 4>(0) = t4>~(h) + o(t), as t .J,. O. 

For IE the real line, this is precisely the differentiability as introduced in the preceding 
section. Gateaux differentiability is also called "directional differentiability," because for 
every possible direction h in the domain the derivative value 4>~ (h) measures the direction 
of the infinitesimal change in the value of the function 4>. More formally, the o(t) term in 
the previous displayed equation means that 

114>(0 + th} - 4>(0) - 4>~(h)IIE -+ 0, as t .J,. O. (20.7) 

The suggestive notation 4>~ (h) for the ''tangent vectors" encourages one to think of the 
directional derivative as a map 4>~ :][)) t-+ IE, which approximates the difference map 4>(0 + 
h) - 4>(0) :][)) t-+ IE. It is usually included in the definition of Gateaux differentiability that 
this map 4>~ : ][)) t-+ IE be linear and continuous. 

However, Gateaux differentiability is too weak for the present purposes, and we need a 
stronger concept. A map 4> :][))tj> t-+ IE, defined on a subset ][))tj> of a normed space ][)) that 
contains 0, is called Hadamard differentiable at 0 if there exists a continuous, linear map 
4>~ : ][)) t-+ IE such that 

114>(0 + th;) - 4>(0) - 4>~(h) t -+ 0, as t .J,. 0, every ht -+ h. 

(More precisely, for every ht -+ h such that 0 + tht is contained in the domain of 4> 
for all small t > 0.) The values 4>~(h) of the derivative are the same for the two types 
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20.2 Hadamard-Differentiable Functions 297 

of differentiability. The difference is that for Hadamard-differentiability the directions ht 

are allowed to change with t (although they have to settle down eventually), whereas for 
Gateaux differentiability they are fixed. The definition as given requires that ¢~ : I!} t-+ IE 
exists as a map on the whole ofl!}. If this is not the case, but ¢~ exists on a subset I!}o and the 
sequences ht ~ h are restricted to converge to limits h E I!}o, then ¢ is called Hadamard 
differentiable tangentially to this subset. 

It can be shown that Hadamard differentiability is equivalent to the difference in (20.7) 
tending to zero uniformly for h in compact subsets of I!}. For this reason, it is also called 
compact differentiability. Because weak convergence of random elements in metric spaces 
is intimately connected with compact sets, through Prohorov's theorem, Hadamard differ­
entiability is the right type of differentiability in connection with the delta method. 

The derivative map ¢~ : I!} t-+ lE is assumed to be linear and continuous. In the case of 
finite-dimensional spaces a linear map can be represented by matrix multiplication and is 
automatically continuous. In general, linearity does not imply continuity. 

Continuity of the map ¢~ : I!} t-+ lE should not be confused with continuity of the depen­
dence fJ t-+ ¢~ (if ¢ has derivatives in a neighborhood of fJ-values). If the latter continuity 
holds, then ¢ is called continuously differentiable. This concept requires a norm on the set 
of derivative maps but need not concern us here. 

For completeness we discuss a third, stronger form of differentiability. The map ¢ : I!}</l t-+ 

lE is called Frechet differentiable at fJ if there exists a continuous, linear map ¢~ : I!} t-+ lE 
such that 

11¢(fJ + h) - ¢(fJ) - ¢~(h) II IE = o(lIh II), as IIhll -I- o. 
Because sequences of the type tht, as employed in the definition of Hadamard differentia­
bility, have norms satisfying Iitht II = OCt), Frechet differentiability is the most restrictive 
of the three concepts. In statistical applications, Frechet differentiability may not hold, 
whereas Hadamard differentiability does. We did not have this problem in Section 3.1, 
because Hadamard and Frechet differentiability are equivalent when I!} = lR.k • 

20.8 Theorem (Delta method). Let I!} and lE be normed linear spaces. Let ¢ : I!}</l C 

I!} t-+ lE be Hadamard differentiable at fJ tangentially to I!}o. Let Tn : Q n t-+ I!}</l be maps 
such that rn (Tn - e) """ T for some sequence of numbers rn ~ 00 and a random element T 
that takes its values in I!}o. Then rn (¢(Tn) - ¢(e)) """ ¢~ (T). If¢~ is defined and continuous 
on the whole space I!}, then we also have rn(¢(Tn) - ¢(e)) = ¢Hrn(Tn - fJ)) + op(1). 

Proof. To prove thatrn (¢ (Tn)-¢(e)) """ ¢~ (T), definefor each n a map gn (h) = rn (¢(e+ 
r;;'h) - ¢(e)) on the domain I!}n = {h: e + r;;'h E I!}",}. By Hadamard differentiability, 
this sequence of maps satisfies gn,(hn,) ~ ¢~(h) for every subsequence hn' ~ h E 

I!}o. Therefore, g n (r n (Tn - fJ)) """ ¢~ (T) by the extended continuous-mapping theorem, 
Theorem 18.l1, which is the first assertion. 

The seemingly stronger last assertion of the theorem actually follows from this, if applied 
to the function 1/1 = (¢, ¢~): I!} t-+ lE x lE. This is Hadamard-differentiable at (fJ, fJ) with 
derivative 1/1~ = (¢~, ¢~). Thus, by the preceding paragraph, rn (1/I(Tn) -1/I(fJ)) converges 
weakly to (¢~(T), ¢~(T)) in lE x IE. By the continuous-mapping theorem, the difference 
rn(¢(Tn) - ¢(fJ)) - ¢~(rn(Tn - fJ)) converges weakly to ¢~(T) - ¢~(T) = O. Weak 
convergence to a constant is equivalent to convergence in probability. • 
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298 Functional Delta Method 

Without the chain rule, Hadamard differentiability would not be as interesting. Con­
sider maps f/J: D t-+- lE and 1/1 : lE t-+- IF that are Hadamard-differentiable at () and f/J«(), 
respectively. Then the composed map 1/1 0 f/J : D t-+- IF is Hadamard-differentiable at (), and 
the derivative is the map obtained by composing the two derivative maps. (For Euclidean 
spaces this means that the derivative can be found through matrix multiplication of the two 
derivative matrices.) The attraction of the chain rule is that it allows a calculus of Hadamard­
differentiable maps, in which differentiability of a complicated map can be established by 
decomposing this into a sequence of basic maps, of which Hadamard differentiability is 
known or can be proven easily. This is analogous to the chain rule for real functions, which 
allows, for instance, to see the differentiability of the map x t-+- exp cos 10g(1 + x 2) in a 
glance. 

20.9 Theorem (Chain rule). Let f/J : D", t-+- lEy, and 1/1 : lEy, t-+- IF be maps defined on sub­
sets D", and lEy, 0/ normed spaces D and lE, respectively. Let f/J be Hadamard-differentiable 
at () tangentially to Do and let 1/1 be Hadamard-differentiable at f/J «() tangentially to f/Je (Do). 
Then 1/1 0 f/J : D", t-+- IF is Hadamard-differentiable at () tangentially to Do with derivative 

1/I~«(J) 0 f/Je· 

Proof. Take an arbitrary converging path h, ~ h in D. With the notation g, = t- I (f/J«() + 
th,) - f/J«()), we have 

1/1 0 f/J«() + th,) -1/1 0 f/J«() 1/I(f/J«() + tg,) -1/I(f/J«()) "'----'------'---'-- = ---'----'----'---'-
t t 

By Hadamard differentiability of f/J, g, ~ f/Je(h). Thus, by Hadamard differentiability of 
1/1, the whole expression goes to 1/I~«(J) (f/Je (h) ). • 

20.3 Some Examples 

In this section we give examples of Hadamard-differentiable functions and applications of 
the delta method. Further examples, such as quantiles and trimmed means, are discussed 
in separate chapters. 

The Mann-Whitney statistic can be obtained by substituting the empirical distribution 
functions of two samples of observations into the function (F, G) t-+- f F dG. This 
function also plays a role in the construction of other estimators. The following lemma 
shows that it is Hadamard-differentiable. The set B V M [a, b] is the set of all cadlag functions 
z : [a, b] t-+- [-M, M] c lR of variation bounded by M (the set of differences of Z I - Z2 of 
two monotonely increasing functions that together increase no more than M). 

20.10 Lemma. Let f/J: [0,1] t-+- lR be twice continuously differentiable. Then thefunc­
tion (Flo F2) t-+- f f/J(FI)dF2 is Hadamard-differentiablefrom the domain D[-oo, 00] x 
BVI[-oo, 00] c D[-oo, 00] x D[-oo, 00] into lR at every pair o/functions o/bounded 
variation (FI, F2)' The derivative is given byt 

(hI, h2) t-+- h2 f/J 0 Fd~oo - f h2- df/J 0 FI + f f/J'(FI)h l dF2. 

t We denote by h- the left-continuous version of a cadlag function h and abbreviate hl~ = h(b) - h(a). 
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20.3 Some Examples 299 

Furthermore, the function (FI' F2) t-+ ~-oo"l rp(FI) dF2 is Hamamard-dijJerentiable as a 
map into D[ -00, 00]. 

Proof. Let hit ~ hi and h2t ~ h2 in D[-oo, 00] be such that F2t = F2 + th2t is a 
function of variation bounded by 1 for each t. Because F2 is of bounded variation, it follows 
that h2t is of bounded variation for every t. Now, with Fit = FI + t hit, 

~(I rp(FIt)dF2t - I rp(FI)dF2) 

= I (rp(Flt ) ~ rp(FI) - rp'(FI)h l) dF2t + I rp(FI)dh 2t + I rp'(FI)h l dF2t . 

By partial integration, the second tenn on the right can be rewritten as rp 0 Flh2tl~oo -
J h2t- drpo Fl' Under the assumption on h2t, this converges to the first part of the derivative 
as given in the lemma. The first tenn is bounded above by (IW'lIootllhltlloo + IWlloollhlt -

hilloo ) J dlF2tl· Because the measures F2t are of total variation at most 1 by assumption, 
this expression converges to zero. To analyze the third tenn on the right, take a grid Uo = 
-00 < UI < ... < Um = 00 such that the function rp' 0 FI hi varies less than a prescribed 
value e > 0 on each interval [Ui-I, Ui). Such a grid exists for every element of D[-oo, 00] 
(problem 18.6). Then 

II rp'(FI)h l d(F2t - F2)1 :::: e(1 dIF2tl + d1F21) 
m+1 

+ L:1(rp' 0 FI h l)(Ui-dII F2t[Ui-l, Ui) - F2[U;_I, u;)I· 
;=1 

The first tenn is bounded by eO(1), in which the e can be made arbitrarily small by the 
choice of the partition. For each fixed partition, the second tenn converges to zero as t .j.. O. 
Hence the left side converges to zero as t .j.. O. 

This proves the first assertion. The second assertion follows similarly. • 

20.11 Example (Wilcoxon). Let IFm and Gn be the empirical distribution functions of 
two independent random samples XI, ... , Xm and f l , ... , fn from distribution functions 
F and G, respectively. As usual, consider both m and n as indexed by a parameter v, let 
N = m + n, and assume that m/ N ~ A E (0, 1) as v ~ 00. By Donsker's theorem and 
Slutsky's lemma, 

r.; (G F GG) v N(lFm - F, Gn - G) ov-+ .JI'.JI='1 ' 

in the space D[ -00,00] x D[ -00,00], for a pair of independent Brownian bridges GF 

and GG. The preceding lemma together with the delta method imply that 

.m(1 IFmdG n - I FdG) ov-+ - I ~dF + I ~dG. 
The random variable on the right is a continuous, linear function applied to Gaussian 
processes. In analogy to the theorem that a linear transfonnation of a multivariate Gaussian 
vector has a Gaussian distribution, it can be shown that a continuous, linear transfonnation 
of a tight Gaussian process is nonnally distributed. That the present variable is nonnally 
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300 Functional Delta Method 

distributed can be more easily seen by applying the delta method in its stronger form, which 
implies that the limit variable is the limit in distribution of the sequence 

This can be rewritten as the difference of two sums of independent random variables, and 
next we can apply the central limit theorem for real variables. 0 

20.12 Example (Two-sample rank statistics). Let JH[N be the empirical distribution func­
tion of a sample Xl,"" Xm, Yl , ... , Yn obtained by "pooling" two independent random 
samples from distributions F and G, respectively. Let RNl , .•• , RNN be the ranks of the 
pooled sample and let Gn be the empirical distribution function of the second sample. If 
no observations are tied, then NJH[N(Yj ) is the rank of Yj in the pooled sample. Thus, 

is a two-sample rank statistic. This can be shown to be asymptotically normal by the 
preceding lemma. Because NJH[N = mlFm + nGn, the asymptotic normality of the pair 
(JH[N, Gn ) can be obtained from the asymptotic normality of the pair (lFm' Gn ), which is 
discussed in the preceding example. 0 

The cumulative hazard function corresponding to a cumulative distribution function F 
on [0, 00] is defined as 

AF(t) = ( ~. 
l[o,t) 1 - F_ 

In particular, if F has a density f, then AF has a density AF = fl(1- F). If F(t) gives the 
probability of "survival" of a person or object until time t, then d A F (t) can be interpreted 
as the probability of "instant death at time t given survival until t." The hazard function is 
an important modeling tool in survival analysis. 

The correspondence between distribution functions and hazard functions is one-to-one. 
The cumulative distribution function can be explicitly recovered from the cumulative hazard 
function as the product integral of -A (see the proof of Lemma 25.74), 

1 - FA(t) = n (1 - A{s})e-AC(t). (20.13) 
0<3:9 

Here A {s} is the jump of A at s and N (s) is the continuous part of A. 
Under some restrictions the maps F ~ AF are Hadamard differentiable. Thus, from 

an asymptotic-statistical point of view, estimating a distribution function and estimating a 
cumulative hazard function are the same problem. 

20.14 Lemma. Let Jl))t/> be the set of all nondecreasing cadlag functions F: [0, 'l'] 1-+ IR 
with F(O) = 0 and 1 - F('l') ~ e > 0 for some e > 0, and let IE", be the set of all 
nondecreasing cadlag functions A: [0, 'l'] 1-+ IR with A(O) = 0 and A('l') ::: M for some 
MeR 
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20.3 Some Examples 301 

(i) The map c/J:][).p c D[O, r] H- D[O, r] defined by c/J(F) = AF is Hadamard differ­
entiable. 

(ii) The map 1/1: lEy, C D[O, r] H- D[O, r] defined by 1/I(A) = FA is Hadamard differ­
entiable. 

Proof. Part (i) follows from the chain rule and the Hadamard differentiability of each of 
the three maps in the decomposition 

F H- (F, 1- F_) H- (F' -1 ~ ) H- r 1 :FF . 
F_ 1[0,,] -

The differentiability of the first two maps is easy to see. The differentiability of the last one 
follows from Lemma 20.10. The proof of (ii) is longer; see, for example, [54] or [55]. • 

20.15 Example (Nelson-Aalen estimator). Consider estimating a distribution function 
based on right-censored data. We wish to estimate the distribution function F (or the corre­
sponding cumulative hazard function A) of a random sample of "failure times" Tl , ••• , Tn. 
Unfortunately, instead of 1; we only observe the pair (Xi, ~i)' in which Xi = 1; 1\ Ci is 
the minimum of 1; and a "censoring time" Ci , and ~i = 1 {Ii ::: Ci } records whether 1; is 
censored (~i = 0) or not (~i = 1). The censoring time could be the closing date of the 
study or a time that a patient is lost for further observation. The cumulative hazard function 
of interest can be written 

A(t) = r _1_ dF = r 1 dH!. 
1[0,1] 1 - F_ 1[0,,] 1 - H_ 

for 1 - H = (1 - F)(1 - G) and dHl = (1 - G_)dF, and every choice of distribution 
function G. If we assume that the censoring times C l, ... , Cn are a random sample from 
G and are independent of the failure times 1;, then H is precisely the distribution function 
of Xi and HI is a "subdistribution function," 

1 - H(x) = P(Xi > x), HI(x) = P(Xi ::: x, ~i = 1). 

An estimator for A is obtained by estimating these functions by the empirical distributions 
of the data. given by lHIn(x) = n- l L::7=1 I{Xi ::: xl and lHI1n(x) = n- l L::7=11{Xj ::: 
x, ~i = I}, and next substituting these estimators in the formula for A. This yields the 
Nelson-Aalen estimator 

An(t) = dlHIln · ~ 1 1 
[0,1] 1 -lHIn-

Because they are empirical distribution functions, the pair (lHIn.lHIln) is asymptotically 
normal in the space D[-oo, 00] x D[-oo, 00]. The easiest way to see this is to consider 
them as continuous transformations of the (bivariate) empirical distribution function of the 
pairs (Xi, ~i)' The Nelson-Aalen estimator is constructed through the maps 

(A, B) H- (1- A, B) H- (_1_, B) H- r _1_ dB. 
1 - A 1[0,1] 1 - A_ 

These are Hadamard differentiable on appropriate domains, the main restrictions being that 
1 - A should be bounded away from zero and B of uniformly bounded variation. The 
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asymptotic normality of the Nelson-Aalen estimator An(t) follows for every t such that 
H(t) < 1, and even as a process in D[O, r] for every r such that H(r) < 1. 

If we apply the product integral given in (20.13) to the Nelson-Aalen estimator, then 
we obtain an estimator 1 - F n for the distribution function, known as the product limit 
estimator or Kaplan-Meier estimator. For a discrete hazard function the product integral is 
an ordinary product over the jumps, by definition, and it can be seen that 

1 - Fn(t) = . ] -! ! = . A n #(J': X· > K) - 11· n ( n - i )L1.('J 
i:X,9 #(j:Xj 2: Xi) i:X('J~t n-I+1 

This estimator sequence is asymptotically normal by the Hadamard differentiability of the 
product integral. D 

Notes 

A calculus of "differentiable statistical functions" was proposed by von Mises [104]. Von 
Mises considered functions q,(lFn ) of the empirical distribution function (which he calls 
the "repartition of the real quantities Xl, .•• , Xn ") as in the first section of this chapter. 
Following Volterra he calls q, m times differentiable at F if the first m derivatives of the 
map t ~ q,(F + t H) at t = 0 exist and have representations of the form 

This representation is motivated in analogy with the finite-dimensional case, in which H 
would be a vector and the integrals sums. From the perspective of our section on Hadamard­
differentiable functions, the representation is somewhat arbitrary, because it is required that 
a derivative be continuous, whence its general form depends on the norm that we use on 
the domain of q,. Furthermore, the Volterra representation cannot be directly applied to, for 
instance, a limiting Brownian bridge, which is not of bounded variation. 

Von Mises' treatment is not at all informal, as is the first section of this chapter. After 
developing moment bounds on the derivatives, he shows that nm/2 (q, (IF n) - q, (F) ) is asymp­

totically equivalent to q,r) (Gn ) if the first m - 1 derivatives vanish at F and the (m + l)th 
derivative is sufficiently regular. He refers to the approximating variables q,r) (Gn), de­
generate V -statistics, as "quantics" and derives the asymptotic distribution of quantics of 
degree 2, first for discrete observations and next in general by discrete approximation. 
Hoeffding's work on U -statistics, which was published one year later, had a similar aim 
of approximating complicated statistics by simpler ones but did not consider degenerate 
U -statistics. 

The systematic application of Hamadard differentiability in statistics appears to have 
first been put forward in the (unpublished) thesis [125] of J Reeds and had a main focus 
on robust functions. It was revived by Gill [53] with applications in survival analysis in 
mind. With a growing number of functional estimators available (beyond the empirical 
distribution and product-limit estimator), the delta method is a simple but useful tool to 
standardize asymptotic normality proofs. 

Our treatment allows the domain ~4> of the map q, to be arbitrary. In particular, we do 
not assume that it is open, as we did, for simplicity, when discussing the Delta method for 
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Problems 303 

Euclidean spaces. This is convenient, because many functions of statistical interest, such 
as zeros, inverses or integrals, are defined only on irregularly shaped subsets of a normed 
space, which, besides a linear space, should be chosen big enough to support the limit 
distribution of Tn. 

PROBLEMS 

1. Let cfJ(P) = f fh(u, v)dP(u)dP(v) for a fixed given function h. The corresponding estimator 
cfJ(lP'n) is known as a V -statistic. Find the influence function. 

2. Find the influence function of the function cfJ (F) = f a(FI +F2) dF2 if Fl and F2 arethemarginals 
of the bivariate distribution function F, and a is a fixed, smooth function. Write out cfJ(lFn). What 
asymptotic variance do you expect? 

3. Find the influence function of the map F 1-+ .1i:O.t) (1- F _ )-1 d F (the cumulative hazard function). 

4. Show that a map cfJ : Jl)) 1-+ lE is Hadamard differentiable at a point () if and only if for every compact 
set K C Jl)) the expression in (20.7) converges to zero uniformly in h E K as t ~ O. 

S. Show that the symmetrization map «(), F) 1-+ !(F(tH 1- F(29 - t») is (tangentially) Hadamard 
differentiable under appropriate conditions. 

6. Let g: [a, b] 1-+ Ii be a continuously differentiable function. Show that the map z 1-+ go z with 
domain the functions z: T 1-+ [a, b] contained in eOO(T) is Hadamard differentiable. What does 
this imply for the function z 1-+ liz? 

7. Show that the map F 1-+ .1i:a,b) s dF(s) is Hadamard differentiable from the domain of all distri­
bution functions to JR, for each pair of finite numbers a and b. View the distribution functions as 
a subset of D[ -00, 00] equipped with supremum norm. What if a or b are infinite? 

8. Find the first- and second-order derivative of the function cfJ(F) = f(F - FO)2 dF at F = Fo. 
What limit distribution do you expect for cfJ (IF n)? 
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